The Caribbean-North America-Cocos Triple Junction and the dynamics of the Polochic-Motagua fault systems: Pull-up and zipper models
Christine Authemayou, Gilles Y. Brocard, C. Teyssier, T. Simon-Labric, A. Guttierrez, E. N. Chiquin, S. Moran

To cite this version:
insu-00609533

HAL Id: insu-00609533
https://insu.hal.science/insu-00609533
Submitted on 19 Jan 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The Caribbean–North America–Cocos Triple Junction
and the dynamics of the Polochic–Motagua fault systems:
Pull-up and zipper models

C. Authemayou,1,2 G. Brocard,1,3 C. Teyssier,1,4 T. Simon-Labric,1,5 A. Guttiérrez,6
E. N. Chiquín,6 and S. Morán6
Received 13 October 2010; revised 4 March 2011; accepted 28 March 2011; published 25 June 2011.

[1] The Polochic–Motagua fault systems (PMFS) are part of the sinistral transform boundary between the North American and Caribbean plates. To the west, these systems interact with the subduction zone of the Cocos plate, forming a subduction-subduction-transform triple junction. The North American plate moves westward relative to the Caribbean plate. This movement does not affect the geometry of the subducted Cocos plate, which implies that deformation is accommodated entirely in the two overriding plates. Structural data, fault kinematic analysis, and geomorphic observations provide new elements that help to understand the late Cenozoic evolution of this triple junction. In the Miocene, extension and shortening occurred south and north of the Motagua fault, respectively. This strain regime migrated northward to the Polochic fault after the late Miocene. This shift is interpreted as a “pull-up” of North American blocks into the Caribbean realm. To the west, the PMFS interact with a trench-parallel fault zone that links the Tonala fault to the Jalpatagua fault. These faults bound a fore-arc sliver that is shared by the two overriding plates. We propose that the dextral Jalpatagua fault merges with the sinistral PMFS, leaving behind a suturing structure, the Tonala fault. This tectonic “zipper” allows the migration of the triple junction. As a result, the fore-arc sliver comes into contact with the North American plate and helps to maintain a linear subduction zone along the trailing edge of the Caribbean plate. All these processes currently make the triple junction increasingly diffuse as it propagates eastward and inland within both overriding plates.

1. Introduction
[2] Guatemala is located within a plate interaction zone that involves the oceanic Cocos plate, the continental North American plate, and the Caribbean plate. The latter is an assembly of oceanic and continental fragments (Figure 1). This subduction-subduction-transform (SST) triple junction

is referred to hereafter as the NACC triple junction. Off the Pacific coast, the Cocos plate is subducted beneath both the North American and Caribbean plates, which are separated by a sinistral transcurrent boundary. In Guatemala proper, the active boundary is comprised of two arcuate, subparallel fault systems, the Polochic and Motagua fault systems, which merge eastward; here, these coupled fault systems are referred to as the Polochic–Motagua Fault Systems or PMFS (Figures 1 and 2).

[3] The transform plate boundary has accommodated ∼1100 km of strike-slip motion over the Cenozoic [Rosencrantz et al., 1988]. A simple SST triple junction model predicts that the transform boundary should offset the Cocos subduction zone, generating a new Cocos–North America transform boundary that would lengthen over time (model A, Figure 3). This is not happening, and therefore the PMFS define a broad tectonic region that allows the migration and diffusion of the NACC junction (Figures 1 and 2). To the south of the PMFS, the deformation zone includes a series of N-S oriented grabens and the trench-
parallel dextral Jalpatagua fault that tracks the volcanic arc [Plafker, 1976; Burkart and Self, 1985; Lyon-Caen et al., 2006; Rogers and Mann, 2007]. North of the PMFS, the deformation zone comprises a series of NW-SE trending left-lateral strike-slip faults within the Chiapas belt, and the trench-parallel Tonala fault, which connects to the eastern end of the Polochic fault. The Tonala fault runs along the subduction zone at the same distance to the Cocos subduction zone as does the Jalpatagua fault (Figure 2) [Guzmán-Speziale and Meneses-Rocha, 2000; Andreani et al., 2008; C. Witt et al., The transpressive left-lateral Chiapas mountain chain and its buried front in the Tabasco plain, submitted to Journal of the Geological Society, 2011].

This paper presents new structural and geomorphic data that document the integration, since the late Cenozoic, of the PMFS and neighboring faults into the tectonic system that now prevails at the NACC triple junction. We use previously mapped Mesozoic geological markers and newly mapped Neogene markers to document spatial and temporal changes in the dynamics of the PMFS. Stratigraphic boundaries are used to estimate the finite state of deformation. Tilting and offset of geomorphic markers of different ages (paleosurface, paleovalleys) are used to track recent deformation and to quantify rock uplift rates. These measurements are complemented by a regional fault kinematic analysis.

We focus our study on the Neogene because the PMFS have been increasingly influenced by the approaching NACC triple junction during this period. We identify late Cenozoic structures and reconstruct their evolution during this key period. We evaluate whether this reconstruction is consistent with the predictions of several existing models and propose to recast some of the existing models and new observations into a new model, referred to as the “zipper” model (Figure 3).

2. Alternative Models for NACC Triple Junction

Several models of NACC triple junction have been proposed to account for geological and geophysical observations. A first model considers that the transform boundary motion is totally absorbed by E-W extension south of the PMFS, within the Caribbean plate, associated with dextral strike-slip motion along the volcanic arc. This allows the Chortís block to escape eastward (model B, Figure 3) [Plafker, 1976; Gordon and Muehlberger, 1994; Guzmán-Speziale, 2001; Rogers et al., 2002; Lyon-Caen et al., 2006]. Another model suggests that extension in the Caribbean plate is not sufficient to absorb all the transform motion, and that a part of the transform motion is transferred to strike-slip and reverse faults in southern Mexico [Guzmán-Speziale and Meneses-Rocha, 2000]. Andreani et al. [2008] follow this model and delineate southern Mexico as a crustal block moving to the southeast with respect to North America. The displacement of this block generates extension through the central Trans-Mexican Volcanic Belt and strike-slip faulting in the Chiapas belt (model C, Figure 3). Phipps Morgan et al. [2008] consider that the Cocos plate is mechanically strong and does not tear in the triple junction, resulting in the formation of a continuous fore-arc sliver across the triple junction. Intraplate deformation is taking place behind this sliver in the form of shortening and extension, north and south of the transform boundary, respectively (model D, Figure 3).
[7] The change of angle between the plate motion vector and the azimuth of the arcuate plate margin fault was discussed to explain extension eastward and shortening westward close to the transform zone (model E, Figure 3) [Burkart and Self, 1985; DeMets et al., 2000; Rogers and Mann, 2007]. Numerical modeling, based on seismic tensors and GPS velocity fields [Álvarez-Gómez et al., 2008; Rodríguez et al., 2009], assigns an important role to the fore-arc sliver and the arcuate shape of the transform boundary. In this model the western edge of the Chortís block is regarded as partially pinned to North America, and weak coupling occurs in the fore-arc sliver across the Caribbean/Cocos subduction interface, while stronger coupling occurs across the North American/Cocos subduction interface [Franco et al., 2009]. The seismotectonic model of Guzmán-Speziale [2009] arrives at the same conclusion, inasmuch as the Chortís block is being extruded toward the ESE by convergence between the North America and Cocos plates.

[8] The model advocated here (model F, Figure 3) is one in which the fore-arc tectonic sliver plays a major role in the dynamics of the triple junction. The eastward retreat of the Caribbean plate relative to the trench and the differential coupling along the subduction interface across the triple junction force the fore-arc sliver to occupy the space left by the departing trailing edge of the Caribbean plate. As a result, the fore-arc sliver comes to lean against the North American plate (model F, Figure 3). The sinistral transform boundary, on one side, and the dextral strike-slip fault bounding the sliver on the other side, come side to side, suture, and leave the northern part of the fore-arc sliver stranded along North America. The locus of suturing migrates progressively southeastward along the conjugate faults, much like a “zipper.” As a result, the triple junction migrates eastward with the bulk of the Caribbean plate.

3. Regional Tectonic Patterns

3.1. The Transform North American/Caribbean Plate Boundary

[9] The North American plate is separated from the Caribbean plate by a left-lateral transform boundary that accommodates the westward migration of the North American plate (Figure 1). In Guatemala the transform boundary brings into contact two continental blocks, the North American Maya block and the Caribbean Chortís block. The arcuate, 500 km long transform boundary is composed of two roughly E-W trending, active fault systems located a maximum of 50 km apart (the PMFS): the Motagua fault to

Figure 2. Traces of fault associated with the North American–Caribbean transform plate boundary in Guatemala. Focal mechanisms according to a maximum depth are from the centroid moment tensor catalog. Location of geomorphic markers discovered by Brocard et al. [2011b] is displayed with gray surfaces for the middle Miocene Paleosurface remnants and with dashed white lines on black ground color for the paleovalleys. The paleosurface is only distinguished north of the Motagua fault. Circled 1, 2, and 3 indicate the paleovalleys used in the text for analyzing their deformation. Location is given on Figure 1.
the south and the Polochic fault to the north (Figures 1 and 2) [Franco et al., 2009; Suski et al., 2010]. The transform system also includes a series of large shears distributed across the Chortís block: the Jocotán–Chamelecón faults, the Ceiba fault, the Aguán fault and the Guayape fault (Figure 1) [Burkart and Self, 1985; Burkart, 1994; Gordon and Muehlberger, 1994; Rogers and Mann, 2007; Silva-Romo, 2008].

[10] To the east, the PMFS connects to transform faults that bound the Cayman oceanic spreading center [Pindell et al., 2005]. To the west, the Polochic fault connects to the Tonala fault [Carfantan, 1976], a transcurrent plate boundary fault that has permitted the transfer of the Chortís block from Mexico to the Caribbean plate during the Cenozoic [Pindell et al., 2005; Ratschbacher et al., 2009]. Geochronological and thermochronological studies of mylonites from the Tonala and Polochic shear zones, and from plutons that intruded these faults, suggest simultaneous fault activity between ~15 Ma and ~5 Ma [Wawrzniec et al., 2005; Ratschbacher et al., 2009].

[11] Finite offsets of the 40 Ma old and 15 Ma old magmatic belts in southern Mexico and in the Chortís block, suggest that 700 km of displacement was accommodated along the PMFS prior to c. Fifteen Ma. Since that time, 300 km displacement took place along the Motagua fault and over 100 km on the Polochic fault [Ratschbacher et al., 2009]. These estimates agree well with the total motion of 130 km along the Polochic fault [Burkart, 1983] and contradict the limited displacement argued by Anderson et al. [1985] for the Polochic fault during Cenozoic time. Brocard et al. [2011] showed that only 25 km out of these 130 km have occurred since 10–7 Ma, suggesting contemporaneous activity on the Motagua fault during this period, contrary to the interpretation of Burkart [1994].

Figure 3. Different kinematics models of triple plate junction that explains the NACC triple junction migration. Model A corresponds to the geometry for a stable triple plate junction if the oceanic plate should tear at the triple junction. Model B comes from Plafker [1976]; Gordon and Muehlberger [1994], Guzmán-Speziale [2001], Rogers et al. [2002], and Lyon-Caen et al. [2006]. Model C is suggested by Guzmán-Speziale and Meneses-Rocha [2000] and Andreani et al. [2008]. SMB, Southern Mexico block, TMVB, Trans-Mexican volcanic belt. Model D was proposed by Phipps Morgan et al. [2008]. Model E is discussed by Burkart and Self [1985], DeMets et al. [2000], Rogers and Mann [2007], and Rodríguez et al. [2009]. Model F illustrates the “zipper” process discussed in this paper. Thick black portions of the dextral and sinistral faults show the merging of these faults.
3.2. Anatomy of the Current NACC Triple Junction

[12] The PMFS represent one arm of the triple junction between the Cocos, North American, and Caribbean plates. Some authors suggested that the PMFS join the Middle American trench in the Gulf of Tehuantepec [Anderson and Schmidt, 1983; Pinell et al., 1988; White and Harlow, 1993; Schaaf et al., 1995], while others suggested that these boundaries intersect directly west of the PMFS [Keppie and Morán-Zenteno, 2005; James, 2006]. The latter view is not supported; there is no clear intersection between the projected trace of the PMFS and the linear subduction zone [Muehlberger and Ritchie, 1975; Carfantan, 1976]. The traces of the Motagua fault and Jocotán-Chamelecón faults disappear in western Guatemala within late Cenozoic to Quaternary volcanic deposits. The Polochic fault, on the other hand, straddles the entire continental domain but does not seem to enter the Pacific Ocean to reach the Middle American trench (Figure 2). The location of the NACC triple junction is actually more diffuse. It integrates the northwestern part of Guatemala, southern Mexico, and a large part of the Chortís block [Plafker, 1976; Burkart, 1983; Gordon and Muehlberger, 1994; Guzmán-Speziale and Meneses-Rocha, 2000; Guzmán-Speziale, 2001; Lyon-Coen et al., 2006; Andreani et al., 2008; Phipps Morgan et al., 2008; Rodríguez et al., 2009].

[13] North of the PMFS, in southern Mexico, two shortening domains affect the Maya block (Figure 1). An E-W trending, 80 km wide fold-and-thrust belt runs alongside the PMFS and has been associated with Paleocene-Eocene Laramide orogenic events [Donnelly et al., 1990]. To the NW, this range is relayed by the arcuate post-middle Miocene Chiapas fold-and-thrust belt. The Chiapas belt is crosscut by an array of west to NW trending left-lateral strike-slip faults that may have developed in close association with the PMFS [Guzmán-Speziale and Meneses-Rocha, 2000; Andreani et al., 2008; Guzmán-Speziale, 2010]. Along the Pacific coast of Mexico, the Chiapas belt is bordered by the Permo-Triassic Sierra Madre de Chiapas batholiths. The Sierra Madre de Chiapas is in turn bounded to the west by the Tonala fault [Weber et al., 2005, and references therein] (Figure 2).

[14] South of the PMFS, a series of active N-S grabens affect the Chortís block and fragment the inactive Jocotán-Chamelecón fault system [Plafker, 1976; Rogers et al., 2002] (Figure 2). Some of these grabens are connected to the Motagua fault [Plafker, 1976] and developed concurrently with the epeirogenic uplift that has affected the Chortís block. This uplift has been ascribed to slab break off underneath Central America and related to a late Miocene thermal event [Rogers et al., 2002] that imprinted 11.3–7.9 Ma apatite fission track ages to basements rocks in a graben flank [Ratschbacher et al., 2009]. To the SW, the Jalpatagua dextral fault runs parallel to the Pacific coast and closely tracks the active volcanic arc (Figures 1 and 2). The fault isolates a fore-arc sliver from the bulk of the Caribbean plate [DeMets, 2001], and Quaternary volcanic deposits are affected by right-lateral strike-slip displacement [Wunderman and Rose, 1984; Daffield et al., 1992]. Such movement is also observed along structures that are located in the continuation of the Jalpatagua fault in Costa Rica, Nicaragua, and El Salvador [La Femina et al., 2002].

The WNW trending dextral Jalpatagua fault and the E-W trending sinistral PMFS enclose a large wedge-shaped domain in the Chortís block, which tapers to the west, near Chichicastenango in Guatemala (Figure 2).

4. New Geomorphic and Structural Analyses

4.1. Deformation Between the Polochic and Motagua Faults

4.1.1. Geologic Structure

[15] Ongoing deformation within the PMFS activates a tectonic pattern inherited from former transpressional events that have affected the plate boundary since Late Cretaceous time [Kesler, 1970; Donnelly et al., 1990; Ortega-Gutiérrez et al., 2004]. Three range-parallel rock belts with distinct deformational and metamorphic histories are usually distinguished between the Polochic and Motagua faults (Figure 4). The Polochic fault disrupts the northernmost belt, a fold-and-thrust belt that involves a sedimentary cover composed of Mississippian to Permian siliciclastic rocks, shale, and limestone, Jurassic red beds, and Cretaceous limestone [Walper, 1960; McBirney, 1963; Burkart, 1978] (Figure 4). The sedimentary cover has been overthrust by Mesozoic ophiolitic nappes (Figure 4 and cross section A, Figure 5); these nappes are remnants of a Caribbean oceanic domain that was obducted northward onto the Maya block during Late Cretaceous [Beccaluva et al., 1995; Harlow et al., 2004; Brueckner et al., 2009]. The ophiolitic nappes and the underlying sedimentary cover were deformed together in open folds during the Paleocene-Eocene Laramide orogeny [Dengo, 1982; Burkart, 1983; Donnelly et al., 1990]. From north to south, fold axes change in strike from W-E and SW-NE to WNW-SEE across the Polochic fault (Figure 4). WNW trending thrusts are associated with the WNW trending folds [Dengo, 1982; Burkart, 1983]. Some WNW trending faults are encountered north of the western part of the Polochic fault (Figure 4). They were correlated with the WNW trending folds south of the fault located more than 130 km away [Burkart, 1978; Burkart et al., 1987]. Their correspondence has been used, in addition to the offset of river networks to infer a 132 ± 5 km sinistral displacement of the Polochic fault after the Paleocene-Eocene orogeny [Dengo, 1982; Burkart, 1983].

[16] The tectonic sliver bracketed by the Polochic and Motagua faults is hereafter referred to as the Polochic-Motagua sliver. Within this sliver, the Laramide fold-and-thrust belt is in turn overthrust by the Salamá Formation, a low-grade metamorphic domain (Figure 4 and cross section A, Figure 5), consisting of Cambrian-Permian sedimentary rocks intruded by granitic bodies [McBirney, 1963; Ortega-Gutiérrez et al., 2004]. To the south, this low-grade metamorphic unit is in turn overthrust along the south dipping, high-angle Baja Verapaz shear zone by the higher-grade Chuacús complex [McBirney, 1963; Ortega-Gutiérrez et al., 2007] (Figure 4 and cross section A, Figure 5). The contact shows top-to-the-NNE reverse shearing of Late Cretaceous age [Ortega-Gutiérrez et al., 2007].

[17] The Chuacús complex is the southernmost belt and forms the core of the Chuacús-Sierra de las Minas range (Figure 2). Widespread ductile left-lateral wrenching imprinted a strong, orogen-parallel steep fabric to the Chuacús complex [Kesler, 1970; Donnelly et al., 1990;
The 20–30 km wide complex (Figure 4) consists of a core of alternating micaschists and gneisses fringed by more diverse assemblages of amphibolite, marble, and migmatite [McBirney, 1963]. Metamorphism reaches amphibolite grade, but inclusions of eclogitic rocks suggest that the Late Cretaceous event peaked in eclogitic conditions [Ortega-Gutiérrez et al., 2004; Harlow et al., 2004]. Along its southern border, next to the Motagua fault, the Chuás complex is overthrust by ophiolitic mélanges containing Cretaceous high-pressure rocks [Harlow et al., 2004] (Figure 4 and cross section A, Figure 5).

The overall southward increase of metamorphic grade from the Polochic fault to the Motagua fault is consistent with the exhumation of deeper rocks along the suture zone. South of the Motagua fault, ophiolitic bodies of the Cretaceous El Tambor Formation were thrust onto the Las Ovejas high-grade metamorphic complex, which is in turn thrust onto the Chortís basement. El Tambor is older than the northern ophiolitic unit and likely of different origin [McBirney, 1963; Donnelly et al., 1990; Beccaluva et al., 1995; Harlow et al., 2004; Ortega-Gutiérrez et al., 2007].

As a whole, we notice that the inner structure of the Polochic-Motagua sliver is that of a curved, E-W to NW trending narrow thrust system of imbricate and sigmoidal domains (Figure 4). This geometry gives the belt the characteristics of a left-lateral transpressional zone.

4.1.2. Neogene Geomorphic and Geologic Markers

The Mayan paleosurface and the paleovalleys that are preserved in the region provide two types of Neogene markers to evaluate late Cenozoic deformation within the PMFS (Figure 2).

4.1.2.1. The Mayan Paleosurface

The Mayan paleosurface is a widespread planation surface that has developed over much of the southern Maya block in the Miocene. It has been identified north of the Polochic fault and over the Polochic-Motagua sliver [Brocard et al., 2011]. The Mayan paleosurface is extensively preserved on the highest summits of the range, perched at elevations of 2400–2500 m (Figure 2). In the lowlands, north of the Polochic fault, the paleosurface progressively disappears within the foreland plain. On crystalline siliceous rocks, it is underlain by a thick saprolite [McBirney, 1963], while on carbonates it has been extensively riddled by the development of a typical cockpit karst.
Figure 5
Such surfaces are, and have long been interpreted as the remnants of peneplains, etchplains or pediplains [Widdowson, 1997].

22 The paleosurface could be synchronous with the ubiquitous peneplain that developed over the Chortís block as a low, rolling country, not far above sea level [Williams and McBirney, 1969]. This peneplain was buried below up to 1 km of ignimbrite sheets during an ignimbrite flare-up that peaked at 14–15 Ma [Sigurdsson et al., 2000]. Ignimbrite sheets were deposited between 17 and 13 Ma, providing a minimum age for the paleosurface [Jordan et al., 2007]. After burial, the surface was tectonically disrupted between 10.5 Ma and 4 Ma and uplifted 800–1000 m [Dengo et al., 1970; Rogers et al., 2002; Jordan et al., 2007]. This surface is to be distinguished from that discussed by Rogers et al. [2002]; they consider the younger depositional surface on top of the ignimbrites whereas we used the peneplain surface beneath the volcanic deposits.

23 North of the PMFS, Eocene folds are completely beveled by the paleosurface [Anderson et al., 1973; Walper, 1960]. The paleosurface is thus younger than the Eocene folds, and older than 7 Ma old paleovalleys that are incised within it (see below). The paleosurface likely started to be dissected during the middle Miocene, like its southern equivalent on the Chortís block [Williams and McBirney, 1969].

4.1.2.2. Paleovalleys

24 The second group of markers is a series of 12 paleovalleys that are incised within the Mayan paleosurface [Brocard et al., 2011]. These paleovalleys straddle various geological formations, such as the crystalline basement, the ophiolite, and Mesozoic sandstone and limestone (Figures 4 and 5). The preserved segment of the paleovalley of Sicaché (cross section C, Figure 5) lies within 4–10 km of the Polochic fault whereas the preserved segment of the paleovalley of Chicruz, 30 km further east (cross section B, Figure 5), is located farther from the fault (12–17 km) (Figure 2). Junction angle of tributaries, gravel composition, and clast imbrication show that the valleys were carved by north flowing rivers. These valley remnants retain felsic volcaniclastic sheets (cross section C, Figure 5) that have yielded 40Ar/39Ar ages of 7.4 Ma in Sicaché [Brocard et al., 2011]. Geochemical similarities among volcanic ashes in the paleovalleys of Sicaché and Chicruz suggest that they were produced by the same volcanic eruptions. The paleovalley of the Cahabón River, 50 km further east (cross section A, Figure 5) retains river sediments that we have dated by a combination of magnetic polarity measurements and 10Be–26Al burial dating of the sediments. They yield an abandonment ages of 0.5–1.0 Ma (G. Brocard et al., River network vulnerability to rearrangement during incipient faulting: Velocity and mechanisms along the Cahabón River, Guatemala, from combined 10Be–26Al, magnetic polarity and electrical resistivity tomography measurements, submitted to American Journal of Science, 2011).

4.1.3. Deformation of Neogene Markers

25 The Mayan paleosurface was reconstructed in order to identify surface deformations over the PMFS. To identify and map the remnants of the Mayan paleosurface, we combined field observations with satellite image interpretation, and analysis with filter processing of the 3 arc second Shuttle Radar Topographic Mission (SRTM) digital elevation model (Figure 2). The eroded surface between preserved remnants was reconstructed using a cubic spline interpolation. This technique is the best suited since surface deformation appears to be dominated by folding. The interpolation was reprocessed, however, to allow the surface to break freely across identified tectonic discontinuities (Figure 6). The resulting paleosurface elevation is regarded as accurate on average within ±100 m over the area of concern.

26 The surface is mildly folded and disrupted, but strongly uplifted at a regional scale. The areas of highest uplift are located in the Cuchumatanes Highs (3800 m), north of the Polochic fault, and the Sierra de las Minas (3000 m), near the Motagua fault (Figure 6). Folding affects the paleosurface with a 5–10 km wavelength and reactivates preexisting folds of the Lamaride belt (Figure 6). This folding can be ascribed to a minor component of shortening resulting from a slight obliquity in strike between the Polochic fault and the interplate motion vector, as it has been proposed by Rodriguez et al. [2009] in the case of the Motagua fault. North of the Polochic fault, most of these postpaleosurface folds are parallel to the strike of the Polochic fault, and their amplitude increases near the fault (Figure 6). This suggests that deformation is partitioned into N-S trending shortening and E-W trending strike-slip faulting [Tikoff and Teyssier, 1994]. South of the central part of the Polochic fault, NW trending folds indicate NE trending shortening, as expected from E-W trending, left-lateral shearing (Figure 6). Finally, a 120 km long E-W trending syncline, north of the Verapaz shear zone, may reflect recent activity on this structure.

27 Geological cross sections across the Mayan paleosurface and the paleovalleys (Figure 5) show that near the Polochic fault, long-wavelength deformation has produced a major warping resulting in a kilometer-scale uplift of the Polochic fault zone relative to the center of the Polochic–Motagua sliver. Mesoscale, low-amplitude subkilometric folds affect paleoriver deposits (Figure 5). In Chicruz, recent deformation closely mimics the underlying structures, amplifies former NW trending kilometer-scale Paleocene–Eocene folds, and reactivates a SW dipping thrust. Vertical offset of the paleovalley across this reverse fault is about 200 m. A vertical slip rate of ∼0.03 mm/yr is derived considering that the paleovalley is ∼7 Ma old and fault motion has been constant since then. The amplitude of the paleosurface offset on the same reverse fault reaches 700 ± 100 m (Figure 6). Ascribing a middle Miocene age to the paleosurface yields a slip rate of ∼0.06 mm/yr. The time-integrated velocity change indicates either a decrease of slip rate with time or a recent cessation of thrusting.

28 Closer to the Polochic fault near Sicaché, folds associated with superficial north dipping thrusts affect the paleoriver deposits and interlayered volcaniclastic units (Figure 5, site 3 in Figure 7). Theses folds are distinct from the larger Paleocene–Eocene structures, some of which have not been reactivated since 7 Ma (cross section C, Figure 5). Deformation partitioning close to the fault may explain that in this area deformation activates both E-W folds and E-W strike-slip faults.

29 The ∼500 ka old valley of the Cahabón River has been disrupted vertically by two major normal faults bounding a horst structure (Figures 2 and 5). Horizontal kilometer-
scale sinistral valley offsets across these faults suggest contemporary horizontal slip (Brocard et al., submitted manuscript, 2011) (Figure 2). Vertical offsets reach ∼80 m (cross section A, Figure 5). Analysis of fluvial deposit architecture on outcrops and by electrical resistivity tomography shows that the faults were already in motion at the time of sedimentation, prior to valley abandonment (Brocard et al., submitted manuscript, 2011). Fault motions generated block-wide uplift of an intervening horst without significant tilting, at an integrated slip rate of ∼0.16 mm/yr since 500 ka. Deformation of the Mayan paleosurface is not homothetic. Actually, across the northern normal fault, paleosurface displacement remains limited, within the uncertainties of paleosurface elevation (±100 m), that is no more than paleovalley offset. This implies that the northern normal fault was activated only recently. Paleosurface vertical offset across the southern fault reaches 500 ± 100 m. Ascribing a middle Miocene age to the paleosurface age to the paleosurface yields a maximum slip rate of 0.04 ± 0.01 mm/yr. This is lower than the Quaternary slip rate deduced from the offset of the paleovalley (∼0.16 mm/yr), which indicates that the velocity of the southern normal fault has increased over time. The evolution of slip rates on both faults suggests a recent expansion of the extensional regime in the Cahabón valley. Earlier inception of the extensional regime along the southern fault can be explained by its more favorable orientation. Its NE-SW strike is compatible with transtensional faulting in the context of the general E-W trending left-lateral shearing of the Polochic-Motagua sliver, even in a transpression-dominated regime. Extension along the E-W trending northern fault, however, requires the shift to a transtensional regime in the tectonic sliver.

South of the Cuchumatanes Highs, the Polochic fault splays to the SW and WSW along NE to ENE trending normal faults that considerably down throw the topography (Figure 2). This extensional horsetail termination mirrors a compressional horsetail north of the Polochic fault. The normal faults displace both the paleovalleys (∼7 Ma) and the Mayan paleosurface (cross sections D and E, Figure 5). Fault dips are unknown, but by assuming a 50–80° dip range, the faults can produce the observed paleosurface deformation under 700–1700 m of total extension. Normal faults have equally tilted both markers, indicating that deformation began after emplacement of volcaniclastic units in paleovalley (∼7 Ma).

Figure 6. (top) Reconstruction of the middle Miocene paleosurface by interpolation of preserved remnants. Fold traces and faults affecting the paleosurface are shown. Dashed zones represent unreliable reconstruction due to sparse tectonic data. White circles with paleosurface elevation used to determine tectonic offset of reverse fault between two points. Black circle shows the maximum uplift of the paleosurface at the intersection between the Necta fault and the Polochic fault. Dashed black lines on a white background color indicate locations of cross sections A and B. (bottom) Cross sections A and B are associated with the topographic profiles shown in black line, and the interpolated paleosurface profiles shown in gray line, allowing calculation of the crustal shortening north of the Polochic fault.
Figure 7. Fault populations and inversion results (equal angle, lower hemisphere stereonets). Sites located in Figure 2. Circled a and b indicate relative chronology of fault slip data sets. N and R give number of computed striations and stress ratio, respectively. Histograms show angular deviation (in degrees) between striation and computed shear stress for each fault. Fault inversion results of sites 3 and 5 are accompanied by the picture of representative fault of each site.
[31] In summary, geologic and geomorphic markers indicate that deformation between the Polochic and Motagua faults was transpressional in the late Miocene and resulted in a kilometer-scale uplift of the Polochic fault zone with respect to the Polochic-Motagua sliver interior. Away from the fault, transpression reactivated Paleocene-Eocene thrusts and folds. Closer to the fault, deformation was partitioned between strike slip on the Polochic fault and N-S shortening. Late Miocene transpression was replaced by an extensional regime that is propagating on E-W striking structures. Late Miocene transpression replaced by an extensional regime that is propagating throughout the Polochic-Motagua sliver. We show hereafter that the processing of fault slip populations is consistent with the deformational evolution inferred from large-scale deformations.

4.1.4. Fault Kinematics and Paleostress Regimes

[32] We reconstructed stress tensors based on fault striations by inverting fault slip population data at six sites inside the PMFS (Figures 4 and 7). Inversions were calculated by a computer program that uses the numerical method of Carey [1979]. Inversion results (Table 1) yield the orientation of the principal stress axes of the computed stress tensor (σ_1, σ_2, σ_3) and the stress ellipsoid shape parameter $R = (\sigma_2 - \sigma_1)/(\sigma_3 - \sigma_1)$, which varies from 0 to 1.

[33] Fault populations were divided into homogeneous subsets by analyses of fault planes and striation orientations, and each subset was used for the calculation of a distinct tensor [Mercier et al., 1991; Bellier and Zoback, 1995, and references therein]. We have identified two distinct families of striate at 4 of the 6 sites, generated by two slip episodes (Figures 4 and 7). Discrimination of fault populations is based on crosscutting relationships observed on the fault planes and on the numerical check for compatibility of striations with respect to a given stress state. Different stress tensors obtained by this method at any given site indicate important changes in the stress regime.

[34] Along the west to WNW trending faults at sites 1 and 2 (Figures 4 and 7), a transpressional regime (R_{1s1}) with ENE trending σ_1 predates an extensional regime (R_{2s1}) with a NNW trending σ_3. At site 1, fault slip data were collected on the WNW trending tectonic contact between Cretaceous limestone and serpentinite (Figure 4). Consequently, the age of the two stress states is younger than ophiolite obduction at 70 Ma [Brueckner et al., 2009]. The tectonic contact is correlatable laterally with the thrust that offsets the paleovalley of Chicruz (cross section B, Figure 5).

Table 1. Results of Stress Tensor Inversion From Fault Slip Data

<table>
<thead>
<tr>
<th>Site</th>
<th>X</th>
<th>Y</th>
<th>Age and Rock Type</th>
<th>σ_1</th>
<th>σ_2</th>
<th>σ_3</th>
<th>Azimuth</th>
<th>Plunge</th>
<th>Azimuth</th>
<th>Plunge</th>
<th>Azimuth</th>
<th>Plunge</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (a)</td>
<td>773254</td>
<td>1690457</td>
<td>Cretaceous lim.</td>
<td>238</td>
<td>6</td>
<td>147</td>
<td>14</td>
<td>351</td>
<td>74</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (b)</td>
<td>773254</td>
<td>1690457</td>
<td>Cretaceous lim.</td>
<td>225</td>
<td>65</td>
<td>55</td>
<td>24</td>
<td>324</td>
<td>4</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (a)</td>
<td>793107</td>
<td>1676367</td>
<td>Cretaceous lim.</td>
<td>75</td>
<td>5</td>
<td>169</td>
<td>34</td>
<td>337</td>
<td>55</td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (b)</td>
<td>793107</td>
<td>1676367</td>
<td>Cretaceous lim.</td>
<td>70</td>
<td>81</td>
<td>248</td>
<td>8</td>
<td>338</td>
<td>0</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>731237</td>
<td>1688480</td>
<td>Miocene congl.</td>
<td>350</td>
<td>0</td>
<td>80</td>
<td>9</td>
<td>260</td>
<td>80</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 (a)</td>
<td>795620</td>
<td>1688615</td>
<td>Permian lim.</td>
<td>276</td>
<td>86</td>
<td>73</td>
<td>3</td>
<td>164</td>
<td>1</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 (b)</td>
<td>795620</td>
<td>1686815</td>
<td>Permian lim.</td>
<td>66</td>
<td>82</td>
<td>237</td>
<td>7</td>
<td>327</td>
<td>1</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 (a)</td>
<td>785439</td>
<td>1696144</td>
<td>Permian-Cretaceous lim.</td>
<td>55</td>
<td>8</td>
<td>146</td>
<td>3</td>
<td>257</td>
<td>81</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 (b)</td>
<td>785439</td>
<td>1696144</td>
<td>Permian-Cretaceous lim.</td>
<td>71</td>
<td>85</td>
<td>256</td>
<td>4</td>
<td>166</td>
<td>0</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>803632</td>
<td>1667100</td>
<td>Quaternary congl.</td>
<td>38</td>
<td>5</td>
<td>248</td>
<td>83</td>
<td>129</td>
<td>3</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Sites are located on Figure 4 and the corresponding stereograms on Figure 8. Letters in parentheses indicate relative chronology of distinct fault slip data populations. Lithologies are abbreviated as follows: lim., limestone; congl., conglomerate; n is the number of measurements for each site.

[35] At site 3 further west, an early thrust fault regime R_{1s2} with north trending σ_1 is identified within 7.4 Ma old river deposits (Figures 4 and 7). Azimuth of σ_1 (N350) differs from that of R_{1s1} (N238) and R_{2s1} (N75), but is in agreement with E-W folding of the paleosurface north of the Polochic fault (Figures 4 and 7). Because site 3 is closer to the Polochic fault, we suspect that partitioning of the transpressional deformation into N-S shortening and E-W strike-slip faulting is taking place. Inversion of the first family of fault slip data R_{1s2} at site 5, along the Polochic fault (Figures 4 and 7), indicates strike-slip faulting with σ_1 trending NE. The early fault families at sites R_{1s1}, R_{1s2}, R_{1s3} are thus compatible with our earlier finding of a general transpressional regime partitioned only in the vicinity of the Polochic fault, as is also inferred from the deformation of geologic markers (cross section C, Figure 5 and Figure 6).

[36] A general change to a younger extensional stress state is identified at sites 1, 2, 4, and 5 (Figures 4 and 7). These sites share a common NNW trending σ_3, consistent with the conclusions drawn from the structural study. The similarity suggests that the current extensional stress field extends over most of the length of the Polochic fault and to the nonmetamorphic belts south of the fault. Fault kinematics matches the regional deformational history inferred from our study of geologic and geomorphic markers and is also consistent with earlier fault kinematic analyses [Ratschbacher et al., 2009].

[37] At site 6, inversion of striate in Quaternary river deposits on top of the Baja Verapaz Shear Zone (Figures 4 and 7) results from a modern left-lateral strike-slip regime associated with NE trending σ_1, in agreement with the present-day kinematics of the Motagua fault [Lyon-Caen et al., 2006].

4.2. Deformation North of the Polochic Fault

[34] In NW Guatemala, the Polochic fault splays toward the northwest and connects with the Tonala and Necta faults (Figure 8) [Carfantan, 1976; Burkart, 1978; Anderson et al., 1985]. The two splays bound to the SW the Sierra Madre de Chiapas batholith and Cuchumatanes Highs, respectively.

4.2.1. Kinematics of the Tonala Fault

[35] West to the Polochic fault, in the Pacific shelf zone, seismic reflection profiles do not reveal any offshore continuation of the Polochic fault [Keppie and Morán-Zenteno,
Figure 8. Tectonic study of Tonala fault. (a) Slope map in degree with fault traces locate the Figures 8c and 8e. Black and white line indicates location of topographic profile AB along the crest of the batholith. Dashed white lines show the boundaries of valleys draining toward the plate interior. (b) Topographic profile AB. (c and e) Shaded relief images of alluvial fans affected by the Tonala fault. Dashed black lines show the fan boundaries. (d and f) Cross sections CD and EF, respectively, showing vertical fan offsets due to Tonala fault activity.
time \(\approx N00\) shortening and were first active in Paleocene and have been reactivated since the middle Miocene (Figure 6).

4.2.2. Growth of the Cuchumatanes Highs

41 In NW Guatemala, the Cuchumatanes Highs are bounded by four major structures that delineate a trapezoidal plateau: the Polochic fault and the Necta fault to the south [Anderson et al., 1973]; the Tonala fault to the north; and the Cuchumatanes Highs through the inner corner of the Cuchumatanes Highs. The trapezoid shape of the anomaly mimics the topographic shape of the Highs, suggesting local compensation (Table 2). The Cuchumatanes Highs through the inner corner of the bend that connects the Nactiv and Polochic faults.

42 The thickness of lithosphere involved in the shortening is unknown, so only end-member scenarios are considered. If deformation results from buckling only, a simple line length balancing of the paleosurface provides a minimum value of finite shortening: 1.4 km along the N-S section A, and 1.7 km in the inner corner along section B; this corresponds to shortening rates of 0.14 and 0.17 mm/yr for a minimum paleosurface age of 10 Ma. In the other end-member model, deformation involves the entire crust and is locally compensated (Table 2). We assume that before 10 to 17 Ma, topography was flat and near sea level [Brocard et al., 2011]. Both the modern topographic profile and the paleosurface profile are used to calculate the total cross-sectional area below the two profiles and above sea level. The corresponding area of isostatically compensated lithospheric root is calculated using crustal and lithospheric mantle densities of 2700 and 3300 kg/m³, respectively [Turcotte and Schubert, 2002; Hoke and Garzione, 2008]. Crustal thickness under cross section B (Figure 6) ranges from 35 to 40 km according to a seismological study [Franco et al., 2009] and from 35 to 50 km (cross section A, Figure 6) west of the highs according to the high negative Bouguer gravity anomaly that is localized on the Cuchumatanes Highs. The trapezoid shape of the anomaly mimics the topographic shape of the Highs, suggesting local compensation [Buckhart and Self, 1985]. We then combine these values with the area of the compensated lithospheric root estimated from the topography and the paleosurface profile to calculate a range of finite crustal shortening values (Table 2). A \(\approx N50\) shortening rate of 1 to 3.2 mm/yr is found in the Cuchumatanes inner bend, and a \(\approx N00\) shortening rate of 0.3 to 0.7 mm/yr is calculated in the E-W range, for a minimum paleosurface age of 10 Ma (Table 2). These values of shortening are not very high, but uplift/shortening rates could be higher if tectonic activity started or accelerated more recently than 10 Ma, as suggested by the extensive preservation of the uplifted paleosurface.

4.3. Deformation Along the Guatemala Volcanic Arc

4.3.1. Kinematics of the Jalpatagua Fault

45 In SW Guatemala (Figure 2), the volcanic arc is affected by the right-lateral, trench-parallel strike-slip Jalpatagua fault [Wunderman and Rose, 1984]. The fault isolates
Table 2. Crustal Shortening Estimates North to the Polochic Faulta

<table>
<thead>
<tr>
<th>Deformation Age</th>
<th>Crustal Thickness 35 km</th>
<th>Crustal Thickness 50 km</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Topography</td>
<td>Palaeosurface</td>
</tr>
<tr>
<td></td>
<td>Shortening (km)</td>
<td>Shortening Rate (mm/yr)</td>
</tr>
<tr>
<td>10 Ma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 Ma</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Infinite shortening and shortening rate necessary to uplift the palaeosurface and generate the topography represented in the cross sections A and B of the Figure 6 are calculated taking a purely crustal shortening approach [Turcotte and Schubert, 2002; Hoke and Garzione, 2008].

South of Guatemala City, the Los Esclavos River and its alluvial fan are affected by the fault (Figure 9). The river is laterally offset by 6.5 to 8.7 km, the width of the valley being the source of uncertainty. The fault also displaces the apex of an alluvial fan (Figure 9). To measure the fan offset with respect to its feeder valley, the location of the fan’s apex was reconstructed using the intersection point of the streambeds that radiate over the surface of the fan (Figure 9b). Location uncertainty is 400 m, so the measured tectonic lateral offset of the fan is 1.2 ± 0.2 km. Inversion of our fault slip measurements in Quaternary volcanic deposits yields a NW trending σ1, oriented 10° clockwise of the fault strike (Figure 9c). This orientation is consistent with right-lateral strike slip on the fault and with the strain field predicted by Rodríguez et al. [2009] in this area.

4.3.2. Tectonic Style Between the Tonala and the Jalpatagua Faults

The Jalpatagua fault terminates near the Pacaya volcano (Figure 10). Some other trench-parallel right-lateral faults are suspected in its continuation, inside the caldera of Acatenango, and within a NW trending graben of its resurgent dome [Wunderman and Rose, 1984]. The downfaulted area is older than the caldera (of maximum age 300 ka), so the Jalpatagua fault may be masked by younger volcanic activity. The three nested calderas of Lake Atitlán range in age from 14 Ma to 84 ka (Figure 10) and are affected by well-defined NW and NE trending faults displaying right- and left-lateral slip, respectively [Newhall, 1987]. We conclude that trench-parallel dextral faulting continues along the volcanic arc from the Jalpatagua fault up to the area where the Motagua fault dies out near Chichicastenango (Figure 10). This is in agreement with the occurrence of strike-slip focal mechanisms up to this area (Figure 2).

No more evidence of dextral motion is found NW of the Atitlán calderas and the western termination of the Motagua fault. Some trench-parallel faults have been described by Mora et al. [2004] and Van Wyk de Vries et al. [2007] north of the Tajumulco and Tacana volcanoes, but their kinematics are not reported. South of the Tonala fault, a well-expressed trench-parallel fault straddles the NW region of the Tacana volcano and connects to the Tonala fault. The zone between the Atitlán and the Tacana volcanoes is a rather rolling topography standing at high elevation, with basement rocks reaching 3500 m (Figure 10). The central flat and high area is bounded on both sides by major trench-parallel topographic lineaments (Figure 10a). This axial high drops by 1000 m south to the Atitlán caldera (Figures 10b and 10c). Uplift is thus restricted to a trench-parallel faulted zone that links the Jalpatagua fault–Motagua fault terminations to the Tonala fault southern termination. This uplift is likely related to a relay zone and a restraining bend at the western termination of the Motagua fault [Rodríguez et al., 2009]. Next to this high, the fore-arc sliver is a low standing, continuous block bounded by the Jalpatagua fault, the relay zone, and the Tonala fault. Large magmatic bodies intruded along this relay zone during Quaternary time [Newhall, 1987]. They may affect the rheological properties of the crust, producing wide ductile transpressional deformation in the lower crust and distributed uplift at the surface, instead of a sharp, continuous fault trace. Furthermore, long-term finite deformation is largely obliterated by recent (<100 ka) and thick (>200 m) volcanoclastic aprons. GPS measurements [Lyon-Caen et al., 2006] in this zone image a dim velocity gradient compatible with left-lateral motion, though it remains in the reported velocity uncertainties of 4 mm/yr (=2 mm/yr error ellipses).

5. Discussion

The current NACC triple junction is diffuse and involves major faults and continental blocks with different kinematics. We propose two genetic models that explain our own observations about the modern tectonic setting and earlier observations largely described in previous studies. Meanwhile these models pursue a larger goal because they
also account for the tectonic evolution of the PMFS during the entire Neogene, the motion of the Chortís block, the lack of torsion of the Cocos slab at the triple junction, and the existence of a fossil strike-slip fault along the coast of Mexico. The two models must be combined and integrated with earlier models to explain the kinematic evolution of the NACC triple junction. We present them separately first, and discuss their merit in view of the regional geology, before integrating them into a single progressive model of triple junction evolution that can be transposed to other regions.

5.1. “Pull-Up” and “Zipper”: Kinematic Models of Triple Junction Migration

In the case of a triple junction composed of an oceanic plate subducted below two continental plates, with the continental plates bounded by a transform margin, transform motion induces lateral offset of the trench and thus tends to twist the slab [McKenzie and Morgan, 1969]. If the slab does not twist because of its internal strength or because it is strongly coupled to the mantle, the overlying continental plates must accommodate deformation. Accommodation by
overriding plate is common in subduction zones, for example in response to the subduction of oceanic plateaus or seamounts [Domínguez et al., 1998; Sallarès and Charvis, 2003]. In the present case, shortening in one upper plate and extension in the other upper plate accommodate the differential plate motion and preserve the linearity of the trench [Phipps Morgan et al., 2008]. However, such diffuse intraplate deformation is not permanently sustainable. Other processes concur to accommodate space, and two such processes of accommodation are discussed here, the “pull-up” process and the “zipper” process (Figure 11).

[s4] The “pull-up” process consists of taking off a block of the plate that converges toward the subduction zone, and displacing this block toward the retreating upper plate (step A, Figure 11a). The new block is delimited by the subduction zone on one side and by a new strike-slip fault on
the other side (step B, Figure 11a). Some rotation occurs during block motion in order to adjust the strike of the block to the trend of the transform boundary. A series of blocks can be generated successively as transform displacement increases (step C, Figure 11a). This process reduces the lateral offset between the overriding plates and helps reduce twisting of the slab. Blocks from one plate are dragged in the transform zone because retreat of the other plate creates a “free” boundary next to the triple junction (Figure 11a).

The process can eventually lead to a complete transfer of the pulled up blocks into the trailing edge of retreating plate. [55] The “zipper” process involves a fore-arc sliver (Figure 11b). The fore-arc sliver can be first generated by strain partitioning of the oblique convergence of the subducted plate into the overriding plates [Fitch, 1972; McCaffrey, 1992; Teyssier et al., 1995] (step A, Figure 11b). It can also be produced to accommodate the retreat of the overriding plates, next to the triple junction. Indeed, if the
subducted plate does not tear, fore-arc motion must remain continuous along the trench across the triple junction, and stretching of the overriding plate occurs behind the volcanic front [Phillips Morgan et al., 2008] (step A′, Figure 11b). As differential displacement amplifies between the overriding plates, the fore-arc sliver and/or the converging upper plate must rotate about a vertical axis (step B, Figure 11b). Rigid rotation of the fore-arc sliver occurs because one part is pushed toward the trench by the trench-ducted plate, while the other is sucked in the wake of the escaping plate. The converging upper plate rotates if the lateral displacement of the transform boundary is transferred to the fore-arc sliver boundary. These rotations and the retreat of the diverging upper plate lead to the juxtaposition of the fore-arc sliver to the converging upper plate (steps B and C, Figure 11b). The process is amplified if the upper diverging plate is pinched and extrudes between the fore-arc sliver and the converging upper plate. A strike-slip fault, the motion of which is antithetic to the transform plate boundary, develops parallel to the subduction zone and separates the sliver from the diverging plate. As a result, the diverging plate is free to drift away from the subduction zone as a relatively rigid block (step C, Figure 11b). The antithetic strike-slip faults unite progressively like in a “zipper,” leaving the fore-arc sliver stranded in front of the converging plate, while the triple plate junction migrates (steps C, Figure 11b). Henceforth, we refer to this type of closure as a “zipper” process. This process makes the triple plate junction a permanently diffuse area, and the transform boundary never joins the trench.

The term “zipper tectonics” has been applied to explain (1) the progressive “zipper” closing of an ocean associated with the migration of rotational oblique collision [Sengör et al., 1993; Shelley and Bossière, 2002] and (2) the extrusion of continental blocks in a context of continental collision with the help of one major curved strike-slip fault [Leloup et al., 2001]. To our knowledge, the “zipper tectonics” process proposed here has never been used to describe the evolution of a triple junction with a subduction zone coming across a continental transform boundary. In this case, “zipper tectonics” implies the existence of a fore-arc sliver and progressive suturing of the transform boundary, with a conjugate trench-parallel fault bounding the sliver. This mechanism is potentially important because it may explain the juxtaposition of oceanic “exotic” terranes along continental margins and the incorporation of continental slivers against oceanic plates.

5.2. The NACC Triple Junction and the “Pull-Up” Model

North of the Polochic fault, our analyses of paleo-surface deformation and earthquakes focal mechanisms [Cáceres et al., 2005] document a complex compressional regime that uplifts the Cuchumatanes Highs. We have distinguished three different directions of shortening: N-S, NE-SW and WNW-ESE. N-S shortening results from partitioning of the North American plate motion with respect to the Caribbean plate, which is slightly oblique to the Polochic fault and is located there because of the buttressing effect of the fault. NE-SW shortening may have resulted, first from the Miocene Chiapas orogeny, and more recently from slip transfer along the northern splay of the Polochic fault [Carfutan, 1986; Guzmán-Speziale and Meneses-Rocha, 2000; Meneses-Rocha, 2001]. The WNW-ESE shortening affecting the western side of the Cuchumatanes Highs has not been interpreted. We propose that this shortening is produced by “pull-up” of a block from the North American plate. Guzmán-Speziale and Meneses-Rocha [2000] and Andreani et al. [2008] link the Polochic fault to the strike-slip faults straddling the Chiapas fold belt. These faults mark the boundaries of a continental block, named Southern Mexico block by Andreani et al. [2008], decoupled from the North American plate and migrating to the SE. This block takes up some of the transform plate motion and moves toward the triple junction. The kinematics of this block is compatible with the “pull-up” process described above, and its leading edge locally experiences WNW-ESE shortening as it abuts the Polochic fault.

When did pulling up of the Southern Mexico block initiate? In NW Guatemala, the western tip of the Polochic fault forms a horsetail termination. Our data show that since at least the late Miocene, the Polochic fault has been transferring part of its motion to the horsetail faults to the north. The westernmost fault in the tail is the Tonala fault. Our geomorphic observations suggest active reverse motion near its connection to the Polochic fault, but some relaxation of uplift rates is observed away from the tail, close to the northern termination of the Tonala fault. This may reflect a decrease in activity away from the current location of the tail and implies that, recently, more motion has been transferred to faults located further inland, such as the Necta fault and other strike-slip faults in Chiapas [Guzmán-Speziale and Meneses-Rocha, 2000; Andreani et al., 2008]. Witt et al. (submitted manuscript, 2011) document an age between 9 and 6–5 Ma for this slip transfer. We think that activity of these faults has generated uplift in the Cuchumatanes Highs after the middle Miocene. Displacement along the Chiapas faults marks the beginning of SE motion of the Southern Mexico block. Consequently, decrease of activity on the Tonala fault and uplift of the Cuchumatanes Highs can be correlated with the onset of motion of the Southern Mexico block (Figure 12a).

We suspect that the Motagua-Polochic tectonic sliver has also been pulled up into the transform boundary. Our data show that transpressive deformation that affected the sliver, like the blocks of the North American plate, shifted to extension recently, as if extension of the Chortís block, first bounded to the north by the Motagua fault or the Jocotán-Chamelecón faults, had propagated northward up to the Polochic fault (Figure 12b). This agrees with fault kinematic data [Ratschbacher et al., 2009] and suggests that the sliver, after accommodating some transform displacement for millions of years, is now being incorporated into the Caribbean realm. We suspect that some other slivers have been transferred by the same process from the southern coast of Mexico. The Las Ovejas complex with El Tambor formation, called Sula terrane by Ortega-Gutiérrez et al. [2007] and Copan terrane by Flores [2009], is a sliver of similar size, bounded by the Motagua and the Jocotán-Chamelecón faults. It has been accreted to the nuclear Chortís block in the strictest sense. The Chortís block, in turn, was stripped off southern Mexico. The successive transfer of these blocks to the Caribbean plate along the transform margin implies a migration of the NACC triple
The “pull-up” process may have also operated at the multiple plate junction between the Caribbean, South American, Cocos, and Nazca plates. The northwestern part of the South American plate is broken into a series of blocks, such as the Cordillera Oriental–Upper Magdalena block, the Cordillera Central–Middle Magdalena block, and the Maracaibo block. These blocks are pinched out by the Nazca plate convergence and dragged by the Caribbean plate eastward relative motion and therefore move toward the NNE–NE [Taboada et al., 2000; Corredor, 2003; Montes et al., 2005]. Their tectonic evolution mirrors that of the Southern Mexico block.

5.3. The NACC Triple Junction and the “Zipper” Process

The fore-arc sliver is delimited by the Jalpatagua and Tonala faults, which are in perfect continuation with one another, albeit located on two opposite sides of the PMFS termination. These faults are a key element of this model and define a single fore-arc sliver of uniform width [Phipps Morgan et al., 2008]. This fore-arc sliver is dissociated from the Caribbean plate by the Jalpatagua fault (Figure 13) and may have originated by strain partitioning within the Caribbean plate, above the subducted Farallon plate, when the convergence vector was more oblique than it is today [Pindell et al., 2005]. It may also be a more recent feature, the movement of which preventing torsion of the Cocos slab [Phipps Morgan et al., 2008]. A major observation concerning the “zipper” process is that the northernmost evidence of active dextral strike-slip faulting along the Jalpatagua fault zone coincides with the westward termination of the Motagua fault near the Atitlan calderas (Figure 10). Consequently, the Caribbean plate portion delimited by the Jalpatagua fault and the sinistral Motagua fault form a wedge-shaped region (Chortís rift domain) [Rogers and Mann, 2007]. Conjugated lateral motion along the two faults allows the relative eastward motion of this zone with respect to the trench (Figure 12a). At the tip of the wedge, this motion induces extension associated with NE trending normal faults. To reduce this space, we propose that the Jalpatagua fault and the Motagua fault are zipped from the Atitlan area up to the Tonala fault (Figure 12a). The Jalpatagua and Motagua faults are currently linked by small NE trending normal faults at the junction (Figure 10). Zipping episodes may alternate with extension to produce this diffuse connection between the faults.

The seamed fore-arc sliver, stranded along the Sierra Madre de Chiapas, forms the coastal plains between the Sierra Madre and the trench. The fore-arc sliver ends northward in the Gulf of Tehuantepec and the Tonala fault also disappears in this zone. The coastal platform reduces drastically in the bend of the trench (Figure 13). An older sinistral fault zone accommodated earlier displacements of the Chortís block. This fault is located 200 km west of the Tonala fault [Riller et al., 1992; Herrmann et al., 1994; Nieto-Samaniego et al., 1990].

Figure 12. Two-stage model of late Cenozoic evolution of NACC triple junction migration and its northern transform boundary. (a) North America plate dynamics zone is indicated in dark gray, and Caribbean plate dynamics zone is indicated in light gray. Thick black portions of the dextral and sinistral faults indicate the “zipper” process. CRB, Chortís rift block; MPS, Motagua-Polochic sliver; SMB, Southern Mexico block; TF, Tonala fault. (b) Enlargement around the PMFS. Compressional zone is indicated in dark gray; extensional zone is indicated in light gray.
Figure 13. Late Cenozoic evolution of the fore-arc sliver of the NACC triple junction showing the “zipper” process. The fore-arc sliver is represented in gray. Fine dashed gray line corresponds to the location of the Chortís block relative to the North American plate at around 10 Ma. Fine dashed black line represents the subduction trench at 10 Ma. Bold dashed line corresponds to the fault bounding the fore-arc sliver merging with the transform boundary. The free boundary is due to the divergence of the Chortís block from the subduction zone. Fine black line corresponds to the northwestern boundary of the fore-arc sliver. Gray dashed line shows the ancient transform boundary before 10 Ma. JF, Jalpatagua fault; PMFS, Polochic Motagua fault systems; TF, Tonala fault.

...process began with the deactivation of this older sinistral fault zone after Oligocene time [Tolson, 2007], in agreement with the 10-8 Ma age of shearing along the Tonala fault that is inferred from Ar-Ar and U-Pb dating from mylonites [Ratschbacher et al., 2009], and from pervasively sheared plutons [Wawrzyniec et al., 2005]. [63] During the Miocene, sinistral motion along the Tonala fault accommodated the passage of the Chortís block [Wawrzyniec et al., 2005; Ratschbacher et al., 2009]. According to the “zipper” model, the wedge-shaped region of the Chortís block was for a time located between the coastal domain and the Sierra Madre de Chiapas (Figure 12a). Constant transform motion of 2 cm/yr over the past 10 My implies that the western tip of the Chortís block was located 200 km west of its present location 10 Ma ago (Figure 13) [Rosencrantz et al., 1988; Pinell et al., 2005; Lyon-Caen et al., 2006]. This distance corresponds to the length of the Tonala fault, which was deactivated progressively by seaming of the Zalpatagua et Motagua faults. Therefore, the Tonala fault shear indicators should reflect this seaming and incorporate both dextral and sinistral kinematics. Indeed, Wawrzyniec et al. [2005] observed such combination of dextral and sinistral shear indicators in the mylonitic fabrics of the Tonala fault zone. Our geomorphological observations suggest dominant active reverse motion along the Tonala fault. Zipping explains the absence of active lateral displacement and the reverse motion occurs because it accommodates North American plate convergence toward the subduction zone and motion transfer from the E-W trending Polochic fault to the NW-SE trending Tonala fault as a strike-slip fault-bend termination [Storti et al., 2003]. [65] To allow zipping, the fore-arc sliver can rotate and/or migrate eastward with the help of a lateral ramp at its NW boundary (Figure 13). The estimated position of the trench zone and the Chortís block relative to North America at 10 Ma implies at most ~10° of counterclockwise rotation. The axis of rotation would be located at the northern tip of the Tonala fault, thus rotation may have produced extension at the NW boundary of the fore-arc sliver (Figure 13). Paleostress tensors younger than 25 Ma [Meschede et al., 1996] derived from striations that were measured at the NW boundary of the fore-arc sliver, agree with the kinematics of the latest structures described along this boundary [Tolson, 2007]. [65] We have proposed that the counterclockwise rotation of a fore-arc sliver is due to relative motion of the upper plates above the subduction zone (Figure 11b). In the case of the NACC triple junction, the free boundary is the western end of the Chortís block because it diverges from the subduction zone (Figure 13). This effect could be accelerated by crust weakening. Slab break off in the Cocos plate below the Chortís block [Rogers et al., 2002] produced an ignimbrite flare-up between 17 and 10 Ma from Guatemala to Nicaragua, that may have heated the crust and decreased its strength [Dupré, 1970; Rogers et al., 2002; Jordan et al., 2007]. [66] The “zipper” model accounts for the existence of the fore-arc sliver in a region where convergence is not sufficiently oblique to induce strain partitioning [Jones and Tanner, 1995; Teysseyer et al., 1995]. This model explains why the eastern boundary of the fore-arc sliver, the Tonala fault, was the older prolongation of the sinistral transform boundary (Figure 11b) and why the Tonala fault, north of the PMFS, does not exhibit active strike slip, since it has already sutured. The “zipper” model also explains why the coastal block bordered inland by the Tonala fault appears as the mere northward continuation of the Caribbean fore-arc tectonic sliver and why these blocks are not separated by any prominent fault at the intersection between the projected trace of the PMFS and the subduction zone. Finally, the model allows for the lack of considerable amounts of shortening and extension on the two sides of the transform boundary, as predicted by Phipps Morgan et al. [2008].

5.4. Compilation of Existing and New Models of NACC Triple Junction Migration

[67] The “zipper” combined with the “pull-up” models can explain to a large extent the Neogene migration of the NACC triple plate junction. Other processes have been proposed and can be integrated to complement understanding of this triple junction dynamics (Figure 3). Grabens in the extended Chortís block may allow the sliver zone to be easily decoupled from the subduction zone [Plafker, 1976; Gordon and Muehlberger, 1994; Rogers et al., 2002] (model B, Figure 3). Reverse and strike-slip faults in the North American plate may take up part of the lateral plate motion [Guzmán-Speziale and Meneses-Rocha, 2000]. In all models it is recognized that the transform plate motion is distributed over a wide domain, with extension in the Caribbean plate and compression with strike-slip faulting in the North American plate. The observed tectonic pattern can also be explained in part by divergence in strike between the
arcuate, convex to the south sinistral transform boundary and the plate motion vector (model E, Figure 3) [Burkart and Self, 1985; DeMets et al., 2000; Rogers and Mann, 2007; Álvarez-Gómez et al., 2008; Rodríguez et al., 2009]. Phipps Morgan et al. [2008] assign a prominent role to the Cocos plate subduction to explain this tectonic pattern. They propose that the presence of a continuous fore-arc sliver with compression affecting one of the overriding plates, and extension the other, explains the absence of torsion of the Cocos slab at the triple junction (model D, Figure 3).

6. Conclusions

[68] Structural and geomorphic analyses of the plate boundary between the Caribbean and North American plates during Cenozoic time, including the evolution of the Polochic–Motagua fault systems, leads to the following results (Figure 12):

[69] 1. During mid-Miocene to late Miocene, transpressive deformation affected a regional erosion surface that has been developed in mid-Miocene time around the PMFS. South of the Motagua fault, eastward migration of the Caribbean plate generates regional extension in the Chortís block. After late Miocene, extension migrates northward and affects the PMFs. This transpressional tectonic regime goes on today to the north of the Polochic fault.

[70] 2. Recently, the NACC triple junction has become highly diffuse and has propagated eastward by intracontinental deformation. Motion along the PMF is transferred along new transpressional inland structures in the North American plate east to the Tonala fault and along north to NE trending normal faults in the Chortís block as a horsetail strike-slip fault termination.

[71] 3. Currently, escape motion of the Chortís block is enhanced by intrablock extension and motion on block-bounding faults, the sinistral PMFs and the conjugate dextral WNW trending Jalpatagua fault located along the Pacific margin. The domain west of the Jalpatagua fault is in a fore-arc sliver position.

[72] We propose a combination of plate kinematic models, including the “pull-up” process [Andreani et al., 2008] and a new model that involves a “zipper” process to explain the migration of the NACC triple junction (Figure 11). The “zipper” and “pull-up” models allow blocks of the North American margin to be stripped off in the rear of the fore-arc sliver, dragged into the wake of the Caribbean plate, and eventually incorporated into it, while the fore-arc sliver is progressively transferred from the Caribbean realm to the North American plate. Stretching in the Caribbean plate and shortening in the North American plate help maintain a diffuse triple junction and avoid twisting of the subducting slab. With these processes, a simple North American–Caribbean–Cocos triple junction of rigid plates probably never occurred since continental blocks such as the Chortís block have been involved in Caribbean plate motion.

[73] Acknowledgments. This work was funded by the Swiss National Fund grant 200021-112175/1 and an Institute of Technology and the Department of Geology and Geophysics at the University of Minnesota, Minneapolis, UMN grant-in-aid 1003-524-5983. We thank the San Carlos University, Cobán, for fieldwork and administrative and logistical assistance. We acknowledge the local authorities who gave permission to acquire data on their land. We thank Kenet Flores for fruitful discussions and Lothar Ratschbacher, Marco Guzmán-Speziale, and the anonymous reviewer for their comments which improved the manuscript.

References

