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AND THE INDIA-EURASIA COLLISION 
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Philippe Davy and Peter Cobbold 

Centre Armoricain d'Etude Structurale des 
Socles, Universit• de Rennes I, France 

Abstract. Right-lateral shear along the 
eastern margin of Asia, from the Eocene to 
the Present has led to the opening of pull- 
apart basins, intracontinental such as the 
Bohai basin, or oceanic such as the Japan 
Sea. We suggest in this paper that this 
right-lateral shear is a consequence of 
indentation of Asia by India. As in small- 
scale analog experiments, we conclude that 
antithetic wrench faults accommodate the 

counterclockwise rotation of large domino 
blocks between two major left-lateral shear 
zones (Tien Shan-Baikal-Stanovoy for the 
northern one, and Qin Ling for the southern 
one). We discuss the compatibility of this 
mechanism, which involves a rather small 
amount of extrusion, with the fast eastward 
expulsion described for southeast Asia. We 
re-emphasize the role played in the opening 
of marginal basins by the Pacific subduction 
as a free boundary to the east. 

INTRODUCTION 

As a result of collision in the Himalayan 
region, the Asian continent is currently 
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deforming as far as its eastern boundary, 
behind the peri-Pacific subduction zone. 
Tapponnier eta]. [1982] suggested that 
opening of the South China Sea is related to 
extrusion of Indochina along the Red River 
Fault during the Tertiary (Figure 1). But the 
South China Sea is only one among several 
marginal basins which opened during the 
same time span. Other examples are the 
Japan Sea, Kuril basin and Shikoku basin. 
Up to now, no model has convincingly 
explained the tectonic evolution of the 
margin as a whole. The Japan Sea and 
Bohai basin opened in the Cenozoic as large 
pull-apart basins distributed along right- 
lateral shear zones parallel to the active 
margin of Eurasia (Figure 1; Lallemand 
and Jolivet, 1985; Kimura and Tamaki, 1986; 
Chen and Nabelek, 1988]. This right-lateral 
shear is still active today in northern China. 
It is predicted neither by the classical 
mechanism of back-arc spreading, nor by 
the model of Tapponnier et al. [1982] of 
eastward extrusion. Recently Davy and 
Cobbold [1988] did analogue experiments of 
the India-Asia collision which shed a new 

light on this question (Figures 2 and 3). We 
suggest in this paper that Japan Sea, and, 
more landward, the Bohai basin, are pull- 
apart basins along right-lateral cross faults 
which accommodate counterclockwise 

rotations of large domino-like blocks, due to 
the India-Asia collision (Figure 4). 
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Fig. 1. Tectonic map of eastern Asia and the peri Pacific subduction zones. 
1, Actively opening oceanic basins or intracontinental rifts. 2, Tertiary 
marginal basins now inactive. 3, Area belonging to Asia. 4, Indian plate. 5, 
Pacific plate. NAM, North American plate, EU, Eurasian plate, IND, 
Indian plate, PAC, Pacific plate, OK, Okhotsk plate, PHS, Philippine Sea 
plate, ATF, Altyn Tagh Fault, QLF, Qin Ling Fault, TF, Tanlu Fault, RRF, 
Red River Fault, BB, Bohai Basin, JB, Japan Basin, KB, Kuril basin, MT, 
Mariana trough, OB, Okinawa basin, SB, Shikoku basin, SCS, South China 
Sea, PVB, Parece Vela basin, YB, Yamato basin. The instantaneous 
rotation pole Amur/Eu is after Savostin et al. [1983]. Oblique Mercator 
projection. 
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Fig. 2. Photographs of two experiments by Davy and Cobbold [1988]. One is 
for a two-layer lithosphere (Figures 2a and 2b), the other for a three-layer 
lithosphere (Figures 2c, 2d and 2e). For strength profiles see Figure 3. 
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Fig. 3. Comparison of theoretical rheologic 
profiles for two and three-layer lithosphere 
with the profiles used in the experiments. 
BC, Brittle Crust, DC, Ductile Crust, DM, 
Ductile Mantle. 

It now appears that the opening of many 
marginal basins is not simply a matter of 
backward migration of the subducted slab 
and trench-retreat, as earlier stated [Taylor 
and Karner, 1983; Uyeda and Kanamori, 
1979; Uyeda, 1986; Garfunkel et al., 1986]. 
Whereas the active Mariana basin or the 

Miocene Shikoku-Parece Vela basin may be 
true back-arc basins, many others opened 
with more complex mechanisms, often 
involving large transcurrent motions. 
Recently, Hamburger and Isacks [1988] 
claimed that the active opening of the 
northern Fiji and northern Lau Basins is 
due to left-lateral motion along the 
Australia-Pacific boundary. The 

80 o 100 o 120 o 1400 

Fig. 4. Simplified model of deformation of 
Asia (see text for details). Oblique Mercator 
projection. 

deformation is accommodated over a wide 

area. Kimura and Tamaki [1986] compiled 
tectonic data for northeast Asia and 

concluded that the Japan Sea pull-apart 
opened in response to a northward 
movement of Eurasia due to collision of 

India. The movement was accommodated by 
left-lateral motion along the Baikal rift zone 
on the west side, compressive tectonics 
leading to the formation of thrusts along the 
Stanovoy range and fight-lateral motion 
along the Pacific margin. Jolivet [1986] and 
Jolivet et al. [1989] explained the fight- 
lateral transpression observed along 
Sakhalin and Hokkaido during the opening 
period by the relative motion of the North 
America and Eurasia plates. But, up to 
now, no mechanism efficiently explained 
both the deformation of South-East Asia and 

the Japan-Okhotsk region. In the following 
we first shortly review the opening 
mechanism of the Japan Sea and Bohai 
basin and then some of the experiments of 
Davy and Cobbold [1988]. Finally we discuss 
the tectonics of eastern Asia as a whole. 

JAPAN SEA 

The timing of the opening of the Japan 
Sea, including the rifting period, is deduced 
from the analysis of the geology of its 
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margins. A general agreement has been 
reached upon a period bracketed between 
Late Oligocene and the end of Middle 
Miocene mainly based on the stratigraphy of 
the onland basins [Tamaki, 1986, 1988; 
Lallemand and Jolivet, 1985; Otofuji and 
Matsuda, 1984; Jolivet and Huchon, 1989]. 
These dates coincide with a peak of volcanic 
activity in northern Japan known as the 
Green Tuffs period [Ganzawa, 1987]. 
According to Ludwig et al. [1975] and 
Tamaki [1985, 1986, 1988] oceanic crust 
underlies three main basins, the Japan (JB) 
,Tsushima (TB) and Yamato (YB) basins. 
The unusually thick crust of the Yamato 
basin makes this inference partly 
questionable, a thinned continental crust 
also being possible. The Japan basin is 
separated from the smaller Yamato basin by 
a rifted continental block, the Yamato bank. 
Although the trend of magnetic anomalies 
is clearly E-W to ENE-WSW in the Japan 
basin [Isezaki, 1986; Tamaki, 1988], the 
magnetic data are not well enough resolved 
to identify the anomalies themselves. 
Onland paleomagnetic studies indicate a 
clockwise rotation of SW Japan and a 
counterclockwise rotation of NE Japan 
during the opening [Kawai et al., 1971; 
Otofuji and Matsuda, 1983; Otofuji et al., 
1985a, 1985b; Celaya and McCabe, 1987; 
Tosha and Hamano, 1988; Moreau et al., 
1987]. The motion is that of a double door 
opening about two nearby rotation poles. 
Based on different grounds, Faure and 
Lalev•e [1987] argued in favor of a similar 
model. However this does not take into 

account the right-lateral strike-slip faults 
known onland and at sea. The N-S trending 
Hokkaido Central Belt was a right-lateral 
transpressional shear zone during the 
Cenozoic. The end of the strike-slip motion 
and the beginning of the subsequent E-W 
compression is dated to the end of the 
Middle Miocene based upon a study of fault 
sets which gives the stress history within 
the stratigraphic sequence [Jolivet and 
Huchon, 1989]. Along the western margin of 
the Japan Sea, between SW Japan and 
Korea, a right-lateral shear zone is also 
known at the same period [Sillitoe, 1977; 
Lallemand and Jolivet, 1985; Otsuki and 
Ehiro, 1978]. En •chelon normal faults in 
Early Miocene sediments [Lee and Pouclet, 
1988] also favor this right-lateral shear 

which is confirmed by local paleomagnetic 
rotations [McCabe et al., 1988]. Early 
Cenozoic metallogenic belts are offset by 200 
km across this fault zone [Sillitoe, 1977]. 
Furthermore, structural observations in 
Kyushu [Murata, 1987; Fabbri et al., 1987], 
analysis of bathymetric features in the 
Japan Sea and pre-opening reconstructions 
[Jolivet et al., Arc deformation and 
marginal basin opening, Japan Sea as a 
case study, submitted to Journal of 
Geophysical Research, 1990] suggest a 
clockwise rotation of SW Japan by about 20 ø 
and a counterclockwise rotation of NE 

Japan by about the same angle, confirming 
the conclusions reached earlier on the basis 

of paleomagnetic observations. The model 
put forward by Jolivet et al. is that of right- 
lateral shear distributed over the width of 

the Japan Sea, with rotation of rigid blocks 
inside the shear zone. In the north of the 

Hokkaido-Sakhalin strike-slip system, 
transpression resulted from the southward 
movement of the Okhotsk plate with respect 
to Eurasia, whereas in the south the Pacific 
subduction provided a transtensional 
environment. Clockwise rotations occurred 
in the south and counterclockwise rotations 
in the north. 

North of the Japan Sea, the Hokkaido- 
Sakhalin right-lateral fault system 
continues in Sakhalin along more than 2000 
km [Kimura et al., 1983; Rozhdestvensky, 
1982, 1986]. Focal mechanisms [Savostin et 
al., 1983] show that this fight-lateral shear 
is still active in the north of Sakhalin, 
whereas an E-W compression prevails in 
the south and along the eastern margin of 
the Japan Sea [Fukao and Furumoto, 1975; 
Nakamura, 1983; Tamaki and Honza, 1984; 
Lallemand et al., 1985]. This seismic zone 
was once interpreted as the North America- 
Eurasia plate boundary [Chapman and 
Solomon, 1976], but is now understood as the 
boundary between the Okhotsk and 
Amurian blocks [Savostin et al., 1983]. The 
tectonic history since the Miocene can be 
described as follows: the whole system, from 
the north of Sakhalin to the Tsushima Strait 

between the Korean Peninsula and Japan, 
was a right-lateral shear zone until the end 
of the Middle Miocene, after which it 
changed to a zone of E-W compression. The 
reason for this drastic change is still 
unclear. The Philippine Sea plate probably 
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reached its present position, after its 
northward drift, by this time [Maruyama 
and Seno, 1985; Jolivet et al., 1989] and this 
new situation may have been associated 
with a change in stress regime, as will be 
discussed later in the paper. 

NORTH CHINA 

The Bohai basin (BB on Figure 1) extends 
partly offshore in the Yellow Sea and onland 
as a part of the North China grabens. Since 
the Eocene, the Bohai basin has a long 
history of sedimentation [Liu, 1986; Chen 
and Nabelek, 1988], which cannot be 
accounted for by simple thermal subsidence 
[Hellinger et al., 1985]. Chen and Nabelek 
[1988], analyzing the seismic activity and the 
subsidence of the Bohai gulf, favor a large 
right-lateral pull-apart system, active since 
the beginning of the Cenozoic (see also 
Cobbold and Davy [1988]). A similar 
conclusion has been reached by Kumarapeli 
et al. [1988]. North of the Bohai basin, the 
northern extension of the Tanlu fault (fig. 1) 
and its associated Cenozoic basins 

[Commission for the Geological Map of the 
World, 1982] could also be right-lateral. 
Despite the long period of activity of the fault 
system, the western master fault of the 
Bohai basin does not offset the Qing Lin belt, 
which is presently active as a left-lateral 
fault system [Tapponnier et al., 1986; 
Peltzer et al., 1985]. The lack of offset is 
possible if there is relative rotation of the 
faults. The map traces of the right-lateral 
faults (Bohai basin and Japan Sea) do not 
extend to the north of the Stanovoy range, 
which separates stable Eurasia from the 
Amurian plate [Savostin et al., 1983]. The 
latter is bounded to the west by the Baikal 
rift which is active as an extensional 

domain [Tapponnier and Molnar, 1979; 
Zonenshain and Savostin, 1981]. On the 
basis of compressional seismic activity in 
the Stanovoy ranges, Savostin et al. [1983] 
suggested that the Amur/Eurasia 
instantaneous rotation pole is located at the 
northwest corner of the Amur plate, which 
rotates counterclockwise. According to 
Zonenshain and Savostin [1981] fast 
extension in the Baikal rift started in the 
late Neogene. Kimura and Tamaki [1986] 
suggested that the Baikal system was a left- 
lateral shear zone in the early Cenozoic 
contemporaneous with the opening of the 

Japan Sea. Tapponnier and Molnar [1979], 
using seismotectonic data, described the 
junction between the Baikal rii• system and 
the Stanovoy as a domain of lelY-lateral pull- 
apart basins. Despite these discrepancies in 
the interpretation of the tectonics of this 
area, we suggest that the Japan Sea and 
Bohai basin opened as pull-apart basins 
along two N-S right-lateral systems confined 
between the Baikal-Stanovoy system and the 
left-lateral Qing-Lin fault. Between the two 
E-W left-lateral boundary faults, major 
blocks bounded by N-S right-lateral faults 
rotated counterclockwise. 

SMALL-SCALE MODELLING OF 
CONTINENTAL INDENTATION 

Davy and Cobbold [1988] recently did some 
experiments at Rennes with sand and 
silicone putty to model continental collision 
(Figure 2). One of the objects of this work 
was to determine under what conditions 

indentation produces crustal thickening or 
instead, eastward extrusion as advocated by 
Tapponnier et al. [1982, 1986]. We present 
two experiments chosen from a set of 15 
where rheological parameters and 
boundary conditions vary [Davy and 
Cobbold, 1988; and work in progress]. 
Boundary conditions are similar to those 
used by Peltzer [1987] and Peltzer and 
Tapponnier [1988] in their experiments, 
Vilotte et al. [1982, 1985] or Cohen and 
Morgan [1987] with numerical techniques: a 
rigid indenter moving northward and an 
eastern lateral boundary with little 
constraint (see also England and McKenzie 
[1982, 1983]) or Houseman and England 
[1986] for different boundary conditions). 
Rheologies were chosen to model a 
lithosphere made of, at most, three layers: 
brittle crust (BC), ductile crust (DC) and 
ductile mantle (DM) (for further details, 
including scaling, see Davy [1986], Davy and 
Cobbold [1988]). The sequence of brittle 
layers (dry sand) and ductile layers (silicone 
putties of various densities) rested upon a 
model asthenosphere of high density and 
low viscosity (glucose syrup). For various 
rheologies and various degrees of lateral 
confinement, the resulting deformation 
pattern varies greatly; but in all 
experiments a left-lateral shear zone 
(incipient or well expressed) propagates 
northeastwards, from the northwestern 
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corner of the indenter (a region of stress 
concentration) as far as the free boundary. 
We highlight interesting aspects of the fault 
pattern for two experiments. 

Experiment I 

In the first experiment (Figures 2a and 
2b), a two-layer model crust (brittle/ductile) 
overlies a weak model mantle with a free 

boundary to the east (see strength profile, 
Figure 3). Major structural features appear 
very early (see Figure 2a, for 5 cm of 
northward movement of an indenter 20 cm 

wide). A dead triangle formed, as predicted 
by the theory of plasticity [Tapponnier and 
Molnar, 1976]. The wrench fault on the left 
side of the triangle propagated 
northeastward until it reached the free 

lateral boundary to the east. With the right 
side of the dead triangle and the 
unconstrained lateral boundary it defined a 
new triangle which was expelled eastward 
during indentation. A main left-lateral 
wrench zone (from the western edge of the 
indenter to the eastern free boundary) was 
convergent in the SW and divergent in the 
NE. In the NE, right-lateral rifts 
accommodated counterclockwise rotation of 

large domino blocks. The rit•s were bounded 
by faults parallel to the unconstrained 
margin, that is, they have N-S trends. They 
may have been initiated as normal faults, 
but that is not clear from surface views. 

What is clear is that they subtented very 
acute angles with the main left-lateral 
wrench fault, more acute than that between 
conjugate wrench faults immediately north 
of the indenter; more acute again than that 
predicted by Coulomb theory. •:,Hence we 
suspect that the faults were initiated as 
normal faults and that the minimum 

principal stress was perpendicular to the 
unconstrained margin. In later stages, 
these faults displayed antithetic (right- 
lateral) wrench components and then 
rotated counterclockwise by a domino 
mechanism, while the rift valley between 
them continued to develop (Figure 2). At 
their southern ends, the antithetic rifts 
terminated against synthetic rifts. These 
synthetic rifts acquired triangular shapes 
as the blocks to the north rotated 

counterclockwise. The synthetic rifts 
terminated eastwards against antithetic 
rifts. 

Experiment 2 

Here boundary conditions and rheologies 
were similar to those of experiment I except 
for the presence of a highly-viscous mantle 
layer beneath the composite crust (Figures 
2c, 2d and 2e). The resulting strength profile 
is more realistic for a cool lithosphere 
(Figure 3). In comparison with the previous 
experiment, crustal thickening was a major 
mechanism of indentation. Thickening 
occurred in front of the indenter. In 

particular, en •chelon thrusts formed the 
eastern side of a dead triangle. As in 
experiment I a northeast trending main 
left-lateral wrench zone formed. In the NE, 
synthetic faults were mainly wrenches, 
while antithetic faults exhibited an 

extensional component. Southern synthetic 
wrench faults still ended eastwards against 
antithetic rift-wrench faults. 

DISCUSSION 

Cobbold and Davy [1988] suggested that 
the zone of active deformation of Asia is 

bounded to the NW by a linear domain 
between the Tien Shan in the SW and Lake 

Baikal in the NE. They further showed that 
all the structures in this domain are 

compatible with a left-lateral wrenching. 
The domain is thus comparable with the 
major wrench zone in the experiments. 

We can extend the left-lateral wrench 

zone as far as the Stanovoy ranges, for the 
early Cenozoic. The Qing Lin fault can be 
compared with the subordinate left-lateral 
faults observed further south in the 

experiments; the Japan Sea and the Bohai 
basin, with the right-lateral transtensionnal 
shear zones which accommodate the 

rotation of the domino blocks. The present 
couterclockwise rotation of the North China 

block described by Savostin et al. [1983] or the 
left-lateral motion suggested by Kimura and 
Tamaki [1986] and Tapponnier and Molnar 
[1979] for the Baikal and Stanovoy ranges 
are compatible with this system. 

Major differences however exist between 
the experiments and the actual tectonic 
pattern of the northern part of Asia. A 
major discrepancy is the transpressional 
tectonic regime through Sakhalin and 
Hokkaido, instead of the transtensional one 
in the experiments. This is perhaps due to 
the relative motion of Okhotsk and Amur. 
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The eastern boundary of Asia is not free, 
north of the Japan-Kuril trench corner. 
This contrasts with the assumption of little 
confinement made in the experiments. 

A second possible difference is the 
amount of extrusion. In nature the 

deformation may be more localized and the 
extrusion greater in the southern regions, if 
we follow Tapponnier et al. [1986]. Recent 
observations along the Red River fault by 
Tapponnier et al. [1990] confirm that this is 
a Miocene left-lateral fault with large 
amount of slip. 

Apparently the plasticine experiments 
[Tapponnier et al., 1982] give a better 
rendering of the extrusion mechanism in 
the south, whereas these new experiments 
[Davy and Cobbold, 1988] better model the 
tectonic pattern far from the indenter. 

However the left-lateral Red River fault 

could also be a subordinate and conjugate to 
a major right-lateral wrench zone along the 
eastern edge of the indenter [Cobbold and 
Davy, 1988]. If so, it would accommodate 
dextral rotation of Indochina about a nearby 
pole and the extrusion would be less 
important than postulated by Tapponnier et 
al. [1986]. 

Despite these discrepancies, which can 
partly be explained, a consistent scheme 
remains for the north: the Japan Sea and 
Bohai basin opened as right-lateral pull- 
aparts along cross faults which 
accommodated left-lateral rotation of 

domino blocks north of the Qing Lin fault 
(Figure 4). Associated with a more 
important extrusion in the south than 
shown by the silicone-sand experiments, the 
model described here may explain why the 
South China and Japan Sea opened 
contemporaneously (or perhaps slightly 
later for the Japan Sea). The model also may 
account for the fact that the Bohai fault 

system does not offset the Qing Lin fault, 
provided the two faults rotate with respect to 
one another. 

We believe that opening was allowed by 
the lack of constraint along the Pacific 
subduction zone and that intracontinental 

deformation processes only imposed the 
strike-slip component of the opening. The 
Shikoku and Parece Vela basins which 

opened in the same period [Chamot-Rooke et 
al., 1987; Mrozowski and Hayes, 1979] are 

simple back-arc basins not linked with 
intracontinental deformation. An overall 

tensional stress field was probably active 
along the peri-Pacific subduction zone after 
the absolute motion change of the Pacific 
plate at 45 Ma. Rifting began soon 
afterwards inside the young Palau-Kyushu- 
Bonin arc. The opening of the Japan Sea 
stopped in the Late to Middle Miocene when 
the Pacific-Philippine-Eurasia triple 
junction reached its present position after 
the northward drift of the Philippine Sea 
plate during the Oligocene and the Early 
and Middle Miocene [Jolivet et al., 1989]. 
The length of the free boundary on the 
eastern side has thus been progressively 
reduced to the present-day length of the 
Japan trench (between the Kuril and Bonin 
trenches) and one can assume that the 
trench retreat forces were no longer 
sufficient to promote opening in the back-arc 
region. This simple statement, together 
with the boundary conditions which seem 
necessary in all the experiments (two- 
dimensional or three-dimensional) and 
numerical models to simulate the 

deformation actually observed, imply that 
the free boundary along the subduction zone 
is the most important parameter controlling 
the opening of marginal basins. One may 
further assume that, without the internal 
deformation of Asia due to the collision with 

India, marginal basins would have opened 
in a symmetric way, as do the active 
Okinawa or Mariana basins [McCabe and 
Uyeda, 1982; Stern et al., 1984; Letouzey and 
Kimura, 1985; Sibuet et al., 1987]. 
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