Asymmetric tree correlation testing for graph alignment - PaRis AI Research InstitutE
Communication Dans Un Congrès Année : 2023

Asymmetric tree correlation testing for graph alignment

Résumé

We consider the partial graph alignment problem on two correlated sparse Erdős-Rényi graphs with differing edge or node densities. Exploiting that these graphs are locally tree-like, we come to consider a hypothesis testing problem on correlated Galton-Watson trees. To solve this problem, we give several equivalent conditions for the existence of likelihood-ratio tests with vanishing type-I-error and significant power. We then show that these same conditions enable the partial graph alignment algorithm MPAlign to succeed. This paper generalizes recent results from Ganassali L., Massoulié L. and Lelarge M. to the asymmetric edge and node density case. This extension allows for greater applicability of the results and resolves a special case of the subgraph isomorphism problem.
Fichier principal
Vignette du fichier
MaierMassoulie_Asymmetric_sparse_alignement_ITW2023.pdf (243.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04435165 , version 1 (02-02-2024)

Identifiants

Citer

Jakob Maier, Laurent Massoulié. Asymmetric tree correlation testing for graph alignment. 2023 IEEE Information Theory Workshop (ITW), Apr 2024, Saint-Malo, France. pp.503-508, ⟨10.1109/ITW55543.2023.10161653⟩. ⟨hal-04435165⟩
210 Consultations
57 Téléchargements

Altmetric

Partager

More