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ABSTRACT 

In the Aleutian volcanic chain (USA), the 2050 ± 50 BP collapse of Okmok caldera 

generated pyroclasts that spread over 1000 km2 on Umnak Island. After expelling up to 

0.25 km3 DRE of rhyodacitic Plinian air fall and 0.35 km3 DRE of andesitic 

phreatomagmatic tephra, the caldera collapsed and produced the 29 km3 DRE Okmok II 

scoria deposit, which is composed of valley-ponding, poorly sorted, massive facies and 

over-bank, stratified facies with planar and cross bedding. Geological and 

sedimentological data suggest that a single density current produced the Okmok II 

deposits by segregating into a highly concentrated base and an overriding dilute cloud. 

The dense base deposited massive facies, whereas the dilute cloud sedimented 

preferentially on hills as stratified deposits. The pyroclastic current spread around Okmok 

in an axisymmetric fashion, encountering topographic barriers on the southwest, and 

reaching Unalaska Island across an 8-km strait on the east, and reaching the shoreline of 

Umnak in the other directions. The kinematic model by Burgisser and Bergantz (2002, 

Earth Planet. Sci. Lett. 202:405-418) was used to show how decoupling of the pyroclastic 

current was triggered by both sea entrance and interaction with the topography. In the 

former case, the dense part of the current and the lithics transported by the dilute cloud 

went underwater. In the latter case, topographical barriers noticeably decelerated both 

parts of the decoupled current and favored sedimentation by partial or complete blocking. 

The resulting unloading of the dilute current drastically reduced the runout distance by 

triggering an early buoyant lift-off. 
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INTRODUCTION 

Okmok volcano forms the northeastern part of Unmak Island, which lies in the middle 

of the Aleutian volcanic chain (Alaska, USA). With a volume of 400-500 km3, the 

Okmok shield is among the largest volcanic centers in the Aleutian arc. Okmok’s 

predominantly basaltic eruptive style was punctuated by catastrophic silicic-magma-

bearing eruptions (Okmok I and II) that produced two nested, 10-km diameter calderas at 

the summit (Black 1975; Miller and Smith 1987). Intracaldera activity following the 

younger Okmok II caldera event formed numerous basaltic cones and lava flows. On-

going deformation of the caldera floor has been recognized by SAR interferometry (Lu et 

al. 2000), and the most recent eruption was in 1997. Although numerous geologic (Byers, 

1959) and geochemical observations (Byers, 1961) have been collected at Okmok, most 

were aimed at the questions of arc petrogenesis (e.g., Kay and Kay 1994) and physical 

processes of specific volcanic events to date have not been explored systematically. 

The focus of this study is on the latest caldera-forming eruption, Okmok II, with the 

goal of establishing the physical parameters related to this volcanic event. The eruption 

has been dated at 2050 ± 50 BP (Wolfe 2001) and its deposits covered some 1000 km2 of 

Umnak Island (Fig. 1). The products of this eruption consist of minor fall tephra overlain 

by voluminous, non-welded pyroclastic density current deposits. The bulk composition 

changes dramatically from rhyodacite in the first part of the fall deposits to basaltic 

andesite throughout the rest of the eruptive sequence (Larsen and Nye in review). 

In this study, geological and sedimentological data of the fall deposits are utilized to 

reconstruct the eruptive dynamics of the earliest phase of the eruption, whereas data from 

the two facies of the pyroclastic density current deposits constrain the nature of the 
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current. Interactions between the pyroclastic current and its surroundings (hills and sea) 

elucidate important characteristics of the current, such as internal particle concentration 

and thickness. These characteristics can be best explained by the kinematic model by 

Burgisser and Bergantz (2002), and this model is employed to infer the mean speed of the 

current at a given location and to determine whether the current was in sub- or 

supercritical regime. 

METHODS AND THEORY 

The topographic map was based on the 10-m resolution DEM of the USGS, and the 

geologic map of Byers (1959) was used for reference. Samples were localized by GPS 

(Fig. 1). In the fall deposits and stratified facies, most samples were bulk samples over 

the entire thickness of the unit, and some samples were of individual layers. The coarsest 

clast sizes of the stratified facies are much smaller than the sampling volume and are thus 

properly represented in the sieve data. In the massive facies, the sample volume was 

10×10×10 cm. Because the sampling area was limited, the 3 largest clasts within a 2 m2 

area around the sampling area were also measured to ensure that the sampling properly 

represented the coarsest sizes. For all samples, the average diameter of those clasts is at 

most 1 φ size larger than the maximum clast size within the sampled material.  

Most samples were dry-sieved and counted in the field for the coarsest fraction (> -2 

φ). The remainder of the material was wet-sieved in the laboratory to 4.5 φ in intervals of 

0.5 φ. The finer fraction (<4.5 φ) was collected in 2-gallon water buckets and dried. The 

size distributions of the fine fraction were determined to 7 φ using a Spectrex ILI-1000 

laser particle counter. Although the particle counter gives wt.% between 4.5 and 10 φ, 
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those values were normalized to sizes between 4.5 and 7 φ because the distilled water 

used to dilute the fine fraction contained impurities below 7 φ. Particle counter and sieve 

data were combined to obtain normalized grain size distributions. The error in the weight 

of each size fraction is estimated to less than 5 g for the field-sieved fraction and less than 

0.1 g for the finer sizes. The error in the weight percent is thus estimated to 0.2% for the 

field-sieved fraction and 0.1% for the finer sizes. Grain sizes are given in φ units (-

log2(mm)) and the parameters used in this study are the Inman median size Md (50 wt.%) 

and sorting σ (Inman 1952; Cas and Wright 1987). Those parameters are accurate to ±0.1 

φ. The componentry of samples was obtained by manually separating and weighing a 

statistically significant number of the different clast types for sizes coarser than 0 φ, and 

by counting 500 particles per class size with a binocular microscope for the smaller sizes 

down to 2 φ (4 φ for some samples). Conversion to weight fraction was done using the 

average weight of each particle type. Errors on the normalized proportions are on the 

order of 0.1%. For each sample, the mean particle density is calculated to the nearest 

100th of kg m-3 using the bulk component data with 1000, 2500, 2000 and 2500 kg m-3 

being the respective densities of scoria, lithic, glass and crystal. 

A brief summary of the model by Burgisser and Bergantz (2002) follows because it 

was used to derive dynamic parameters of the pyroclastic density current. In this 

kinematic template, the multiphase interactions of particles within the dilute part of the 

current are characterized with two dimensionless numbers: the Stokes (ST) and stability 

(ΣT) numbers. The Stokes number measures the coupling between gas and particles and is 

the ratio of the response time of particles (UT/g, particle reaction to unsteady forcing by 

gas turbulence) to the rotation time of the most energetic eddies (δι /∆Ui): 
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i
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where UT is the particle terminal fall velocity, g the acceleration of gravity, δι is the 

eddy diameter, and ∆Ui is the eddy rotation speed. ∆Ui can be related to both the root-

mean square of the gas velocity Urms and the mean current speed U by (Pope 2000): 
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The stability number assesses the steady gravitational forcing on particles and is a 

measure of the particle residence within an eddy:  

i

T
Τ ∆U

UΣ =  (3) 

The combination of ST and ΣΤ defines three main particle behaviors within the cloud: 

sedimentation (ST >1 and ΣΤ > 10-0.5), where particles are not sustained by turbulence and 

fall out; transport (ST < 1 and ΣΤ < 100.5), where particles are well mixed within the flow; 

and transient (other cases), where particles gather and disperse in a transient way. The 

buoyancy frequency (π ∆Ui /δι), which controls the rotation time of the most energetic 

eddies, can be combined with current height H and speed U to frame the Froude number 

FR of the current: 

i

i
R UH

UF
∆π
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4
 (4)  

STRATIGRAPHY OF THE OKMOK II ERUPTION 

The stratigraphy of the latest caldera-forming activity in Okmok shows that there were 

two major eruptive phases. The first phase produced three tephra fall sequences (A, B, 
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and C, Fig. 2), whereas the second generated a voluminous ignimbrite. Enough locations 

were found to reconstruct the distribution of the fall deposits, although the fall deposits 

are often buried underneath the pyroclastic current deposits. The initial fall sequence 

mostly covers the northern sector of the volcano (Fig. 3), whereas the two other 

sequences occur east, extending to the nearby Unalaska Island (Figs. 4 and 5). The 

method of Pyle (1989) was used to estimate tephra volumes, and two type sections were 

used to reconstruct the fall stratigraphy. The first type section is located ~9 km north of 

the caldera rim near the shore (star symbol in Fig. 3) and the second is located ~12 km 

east of the caldera rim (star symbol in Fig. 4). Each fall sequence has been divided into 

several units (A1-2, B1-2, and C1-3) illustrated in Fig. 2. This eruption produced both 

scoria and pumice with distinct compositions. Tan pumices, composing the bulk part of 

the fall deposits, are rhyodacitic in bulk composition, whereas black scoria, composing 

the pyroclastic current deposits, are basaltic andesite (Larsen and Nye, in review).  

Fall deposits 

Fall sequence A is the lowermost unit of the Okmok II eruptive sequence and consists 

of tan pumice lapilli with rare lithics. It commonly overlies a thick (>30 cm) soil with 

carbonized plant remains at the contact. Some carbonized weeds were in their original 

living position within unit A1. Sequence A is up to 114 cm thick at the reference section 

(Fig. 3) and it can be subdivided into a reversely graded layer (A1, Fig. 2) varying from 

fine ash (median grain size Md=0 φ) to coarse lapilli (Md=-4.3 φ), and an ungraded layer 

of lapilli A2 (Md=-1 φ). Both units are well sorted (σ=0.6), and are separated by a fine 

ash deposit (Md=3.8 φ) that is only present near the reference locality. The distribution 

map of A1 and A2 indicates a NNW dispersal axis (Fig. 3) with a total volume of ~0.4 
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km3. Median grain sizes of unit A1 are indicated at four localities, and density 

measurements reveal that the coarsest pumices average 500 kg m-3. 

Fall sequence B is finely stratified and consists of brown pumice lapilli. The sequence 

is up to 21 cm thick with Md=0.5 φ at the reference section (Fig. 4) and two groups of 

layers can be recognized based on pumice morphologies. The basal group of layers (unit 

B1) contains vesicular pumices with irregular shapes, similar to the ones from sequence 

A, whereas the upper group (unit B2) consists of poorly vesicular pumices with blocky 

shapes (Fig. 2). Up to 50 wt.% of these blocky pumices is vesicle-free glass. The 

distribution map of B1 and B2 indicates an easterly dispersal axis with a volume of ~0.05 

km3 (Fig. 4). A small amount of erosion or reworking exists between the sequences A 

and B, but there is little evidence for a significant time break at this horizon, such as 

would be marked by soil development or abundant reworking by water. 

Fall sequence C can be found on the northeast part of Umnak Island and on most of 

Unalaska Island, but it has been eroded from many exposed locations. The sequence is up 

to 20 cm thick at the reference section (Fig. 4), where up to 10 layers can be recognized, 

with grain sizes that vary from fine ash (Md=3 φ) to fine lapilli (Md=-0.5 φ). Although 

sequence C consists mainly of black scoria lapilli layers, one layer contains vitric and 

blocky pumice ash. All layers have rare lithics. The pumice-bearing layer delimits three 

groups of layers within sequence C: 8 layers of scoria at the base (unit C1), the pumice 

layer (unit C2), and a scoria layer atop (unit C3, Fig. 2). The distribution map of C1, C2, 

and C3 indicates an easterly dispersal axis and a volume of ~0.4 km3 (Fig. 5). 
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Pyroclastic current deposits 

Pyroclastic current deposits from the Okmok II eruption blanket the northeast part of 

Umnak Island, forming plateau surfaces around the volcano that are cut by modern 

stream channels (Fig. 6). These black, scoria-rich deposits generally overlie fall 

sequences with a sharp contact, and occasionally present an erosive contact with 

underlying soil or older deposits. Most of the deposits are several tens of meters thick and 

present a massive, poorly sorted facies. Another facies with low angle cross-stratification 

or planar bedding, and improved sorting occurs on hills and paleohighs (e.g., Idak 

plateau), where deposits are only up to a few decimeters. A similar stratified facies is 

systematically found on Unalaska Island, where deposits vary in thickness from one 

meter on the western shore to a few centimeters inland (Fig. 6). Clasts composing the 

pyroclastic deposits can be divided into four types: juvenile scoria, lithics, crystals and 

glass. Black scoria is the most abundant type. Lithics comprise mostly aphyric basalt, 

minor basement clasts, hydrothermally altered clasts, and red oxidized scoria lithics that 

are frequently found in the pre-caldera stratigraphic sequence. Crystals are mostly 

plagioclase, with minor olivine and pyroxene. Most crystals are unbroken, and some 

crystals have adhering glass. Glass is mostly juvenile, but also includes some aphyric 

basalt, from which the distinction is difficult. 

The total volume of pyroclastic deposits on land is estimated at 24 km3, and the 

massive facies accounts for >99.8% of the total volume. Assuming a Dense Rock 

Equivalent of 2500 kg m-3, and a deposit average density of 1450 kg m-3 from the 

massive facies componentry, this volume translates into ~14 km3 DRE. Preliminary 

surveys of the Okmok I deposits and the intra-caldera geology suggest that the volume of 
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the preexisting caldera left by Okmok I is similar to the volume of infillings by post-

caldera basalt and tephra. It is thus reasonable to assume that the post-Okmok II infillings 

balance the volume of the pre-Okmok II caldera, and that the current volume of the 

caldera (40 to 60 km3) is representative of the total volume of erupted material during 

Okmok II. Okmok II thus erupted ~50 km3 (~29 km3 DRE), half of which was deposited 

on land. 

Massive facies of the pyroclastic current deposits 

The thickness of the massive facies varies greatly, but the integration of visual 

estimates and tape measurements suggests that the thickness averages from ~ 60 m 

proximally to ~ 30 m at shore, at about 10 km from the caldera rim (Fig. 6 reports tape 

measurements). The top surface of the deposits forms a gently inclined plateau (Fig. 7), 

whereas the base is more irregular, revealing the jagged nature of the paleorelief. Thus, 

most thickness variations of the massive deposit result from the wavy paleotopography. 

Deposits are primary, with the exception of two regions that have been reworked (Fig. 6). 

The first region is located east of the caldera and features thick outcrops with rounded 

scoria, over-sized (>1 m) rounded lithic boulders, and numerous crude planar 

stratifications. These outcrops and several localities with thin (<1 m) volcano-

sedimentary deposits suggest a subsequent reworking of the pyroclastic deposits with 

water on the eastern part of the island. The second region lies northwest of the caldera, 

where deposits display abundant red oxidized scoria with a few lithic pipes. These 

regions were avoided for the reconstruction of the eruptive dynamics. Although the 

massive facies is mostly structureless, occasional crude stratifications are observed where 

thickness variations are important. Common accumulations of coarse scoria occur where 
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the deposit thins to about one meter, and scarce occurrences of a thin (<10 cm) lithic-rich 

unit at the base were found on the lee side of paleohighs. On average, the massive facies 

consists of 69 wt.% juvenile scoria, 26 wt.% lithics, and 5 wt.% glass and crystals (Fig. 

2), with median grain sizes ranging between –2.5 and 0 φ and poor sorting (σ~3, Fig. 8). 

Crystals are generally smaller than 1 φ and glass becomes more abundant below 0 φ, 

whereas scoria and lithics occur at all grain sizes. 

Local vertical variations of the massive facies were characterized by determining 

grain-size distributions and components of samples from the base and the top of various 

localities around the volcano (Fig. 1). Median grain sizes usually decrease by 1 φ size 

towards the top of the deposit with no change in sorting (Fig. 8). Bulk lithic contents vary 

by up to 20 wt.%, regardless of stratigraphic position (Fig. 9). To examine if a particular 

size class is responsible for these bulk variations, the difference in normalized lithic 

proportion between two neighboring samples are plotted for each grain size. By 

convention, the component data of the sample appearing to the right is always subtracted 

from the component data of the sample to the left of the diagram. For example, the bulk 

componentry of the sample AOK98 at the base of the deposit contains 17 wt.% more 

lithics than the sample AOK97 at the top (Fig. 9). The line labeled ‘lithics’ between these 

two samples indicates the arithmetic difference in lithic content for each grain size 

indicated on the x-axis (i.e. lithic wt.% in AOK98 minus lithic wt.% in AOK97 for each 

size class). This graphic representation shows that the difference in lithic bulk content 

between these two samples is caused by a higher lithic content of AOK98 between -5 and 

–1 φ (Fig. 9). From the four localities represented on Fig. 9, it is apparent that the vertical 

variations of lithic content within the deposit are caused by the coarsest clast fraction 
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(above -2 φ). Vertical variations of crystal and glass proportions are small regardless of 

grain size. 

Twenty-six samples taken at various azimuths around the caldera, 8 to 12 km from the 

rim, were analyzed to study radial variations of the massive facies. Six representative 

samples located at regular intervals of azimuth around the caldera were selected for 

component determination (triangle symbols on Fig. 1). Sorting and median sizes display 

weak variations around the volcano (Fig. 10A). As in the vertical sections, small 

componentry changes are due to the coarse fraction (Fig. 10B). Lithic proportions vary 

between 9 and 38 wt.%, with smallest values on the west of the volcano. Note that the 

lowest lithic content occurs at a locality (AOK164) that displays depletion in lithics 

regardless of grain size. Both this depletion and the improved sorting (σ=2.4) of this thin 

(2.5 m) locality reflect a frequent pattern occurring when deposits thin because of 

important paleo-relief. There is indeed a general correlation between thinness and the 

presence of very crude stratification, and locally some strata feature better sorting in size 

and density than others. 

Eleven samples from three longitudinal sections around the volcano were analyzed to 

study proximal-to-distal variations of the massive facies (sections Ia-c on Fig. 1). In the 

northern section Ia, median grain sizes decrease by 2 φ units with distance from source 

with no change in sorting (Fig. 11a). Lithic contents increase by 20 wt.% with distance 

because of the coarse fraction, and glass contents rise slightly (Fig. 11b). In the 

northeastern section Ib, there is a modest decrease in median grain sizes by 1 φ unit (Fig. 

11a). Whereas the proximal sample is moderately sorted (σ=1.9), more distal samples 

display the characteristic poor sorting of the massive facies. Bulk lithic contents decrease 
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markedly (50 wt.%) with distance and the variations are mostly concentrated in the 

coarsest fraction (Fig. 11c). In the southern section Ic, median grain sizes decrease by 2 φ 

units, with no change in sorting (Fig. 11a). Bulk lithic contents vary by less than 25 wt.% 

with no systematic trend and the variations are mostly concentrated in the coarsest 

fraction (Fig. 11d). In all sections, crystal and glass proportions do not significantly vary. 

In summary, the characteristics of the massive facies have similar trends regardless of 

azimuth despite its variable thickness. On a local scale, the base of the deposit is coarser 

and more variable than the top (Fig. 8), whereas in all sections there is a decrease in 

median grain size with distance from source without significant change in sorting. Lithic 

contents vary by about 20 wt.%, with most of the variation concentrated in the coarsest 

sizes (>-2 φ) of the distribution, which creates a general trend of coarse-tail grading, with 

lithic-rich base and scoria-rich top. Changes in components between intermediate and 

distal locations are irregular and often less pronounced than vertical variations recorded 

at a given location. 

Stratified facies of the pyroclastic current deposits 

The thickness of the stratified facies varies between 30 and 70 cm proximally and 

averages about 20 cm at ~20 km from the caldera rim (Fig. 6). The stratified facies is 

found only on tops of hills, such as Kettle Cape to the south, or elevated plateaus, such as 

Idak to the northeast (Fig. 1), and many locations display evidence of erosion. These 

areas are exposed to the high winds common in the Aleutian Islands, and the loose nature 

of these relatively thin deposits accounts for their low preservation potential. Although 

many thickness measurements are minimum values because of erosion, it is likely that the 
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stratified facies thins with distance. The thickness of the stratified facies is more uniform 

than that of the massive facies. 

The stratified facies can generally be divided in two units based on components. The 

basal unit is richer in lithics, with an average of 60 wt.% scoria, 35 wt.% lithics, and 5 

wt.% glass and crystals, whereas the upper unit is richer in scoria with an average of 79 

wt.% scoria, 15 wt.% lithics, and 6 wt.% glass and crystals (Fig. 2). Scoria and lithics 

occur at all grain sizes, whereas crystals are generally smaller than 1 φ and glass becomes 

more abundant below 0 φ. 

The basal unit is generally massive and poorly sorted (σ=2) around the volcano, and 

varies little in grain size with distance (Fig. 12a). Grain size distributions show that it is 

generally coarser and better sorted than the upper unit (Fig. 12b). Differences in 

componentry with size between the two units show that fractions coarser than –0.5 φ are 

the source of lithic enrichment (up to 30 wt.%) of the basal unit (Fig. 12c). 

The upper unit exhibits alternating planar stratification, absence of stratification, and 

low-angle cross bedding with gradational or sharp transitions between individual beds. 

No systematic variations, either vertically or horizontally, between these various patterns 

could be found, most likely because of the paucity of outcrops. The stratified nature of 

the deposits implies a large local variability of sorting and median size that depends on 

the exact size and position of the bulk sample. This variability can be illustrated by the 

change in median size of individual layers within the upper unit at Kettle Cape (Fig. 12b). 

The componentry between individual layers from the same locality does not vary 

significantly (Fig. 12d). 
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Relationship between massive and stratified facies 

The transition between massive and stratified facies systematically occurs at the flanks 

of prominent ridges. The massive deposit usually thins uphill from tens of meters to 

meters with the occasional appearance of crude stratifications and laterally changes to 

stratified facies within meters. Stratigraphic correlations on the south side of Idak plateau 

(Fig. 13a) and at Hourglass Pass indicate that massive and stratified facies are a lateral 

variation of the pyroclastic deposits, rather than a vertical succession (see composite 

cross section in Fig. 13b). A lithic-rich unit is often present at the base of the stratified 

facies, but more rarely at the base of the massive facies, where it is preserved only on the 

lee side of paleohighs (e.g., north of Kettle Cape). Accumulations of coarse scoria are 

regularly found around the volcano where the deposit thins to about one meter while 

remaining massive in texture. These accumulations display a sharp peak of coarse scoria 

(Fig. 13b), whereas the fine tail has a componentry similar to the main body of the 

massive facies. Importantly, a scoria accumulation near Hourglass Pass occurs at the 

facies transition between massive and stratified (AOK100, Fig. 1). 

Southwestern Ridges 

Okmok peninsula is linked to the southwest part of Umnak Island by an isthmus with 

rugged topography, where altered Tertiary volcanic rocks form a succession of 

northwestward ridges (Byers 1959). To study the relationship between pyroclastic current 

deposits and topography across these ridges, two transects were collected within massive 

(IIa) and stratified (IIb) facies, respectively (Figs. 1 and 14a). 

The massive facies is thicker than 20 m before and after the first ridge, and thins 

rapidly to a few meters after the second ridge. The median grain size decreases with 
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distance at the same rate before and across the two ridges, with similar poor sorting (Fig. 

14b). Componentry changes little with distance: lithic contents oscillate by less than 10 

wt.% because of the coarse fraction (Fig. 14c). 

The stratified facies has a variable thickness of about a decimeter across the three first 

ridges, but thins to a few centimeters after the fourth ridge (Fig. 14a). The median grain 

size decreases slowly with distance across the first three ridges, and diminishes rapidly 

after the fourth ridge, whereas the sorting remains good (σ~1.5) regardless of distance 

(Fig. 14b). The componentry does not change across the two first ridges (NE-SW), but 

lithics of all sizes increase by 20 wt.% across the third ridge and glass clasts of all sizes 

(i.e. <0.5 φ) considerably increase by 35 wt.% across the fourth ridge, at the most distal 

locality (Fig. 14d). 

In summary, the proximal rate of decrease in grain size is similar in both facies. 

Interestingly, size distributions of stratified facies at a given location match the coarse 

half of massive facies at the same location (Fig. 14b). This relationship seems true in 

general, because it is also verified on the north side of the Idak plateau and at Kettle 

Cape. 

Unalaska Island 

Pyroclastic deposits cover over half of the western part of Unalaska Island, which is 

separated from Umnak Island by an 8-km wide strait (Umnak Pass, Fig. 1). They occupy 

the same stratigraphic position as the ones on Umnak, directly overlying the fall deposits. 

These deposits vary from ~70 cm proximally to ~10 cm distally and they are generally 

structureless with discontinuous crude planar bedding. Unlike on Umnak Island, these 
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stratified facies can generally be divided into a thin lithic-rich upper layer (78 wt.% 

scoria, 14 wt.% lithics, and 8 wt.% glass and crystals) and a lithic-poor basal layer (88 

wt.% scoria, 5 wt.% lithics, and 7 wt.% glass and crystals). The distinction between the 

two layers is only apparent from the component data and cannot be ascertained in the 

field. Taking in account that the respective thickness of each layer is only constrained by 

the sampling interval, the upper layer forms about a third of the total thickness. Some 

outcrops present slight post-depositional disturbances probably linked with the high void 

fraction of the basal layer that may favor downward migration of small, denser lithics 

from the upper layer. To compare trends between localities with similar path history (land 

or water), the localities on the plateau inland (sections IIIa and c, Fig. 1) were separated 

for each layer from the ones directly at the shore (sections IIIb and d, Fig. 1). 

The thickness of the basal layer decreases rapidly on the western coast (section IIIa) 

and thins gently across the plateau (Fig. 6). Grain size distributions are unimodal and the 

sorting improves slightly with distance (Table 1). Grain sizes decrease gently with 

distance both along the shore and across Unalaska’s plateau (Fig. 15a). Interestingly, 

grain sizes sharply decrease between equidistant localities at shore (section IIIa) and on 

the highlands (section IIIb). The componentry of the basal layer remains remarkably 

constant over all locations (Fig. 15b). 

The thickness of the upper layer is hard to survey because it has been partially reduced 

by erosion. The basal layer is always present below the upper layer except at one locality 

(AOK145), where only the upper layer crops out. Size distributions are bimodal near the 

shoreline, causing large sorting coefficients (Table 1), but the bimodality diminishes 

away from shore (Fig. 16). After remaining constant near the coast (section IIIc), median 
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grain sizes decrease sharply inland (Fig. 17a). The componentry of the upper layer 

significantly varies across all grain sizes regardless of distance or location (Fig. 17b). 

Some localities near the shore, generally below 15 m in altitude, exhibit erosion of the 

stratified deposit, which is overlain by a decimeter of fine sand in turn capped by a meter 

of a similar sand layer (Fig. 18, Table 1). The two sandy units are separated by an erosive 

contact. The lower sand unit is well sorted (σ = 0.85) with a median size of 0.5 φ, 

whereas the upper unit is bimodal with the same mode as the lower layer plus a coarser 

mode of -1 φ. Both sandy units contain clast types similar to the stratified deposits: 80 

wt.% lithics, 14 wt.% scoria, and 6 wt.% glass and crystals. 

DISCUSSION 

Eruption dynamics 

The thick soil underlying the fall deposits suggests that the 2050 BP Okmok II eruption 

occurred after a multiyear period of quiescence because soil formation is slow in Arctic 

regions like the Aleutians Islands (J. Beget, pers. comm. 2000). Both the charred 

vegetation in its living position within the fall unit A1 and the preservation of the reverse 

grading of this unit suggest that the ground was mostly free of snow at the time of the 

eruption. The eruption started as an increasingly vigorous Plinian column of rhyodacitic 

fall tephra, the umbrella of which was diverted to the NNW by strong winds. The 

distribution map of the associated fall deposits shows that the vent was located in the 

northern part of the caldera. After a second steady pulse that produced unit A2, the 

column faded and the eruption stopped as indicated by the small amount of reworking 

between fall sequences A and B. Interruption of the eruptive activity was long enough to 
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gently rework the fresh deposit, but not sufficient to develop significant water drainage, 

suggesting an interval of days to months. 

The second part of the eruption started from a vent located in the eastern part of the 

caldera with the wind blowing to the east. Unfortunately, the distribution map of the 

associated fall deposits is not sufficient to indicate whether the various fall sequences 

originate from one or several source vents. High proportions of glassy and blocky clasts, 

the internal discontinuous layering of the deposit, and the likely presence of abundant 

water within the caldera left by Okmok I, suggest that unsteady phreatomagmatic 

explosions generated these deposits. As the explosive venting suddenly changed 

composition from dacitic to andesitic, fewer phreatomagmatic events occurred, but the 

wind continued to blow eastward. Interestingly, the drastic compositional shift from 

rhyodacite to basaltic andesite occurred without noticeable changes in eruptive style or 

vent location. The presence of a short phreatomagmatic dacitic event is noted within the 

sequence C (pumice-bearing unit C2). After expelling up to 0.5 km3 of dacite (~0.25 km3 

DRE) and 0.35 km3 of andesite (~0.17 km3 DRE), the eruptive regime dramatically 

increased, three orders of magnitude in volume, and generated deposits that completely 

covered the northeast part of Umnak Island. Most likely, the pyroclastic current deposits 

are responsible for the charred vegetation buried underneath the fall deposits because the 

fall deposits were not hot enough to char vegetation when they were deposited (Thomas 

and Sparks 1992). The pyroclastic deposits, however, were not hot enough to cause 

welding or scoria oxidation, which suggests that their temperature was between 200 and 

600 °C (Riehle 1973). 



 

Burgisser, February 04 20 

The climactic phase expelled about 50 km3 (~29 km3 DRE) of material, half of which 

was deposited on Umnak as a massive facies, and a fraction of which was deposited as a 

stratified facies on Unalaska and some hills of Umnak. The dramatic increase in both 

eruptive strength and lithic content suggests a temporal link between the emplacement of 

these deposits and the initiation of caldera collapse. Unfortunately, the style of caldera 

collapse cannot be inferred from the present sedimentological study because the 

characteristics of the massive facies have similar trends regardless of azimuth despite its 

variable thickness. The wavy nature of the bottom contact and the flat surface defined by 

its top (Fig. 7a) indicate that the massive facies filled in previous topography, which was 

probably a rugged plateau with deeply incised gullies. The poor sorting, massive 

appearance, and distribution of the massive facies suggest that it formed by deposition 

from a dense, ground-hugging pyroclastic flow (Sparks 1976; Druitt 1998; Freundt et al. 

2000). The valley-ponding deposition probably favored larger variations in grain sizes at 

the base of the deposits. Crude stratifications where the topography is rugged probably 

result from the interfingering of multiple lobes within the moving pyroclastic flow. Along 

the same line, the weak coarse-tail grading is also probably caused by variations of the 

local conditions of sedimentation. Overall, grain size analyses suggest that the spreading 

of the pyroclastic flow was axisymmetric, which is helpful to address the emplacement 

dynamics of the current, because it allows direct comparison of locations equidistant 

from the caldera rim.  

Although one might think that such a large pyroclastic flow would significantly erode a 

rugged topography, evidence of erosion is scarce: the only erosive base was found at the 

proximal eastern locality AOK138 (Fig. 1). In addition, the high aphyric basalt content of 
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the base at location AOK124 (Fig. 9) is probably derived from the nearby north-trending 

ridge, where outcrops of the same basalt abound. This indirect evidence suggests that the 

current eroded part of the northward ridge along section Ia, directly north of the caldera 

(Fig. 1).  

Less than 0.2% of the volume of the density current deposits is stratified. Nevertheless, 

the correct interpretation of the topology of this scarce facies is essential to understand 

the parent density current. The bedding pattern and the variable distribution of this facies 

suggest that it formed by deposition from dilute, turbulent pyroclastic surge(s) (Fisher 

1965; Valentine and Fisher 2000). 

The distribution of the stratified facies to paleohighs and the massive facies within 

depressions suggest that they can be characterized as over-bank and paleovalley facies 

(Schumacher and Schmincke 1990). In this view, scoria accumulations at the facies 

transition are likely remnants of pumice levees, and their presence where the massive 

facies thins out suggests that the paleorelief was not high enough at these locations to 

cause the deposition of the stratified facies. The fact that the stratified facies is a lateral 

variation of the massive facies implies their simultaneous deposition. Both the 

synchronous and axisymmetric nature of the deposits favor the interpretation of the 

Okmok II deposits to have been produced by a single density current. The apparent 

contradiction of coexisting pyroclastic flow and surge within the same current can best be 

explained by a segregated pyroclastic density current. In this hypothesis, the current 

consists of a highly concentrated base that produces massive deposits and an overriding 

dilute cloud that sediments stratified deposits preferentially on hills (Fisher 1965; 
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Denlinger 1987; Valentine, 1987; Fisher 1990; Baer et al. 1997; Burgisser and Bergantz 

2002). 

Interactions of the density current with topography 

To the southwest of Hourglass Pass (Fig. 1), the pyroclastic density current traveled 

over successive ridges, leaving both stratified and massive facies in the small valleys that 

separate these ridges. The pumice levee situated on a hill four kilometers before the first 

ridge (AOK100, Fig. 1) indicates that the transition between dense part and dilute cloud 

occurred at 70 m above the lowlands before the ridge. Considering that similar transitions 

exist between the other massive and stratified outcrops, one can infer that the dense part 

was less than 100 m thick after the first ridge, and about 20 m thick after the second 

ridge. The first and second ridges are  ~120 and ~130 m high, respectively. How can the 

dense part overcome ridges that are thicker than the current itself? Woods et al. (1998) 

proposed that ridges higher than a given gravity current could be overcome by the filling-

up of the height difference by the upstream current. Such a process is predicted to 

significantly reduce the thickness of the deposit after the crossing, but would not affect 

the transport capacities of the current (Bursik and Woods 2001). On the other hand, if the 

basal part had enough momentum, it could overcome the ridge while maintaining a 

supercritical regime. The sudden loss of momentum would then enhance sedimentation at 

the ridge, and thickening of the deposits accompanied by decrease in grain size would be 

expected just before or just after the ridge. Drastic thickness reduction of the massive 

deposit across the second ridge (from >19 m to 1.5 m) is consistent with both partial 

blocking and excess momentum with thickening before the ridge. Similar measurements 

are unfortunately not possible across the first ridge because the base of the deposit is 
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buried on both sides. However, there are no deviations in either grain size decrease or 

componentry across both ridges when compared to an unobstructed pathway, which is 

inconsistent with an excess momentum (section Ic, Fig. 11 and section IIa, Fig. 14b). 

Thus, the massive deposit most likely results from partial blocking and filling-up of the 

dense part across the ridges (Woods et al. 1998). 

The stratified facies does not noticeably vary in thickness, grain size, or componentry 

across the three first ridges, when compared to an unobstructed pathway (section IIIa, 

Fig. 15a and section IIb, Fig. 14b). This invariance suggests that the three first ridges did 

not affect the dilute part of the density current, most likely because the current was much 

thicker than the ridges. The fourth ridge, however, caused significant decrease in 

thickness and grain size with enrichment in glass and crystal. A sudden thinning of the 

cloud because of partial blocking could cause such a change, but would not affect 

componentry. Most likely, the thick dilute current became buoyant at that point, 

preferentially entraining light scoria while lifting off. 

The above data help in reconstructing a likely scenario of emplacement (Fig. 19). The 

match in size distribution between stratified deposits and the coarser part of the 

associated dense deposits (Fig. 14c) is consistent with both the dense and dilute parts 

being in dynamic equilibrium and constantly exchanging particles with each other before 

decoupling at the first ridge (Fisher 1995). After being blocked at the first ridge, the basal 

part thickened until this ridge was crossed. The process repeated at the second ridge, but 

the upstream flux was not sufficient for the dense part to cross the third ridge. 

Meanwhile, the dilute part decoupled from the blocked part and successfully crossed the 
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four ridges. After the fourth ridge, the upper cloud became dilute enough to buoyantly lift 

off. 

Travel of the density current over water 

The entrance of a pyroclastic current into the water has been reviewed by Cas and 

Wright (1991) and possible scenarios abound (e.g., Legros and Druitt 2000). Yet, cases 

similar to Okmok, where currents traveled over water and deposited analyzable deposits 

on a distant shore are notably infrequent (Suzuki-Kamata 1988; Fisher et al. 1993; Carey 

et al. 1996; Allen and Cas 2001). 

The most striking difference between deposits on Umnak and the ones on Unalaska is 

the complete absence of massive facies on the latter island. The facies transition localized 

on the south side of Idak plateau (Fig. 13) suggests that the dense part of the density 

current was ~120 m thick when it reached the east coast of Umnak. Crossing of Umnak 

Pass strait thus decoupled the two parts of the density current, and the dense part dove 

into the waters. Geologic cases of dense flows diving into the sea are multiple, such as 

the Roseau (Carey and Sigurdsson 1980), the Grande Savanne (Sparks et al. 1980), and 

the Krakatau 1883 (Mandeville et al 1996) ignimbrites. Unfortunately, at Okmok, the 

undisturbed nature of the massive facies at shore and the lack of underwater sampling 

limit the investigations on the interactions between hot pyroclasts and seawater (e.g., 

Sigurdsson and Carey 1989). Most of the mass of the Okmok pyroclastic current did not 

cross Umnak Pass, unlike the Ito pyroclastic flow, which ran across a shallow lake of 

several tens of kilometers without leaving deposits at the bottom of the lake (Baer et al. 

1997), or the Campanian ignimbrite, which traveled over water to produce thick deposits 

across the 35-km-wide Bay of Naples (Fisher et al. 1993). 
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Whether the crossing affected the dilute cloud can be assessed by comparing the 

stratified facies between the two islands. Beyond the variability in grain size distribution 

inherent to the stratified facies, the sorting of the basal crudely stratified deposit on 

Unalaska matches that of individual layers found on Umnak (Fig. 20a). This and 

stratigraphic correlations suggest that the basal unit on Unalaska is the lateral equivalent 

of the products of the dilute cloud on Umnak. Component analysis of this unit, however, 

indicates that it is very lithic poor (Fig. 20b). This componentry remains similar over the 

whole island (Fig. 15b), suggesting that the sorting occurred at sea. Preferential loss of 

dense lithics during transport across water has also been reported for the Krakatau 1883 

ignimbrite (Carey et al., 1996), and the Kos Plateau Tuff (Allen and Cas 2001). Freundt 

(2003) demonstrated this density-selective process with flume experiments simulating the 

entrance of pyroclastic currents into the sea. The key idea is that once lithics touch the 

surface of the water, they immediately sink; lithics are thus removed from the transport 

system of the dilute current, whereas the low density of the scoria ensures their 

preservation within the transport system. Following this reasoning, the high lithic content 

of the upper layer becomes problematic. How to preserve lithics within the cloud across 

the 8-km strait? The answer is probably linked to pumice rafts, which are large 

accumulations of low-density clasts on the sea surface generated by fallout or pyroclastic 

currents traveling over water (Whitham and Sparks 1986). Because densities and 

porosities of pumice and scoria have similar ranges, both pumice and scoria rafts share 

similar floatation properties (Gardner et al. 1996). If the scoria rafts produced by 

Okmok’s eruption became continuous and thick enough, they could act as a skin over the 

water, bouncing dense clasts as the ground would. In other words, artificial enhancement 
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of the water surface tension could preserve lithics within the traveling current, thus 

allowing a lithic-bearing layer of pyroclasts to sediment over Unalaska. Note that the 

lithic-rich layer irregularly found at the base of both facies on Umnak Island is absent on 

Unalaska Island, as it cannot be correlated to the upper layer on Unalaska. Its absence 

after crossing the water is consistent with decreases in lithic size observed in similar 

lithic-rich ground layers of the Taupo ignimbrite (Wilson 1985) and the Ata pyroclastic 

deposits (Suzuki-Kamata 1988) after those currents crossed water. Interestingly, both 

layers on Unalaska are enriched in large (~1 φ) crystals in the coastal sections (e.g., Fig. 

20b). Unfortunately, no satisfactory explanation for this local enrichment (or depletion in 

fine scoria) has been found. 

The fine sand units with erosive contact atop stratified deposits are linked with the 

entrance of the density current into Umnak Pass (Fig. 18). The peculiar location of this 

deposit, higher than the mean high tide (the modern range of maximum tide is 1.2 m at 

Chernofski Harbor, near AOK150, Fig. 1) but below 15 m, and its stratigraphic 

characteristics suggest it was produced by a tsunami generated by the density current. 

The increase in lithic content of these sands also suggests water transport because 

hydraulic sorting is detrimental to scoria deposition but favorable to denser clasts 

deposition. In this view, the partially eroded basal unit likely represents flooding and the 

thick bimodal unit atop corresponds to tsunami backwash. The partial preservation of the 

lower stratified pyroclastic unit (AOK189) indicates that the tsunami wave(s) occurred 

after the dilute current. 

The highest locality on the plateau of Unalaska (349 m, AOK145, Fig. 1) consists of 

only the upper stratified unit, which indicates that the current responsible for the basal 
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unit was less than 300 m thick, and that a thicker current deposited the upper unit. The 

sharp decrease in grain size between the low sites on the coast of Unalaska (section IIIa) 

and the high plateau (section IIIb) suggests that the 100-m sea cliff acted as a significant 

topographic barrier to the dilute current, which is consistent with a 300-m estimate. Two 

possible explanations can be put forward for the curious bimodality displayed by the 

near-shore upper unit samples (Fig. 16). First, this localized fines increase could result 

from short-lived aggregates formed either by electrostatic forces or by excessive moisture 

in the dilute cloud (e.g., ch. 16 in Sparks et al. 1997). Second, it could result from local 

steam explosions at the sea interface (e.g., Freundt 2003). 

Similar contrasting behaviors of dense and dilute flows encountering seawater have 

also been reported in the literature. In the 1883 Krakatau eruption, one of the best studied 

examples, dense parts of the flow left hot massive deposits on the subhorizontal seafloor 

surrounding the caldera, while hot dilute parts of the flow traveled tens of kilometers over 

the sea (Carey et al. 1996; Mandeville et al. 1994; Mandeville et al. 1996). During the 

1902 eruptions of Mt Pelée, pyroclastic currents entered the sea and their dense part 

broke telegraph cables nearly 20 km offshore, while associated dilute clouds ran out into 

the harbor and set fire to anchored ships (Lacroix 1904). In the on-going eruption of 

Montserrat, basal flows were witnessed to enter the sea and generated a zone of intense 

boiling, while the overriding ash cloud passed over the surface (Cole et al. 1998). 

Estimates of dynamic parameters from density current deposit data 

The angular nature of the scoria found in the stratified deposit suggests that clast 

rolling played a negligible role during sedimentation, and the good sorting of most bulk 

samples (σ~1) implies deposition occurred either rapidly or steadily. On Unalaska, the 
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absence of over-thickening of the stratified facies in depressions and troughs suggest no 

significant downhill drainage of the depositional system (cf. Fisher 1990) occurred. 

These observations are best explained if the current bears a weakly developed 

sedimentation system, with deposition mainly occurring by suspended load fallout. It is 

possible to retrieve dynamic variables from deposits of such a dilute cloud with the 

kinematic template proposed by Burgisser and Bergantz (2002). 

 Following Burgisser and Bergantz (2002), we assume that, at a given location, the 

dilute cloud is most likely to sediment particles that decouple from motions due to 

turbulence. Such particles transiently gather within the current, and their characteristics 

can be tracked by looking at ΣΤ near unity and ST at unity (Equs. 1 and 3, see Methods 

and theory). The weak skewness of the size distributions guided the choice that the 

median size of the deposit matches ΣΤ =1, and that the condition ST =1 lies within 90% of 

the size distribution. Thus, a value of Urms from ΣΤ and a range of δi from ST can be 

calculated for each location. It should be kept in mind that speeds given therein are not 

absolute because of the lack of experimental support of this theory, but they are believed 

to define meaningful trends. 

To illustrate this inverse modeling, below is the retrieval of the dynamic parameters of 

the current that traveled across Unalaska plateau (section IIIa in Fig. 1). Using the mean 

particle density obtained from bulk component data (1150 kg m-3, Fig. 15c) and Equs. 1-

4, the size distribution can be plotted against Urms (Fig. 21). The median grain size (50 

wt.%) of each sample is then matched at ΣΤ =1 and the size distribution is represented by 

a box that indicates 5, 16, 50, 84, and 95 wt.%. This match gives a value of Urms for each 

sample, from which the mean current speed is calculated with Equ. 2 (Table 2, see also 
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section IIIa in Fig. 22). On the obtained graph are three curves for key values of ΣΤ (10-

0.5, 1, and 100.5) and six curves for SΤ =1, which correspond to various values of the 

maximum eddy size δi. The 5 and 95 wt.% marks of each distribution give upper and 

lower limits for δi, from which Froude numbers are calculated (Equ. 4, Table 2). 

Dynamics of proximal deposition  

Reverse modeling of the stratified deposits on Idak plateau indicates that speed sharply 

decreases from the northern edge inwards (Fig. 22). No significant obstacle, however, 

could explain such a deceleration. The shape of the plateau and the high variability in 

thickness and grain size of the related stratified deposits suggest that the plateau acted as 

an obstacle, forcing the density current to flow around it. The peak at the southwest tip 

thus sheltered the rest of the plateau and its altitude gives an upper boundary to the 

current thickness. Using stratigraphic constraints (Fig. 13A), the density current was thus 

~300 m thick near Idak plateau with most of its mass concentrated in the bottom third. 

Deposits recorded the cross-stream motions of the dilute cloud overflowing on the 

plateau, which were small (6 to 24 m s-1, Table 2) compared to its 60 m s-1 along-stream 

speed at the plateau edge (AOK64 in Table 2). 

The paucity of data limits the interpretation of the inter-layer variations within the 

stratified deposit because only deposits at Kettle Cape contain abundant crossed and 

planar bedding. Data form this locality simply suggest that the basal lithic-rich unit was 

deposited by a more energetic current/pulse than the upper scoria-rich unit (Table 2). A 

similar basal unit has been described at Unzen, where it is thought to originate from the 

interface between the dense and dilute parts of the current (Fujii and Nakada 1999). 
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The average speed of the pyroclastic density current and the volume of inland deposits 

can provide an upper estimate of the magma discharge rate. Assuming that speed 

estimates near the shore (~60 m s-1; Table 2) are representative of the average current 

velocity, the 24 km3 of inland deposits took at least 250 s to sediment. Using 1450 kg m3 

for average density gives a maximum discharge rate <1.4×1011 kg s-1 for the climactic 

phase of the Okmok II eruption. Of course, the real value is expected to be much lower 

because sedimentation is unlikely to be instantaneous. 

Dynamics of distal decoupling 

The distal, decoupled behavior of the current can be constrained by its interactions with 

the sea. The velocity of the current across Unalaska plateau decreases linearly over more 

than 20 km (section IIIa, Fig. 22). Compared to this remarkably regular trend, localities 

near the shore are shifted towards higher speeds (section IIIb, Fig. 22). It is thus likely 

that the cliffs that fringe Unalaska plateau abruptly decelerated the current. The range of 

buoyancy frequencies given by ST and estimates of the current thickness maximize the 

Froude number at 0.25 at the coast (Table 2). The height ratio between the cliff and the 

current is 0.3 to 0.5. The current is thus subcritical with a modest height ratio, which 

suggests that cliffs blocked a significant portion (up to 100 m) of the dilute current 

(Baines 1995). On the plateau, the current slowed down to about 40 m s-1 and remained 

subcritical with FR < 0.1 (Fig. 23b). Both the deceleration and the abrupt thinning of the 

deposit between the coast and the plateau are consistent with an enhanced sedimentation 

caused by partial blocking. Reverse modeling of the upper layer indicates a similar steep 

decrease in speed at the edge of Unalaska plateau (sections IIIc-d, Fig. 22). The elevated 

localities bearing the upper unit suggest that the associated dilute cloud was thicker than 
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300 m. Thus, the current that deposited the upper unit was also subcritical (Table 2), but 

thicker and slower than its predecessor (Fig. 23c). 

How fast was the tsunami that reached Unalaska coast (Fig. 23a)? Tsunami wave 

motion is commonly treated with the shallow-water approximation, and the short travel 

across the strait can be best described with a solitary wave (Watts and Waythomas 2003). 

The solitary wave speed UW is expressed as a function of the water depth D and the wave 

amplitude A (e.g., ch. 7 in Kundu 1990):  






 +=

D
AgDUW 2

1  (5) 

Umnak strait averages 50 m depth, with a maximum of 100 m, and the wave amplitude 

reached 15 m. The tsunami thus traveled across the strait at speeds between 25 and 34 m 

s-1, which is, as expected from stratigraphic evidence, slower than the 54 m s-1 estimate 

for the dilute cloud (Table 2). 

Interactions of the current with hills are another effective way to constrain decoupled 

behavior. Using the evolution of the current speed over the relatively smooth plateau on 

Unalaska as a reference to understand the effect of the southwestern ridges, calculations 

indicate that the dilute current lost speed in a stepwise fashion while crossing the ridges 

(section IIb, Fig. 22). Importantly, this stepwise deceleration was not apparent from the 

grain size distribution data alone. The speed step across the second ridge has a 

comparable magnitude to that caused by the sea cliff on Unalaska, whereas the speed 

decrease across the third ridge is modest. The current abruptly reached a low value of 

Urms after the fourth ridge, which is consistent with the transition from horizontal motion 

to vertical lift-off. The current was always subcritical because FR was below 0.09 at all 
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localities (Table 2), and thus likely to be partially blocked by each successive ridge. 

These blockings most likely increased sedimentation within the current in a way similar 

to that on the west coast of Unalaska and this unloading helped to trigger the lift-off. 

CONCLUSIONS 

Geological and sedimentological data helped to reconstruct the dynamics of the 

Okmok II caldera-forming eruption. After a significant period of quiescence, the 2050 ± 

50 BP volcanic episode started with an increasingly vigorous Plinian column of 

rhyodacite, the umbrella cloud of which was diverted by strong SSE winds. After a 

second steady pulse, the column faded and the eruption stopped for a period of days to 

months. Eruptive activity resumed with unsteady phreatomagmatic explosions under 

strong westerly winds. As the explosive venting became more magmatic, the composition 

suddenly changed from rhyodacitic to andesitic. After expelling up to 0.25 km3 DRE of 

rhyodacite and up to 0.17 km3 DRE of andesite, the eruptive regime increased 

dramatically because of caldera collapse to generate ~29 km3 DRE of pyroclastic density 

current deposits that completely covered the northeast part of Umnak Island. 

Field evidences suggest that a single density current segregated into a highly 

concentrated base and an overriding dilute cloud and produced the Okmok II deposits. 

While the basal part produced massive deposits, the dilute cloud preferentially 

sedimented stratified deposits on hills. Topographic barriers made by four successive 

ridges on the southwest of the caldera reveal the dynamic behavior of these two parts. At 

first blocked by a first ridge, the basal part thickened until it could overcome it. The same 

process occurred over the next ridge, but the upstream flux was insufficient for the basal 

part to cross the third ridge. Meanwhile, the dilute part decoupled and overtook the dense 
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part to successfully cross the four ridges. This dilute cloud, however, was subcritical and 

the successive ridges caused its speed to decrease in a step-wise fashion. The slowed-

down cloud buoyantly lifted-off when encountering more massive relief after the fourth 

ridge, most likely because the partial blockings had significantly unloaded the cloud by 

increasing sedimentation. 

When reaching the east coast of Umnak, the density current was about 300 m thick 

with a ~120-m dense basal part that concentrated most of its mass. Crossing the 8-km 

wide strait between Umnak and Unalaska Islands decoupled the two parts of the current. 

While the dense part dove into the sea, the dilute cloud traveled over the water, 

preferentially losing dense lithics it transported. On the other side of the strait, cliffs 

fringing Unalaska plateau decelerated abruptly the dilute, 200-m thick, subcritical current 

and blocked its bottom half, thereby enhancing sedimentation at shore. The slowed-down 

current continued its course on the plateau of Unalaska Island, gently decelerating for the 

next 20 km. Near the end of the eruption, the dilute current thickened to >300 m, slowed 

down, and deposited a unit enriched in lithics on Unalaska. Lithics were preserved during 

this late stage most likely because of extensive scoria rafts covering the strait between the 

two islands. 

Pyroclastic density current decoupling can be triggered by both sea entrance and 

topography interaction. While seawater tends to absorb the dense part of the current and 

the lithics transported by the dilute cloud, topographical relief noticeably decelerates both 

parts of the current and favors sedimentation by partial or complete blocking. In the case 

of subcritical, dilute currents, the resulting unloading may drastically reduce the runout 

distance by triggering a buoyant lift-off. 
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FIGURE CAPTIONS 

Figure 1 Sample localities of the pyroclastic current deposits. Geographic names are also 

indicated and contours intervals are 150 m. Localities with an asterisk have been used to 

study local vertical variations and the corresponding grain size data are reported in Fig. 8. 

Data of the azimuth section are in Fig. 10, sections Ia-c in Fig. 11, Kettle Cape in Fig. 12, 

sections IIa-b in Fig. 14, sections IIIa-b in Fig. 15, and sections IIIc-d in Fig. 17. 
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Figure 2 Composite stratigraphic section of the Okmok II eruptive products. Filled 

symbols are scoria; open symbols are pumice. Fall deposits are scaled to their maximum 

thickness, whereas the massive and stratified facies are not to scale. Representative grain-

size distribution with components are given for the fall sequences A (A1, AOK6), B (B2, 

AOK22), C (C1, AOK10), the massive facies (AOK104), and the stratified facies 

(AOK117 for the basal unit and AOK70 for the upper unit). Samples AOK6 and AOK10 

are at the location AOK131 while the sample AOK22 is at the location AOK86 (see Fig. 

1). 

Figure 3 Thickness distribution of fall sequences A1 and A2. Signs > and < indicate 

minimum and maximum thickness, respectively. Isopachs for each sequence are in 

centimeters; the star indicates the type section, and the median grain size Md (φ) is given 

for some locations. 

Figure 4 Thickness distribution of fall sequences B1 and B2. Signs > and < indicate 

minimum and maximum thickness, respectively. Isopachs for each sequence are in 

centimeters and the star indicates the type section. 

Figure 5 Thickness distribution of fall sequences C1, C2, and C3. Signs > and < indicate 

minimum and maximum thickness, respectively. Isopachs for each sequence are in 

centimeters and the star indicates the type section. 

Figure 6 Thickness distribution of the pyroclastic current deposits. Massive facies, 

stratified facies, and post-depositional reworking are indicated. Massive facies thickness 

is in meters, while stratified facies thickness is in centimeters (bold numbers). The sign > 

indicates minimum thickness. 
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Figure 7 Field examples of the pyroclastic deposits. a. Massive facies near Hourglass 

Pass (AOK 103, see Fig. 1 for locations). Note the flat upper surface of the ~ 25 m thick 

deposit. b. Stratified facies at locality AOK69. Note the cross bedding inclined from the 

upper left to the lower right of the photograph. 

Figure 8 Changes in sorting (σ) with median grain size for sample pairs within the 

massive facies of the pyroclastic current deposits. Basal samples (filled symbols) are 

linked to the top samples (open symbols) of the same locality. 

Figure 9 Component variation with grain size within the massive facies of the pyroclastic 

current deposits. The samples on the left-hand side are from the top of the deposit, 

whereas the samples on the right-hand side are from the base (Fig. 1 for sample 

locations). Component data at each grain size of the sample displayed on the left is 

always subtracted from the comparative size class of the sample to the right. Each line 

thus corresponds to the difference in wt.% normalized to 100% for that component 

(lithic, scoria, crystal, or glass). 

Figure 10 Grain size and component variation with grain size of the azimuth section (see 

Fig. 1). a. Changes in median grain size with azimuth from the caldera center (0° is 

North). b. Component variation with grain size. Component data at each grain size of the 

sample displayed on the left is always subtracted from the comparative size class of the 

sample to the right. 

Figure 11 Grain size and componentry of the massive facies with distance from source. 

Component data at each grain size of samples to the left of the diagram is subtracted from 

the comparative size class of samples to the right. a. Changes in median grain size with 

distance from the caldera rim for sections Ia-c (see Fig. 1). b. Component variation with 
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grain size of section Ia. c. Component variation with grain size of section Ib. d. 

Component variation with grain size of section Ic. 

Figure 12 Grain size and componentry of the stratified facies on Umnak Island. a. 

Changes in median grain size with distance from the caldera rim for the basal, lithic-rich 

unit. b. Changes in sorting with median grain size of individual layers within the 

stratified facies at Kettle cape. c. Component variation with grain size of the basal unit vs. 

the upper unit at Kettle cape. Component data at each grain size of samples to the left of 

the diagram is subtracted from the comparative size class of samples to the right. d. 

Component variation with grain size of individual layers within the upper unit at Kettle 

Cape. 

Figure 13 Lateral (cross-stream) facies variations within the pyroclastic current deposits. 

a. Stratigraphic correlation between massive and stratified facies on the south side of Idak 

plateau. The stratified facies has been eroded at the middle section and no scoria 

accumulation has been found at that location. b. Schematic interpretation of the lateral 

changes in facies at Okmok. The inset shows cumulative grain size distribution of 3 

samples of scoria accumulations (Fig. 1 for sample locations). 

Figure 14 Grain size and componentry of the massive and stratified facies on the 

southwest of Okmok. Massive and stratified facies data are grouped in sections IIa and 

IIb, respectively (see Fig. 1). Component data at each grain size of samples to the left of 

the diagram is subtracted from the comparative size class of samples to the right. a. Cross 

section following the position of section IIb across four ridges with sample locations. b. 

Changes in median grain size with distance from the caldera rim. c. Component variation 
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with grain size of the massive facies. d. Component variation with grain size of the 

stratified facies. 

Figure 15 Grain size and componentry of the basal unit of the stratified facies on 

Unalaska Island. Data are grouped into section IIIa at shore and IIIb on the plateau (see 

Fig. 1). Component data at each grain size of samples to the left of the diagram is 

subtracted from the comparative size class of samples to the right. a. Changes in median 

grain size with distance from the caldera rim. b. Component variation with grain size. 

Figure 16 Grain size distribution of the upper unit of the stratified facies on Unalaska 

Island. Note that the bimodality of the coarser samples coincides with their proximity to 

the coast. 

Figure 17 Grain size and componentry of the upper, lithic-rich unit of the stratified facies 

on Unalaska Island. Data are grouped in section IIIc at shore and IIId on the plateau (see 

Fig. 1). Component data at each grain size of samples to the left of the diagram is 

subtracted from the comparative size class of samples to the right. a. Changes in median 

grain size with distance from the caldera rim. b. Component variation with grain size. 

Figure 18 Stratigraphy of the western coast of Unalaska with representative grain size 

distribution and componentry. The two upper sandy units were only found below 15 m of 

altitude (Fig. 1 for samples location). 

Figure 19 Schematic evolution of the pyroclastic density current across the four ridges of 

section IIb. At first blocked by the first ridge, the basal part thickened (I.) until it could 

overcome the two first ridges (II.). The upstream flux, however, was insufficient for the 

basal part to cross the third ridge. Meanwhile, the dilute part decoupled and overtook the 

dense part to successfully cross four ridges, which caused its speed to decrease. The 
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slowed-down cloud buoyantly lifted-off when encountering the more massive relief after 

the fourth ridge (III.), most likely because the previous partial blockings significantly 

unloaded the cloud. Deposit thickness not to scale, and see Fig. 1 for section location. 

Figure 20 Grain size and component variation of the stratified facies across Umnak Pass. 

See Fig. 1 for samples location. Component data at each grain size of samples to the left 

of the diagram is subtracted from the comparative size class of samples to the right. a. 

Grain size distribution. Note the similar sorting. b. Component variation with grain size. 

Figure 21 Example of reverse modeling of field data using a Urms vs. grain size plot. 

Samples are from the section IIIa (see text). Thick lines are values of ΣT, thin lines are 

eddy maximum size δi, and boxes represent grain size distributions. Variables used are 

µ=1.5×10-5 Pa s, υ=3×10-5 m2 s-1 (air at 300 °C), and ρp = 1150 kg m-3. For completeness, 

AOK153 is also shown on this plot although its density is 1250 kg m-3. Note that this 

difference of +100 kg m-3 would shift the curves towards smaller grain sizes by ~0.1 φ. 

Figure 22 Root-mean square velocities Urms of the dilute pyroclastic current for various 

sections around Okmok. Arrows indicate the current direction and labels are sample 

numbers (Fig. 1 for section locations). 

Figure 23 Schematic evolution of the pyroclastic density current crossing Umnak Pass. a. 

The dilute cloud, decoupled from the dense part at sea entrance, reached Unalaska before 

the tsunami, which is caused by the entrance of the dense part into the sea. b. Partial 

blocking of the dilute cloud by sea cliffs at Unalaska and emplacement of the tsunami 

deposits on the shore of Unalaska. c. The second, thicker dilute cloud to reach Unalaska 

was enriched in lithics, presumably because of the presence of extensive scoria rafts 

floating on Umnak Pass. 
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Table 1 Grain size parameters for the stratified facies. 

sample 5 wt.% 
(φ) 

16 wt.% 
(φ) 

50 wt.% 
(φ) 

84 wt.% 
(φ) 

95 wt.% 
(φ) 

sorting 
(σ) 

distance from 
rim (km) 

Idak plateau       

AOK63 -4.8 -3.7 -1.6 0.5 2 2.1 13.5 
AOK64 -4.8 -3.6 -1.4 0.5 1.6 2.05 13.5 
AOK69 -0.8 0.5 2 3.4 4.3 1.45 16.6 
AOK70 -1.4 -1 -0.3 0.5 1.3 0.75 17.5 

Kettle Cape – basal unit     
AOK117 -4.4 -3.4 -1.4 0.5 1.7 1.95 11 
AOK114 -3.2 -2.4 -0.6 1.7 3.2 2.05 11 

Kettle Cape – upper unit     
AOK116 -3.2 -2.4 -0.2 3 4.8 2.7 11 
AOK115 -1.1 -0.3 1.6 3.6 4.6 1.95 11 
AOK111 -3.4 -2.9 -1 2.6 4.2 2.75 11 

Section IIb       
AOK169 -3.6 -2.9 -1.6 -0.2 0.8 1.35 12.3 
AOK170 -3.4 -2.7 -1.3 0.5 2 1.6 14.4 
AOK177 -2.9 -2.1 -0.8 0.8 2.7 1.45 19.7 
AOK175 0.6 1.2 2.8 4.2 5.5 1.5 23.7 

Section IIIa – upper unit     
AOK143 -3.4 -2.8 -1.7 -0.5 0.7 1.15 19.9 
AOK146 -2.9 -2.2 -1.4 -0.5 0.3 0.85 26 
AOK151 -2.3 -1.8 -1 -0.2 0.2 0.8 32.6 
AOK149 -2.3 -1.8 -1 -0.2 0.1 0.8 33.2 
AOK153 -1.9 -1.2 -0.5 0.4 0.6 0.8 40.3 

Section IIIb – upper unit     
AOK142 -3.8 -3.1 -2.1 -1 -0.2 1.05 21.5 
AOK189 -3.2 -2.8 -1.8 -0.9 -0.2 0.95 25.7 

Section IIIc – basal unit     
AOK144 -2.9 -2.2 -0.9 1.7 3.5 1.95 19.9 
AOK145 -2.9 -2.1 -1 1.7 3.5 1.9 22 
AOK147 -2.1 -1 0.2 1.3 2 1.15 26 

Section IIId – basal unit     
AOK150 -2.4 -1.5 -0.7 0.3 2.7 0.9 36.8 
AOK154 -1.2 -0.4 0.6 1.5 2.5 0.95 43.1 

Tsunami unit     
AOK187 -1.9 -1.3 0.1 1.3 2.3 1.3 25.7 
AOK188 -0.9 -0.4 0.5 1.3 2.3 0.85 25.7 



 

Burgisser, February 04 43 

Table 2 Dynamic parameters for the stratified facies. 

sample  ρ avg 
(kg m-3) 

Urms 
(m s-1) δi (m) mean speed 

U (m s-1) 
current height 

H (m) FR 

Idak plateau      

AOK64 1950 15 5-300 60 200-300 <0.25 
AOK69 1350 1.5 0.01-2.5 6 200-300 <0.01 
AOK70 1250 6 2.5-10 24 200-300 <0.03 

Kettle Cape – basal unit  
AOK117 2050 15.5 5-300 62 >100 <0.75 
AOK114 1950 9.5 0.75-75 38 >100 <0.19 

Kettle Cape – upper unit  
AOK116 1750 7 0.1-50 28 >100 <0.13 
AOK115 1450 2 0.01-5 8 >100 <0.01 
AOK111 1250 9 0.1-50 36 >100 <0.13 

Section IIb      
AOK169 1150 12.5 5-75 50 >200 <0.09 
AOK170 1150 10.5 2.5-50 42 >200 <0.06 
AOK177 1450 9 1-50 36 >200 <0.06 
AOK175 1450 0.5 0.01-0.5 2 >200 <0.01 

Section IIIa – basal unit  
AOK143 1150 13 7.5-75 52 75-200 <0.25 
AOK146 1150 11 7.5-50 44 100-200 <0.13 
AOK151 1150 9 5-25 36 50-200 <0.13 
AOK149 1150 9 5-25 36 50-200 <0.13 
AOK153 1250 6.5 2.5-25 26 50-200 <0.13 

Section IIIb – basal unit  
AOK142 1150 16 10-100 64 150-300 <0.17 
AOK189 1150 13.5 10-75 54 150-300 <0.13 

Section IIIc – upper unit  
AOK144 1650 10 7.5-50 40 >300 <0.04 
AOK145 1350 9.5 2.5-50 38 >50 <0.25 
AOK147 1250 6 0.75-10 24 >100 <0.03 

Section IIId – upper unit  
AOK150 1250 8 0.75-25 32 >200 <0.03 
AOK154 1550 4 0.5-7.5 16 >50 <0.04 

 

 



5 km

-168.4 -168.3 -168.2 -168.1 -168.0 -167.9 -167.8 -167.7 -167.6 -167.5 -167.4

53
.2

0
53

.2
5

53
.3

0
53

.3
5

53
.4

0
53

.4
5

53
.5

0
53

.5
5

Ida
k p

lat
ea

u

Kettle cape

Okmok
calderaUmnak

Island

Unalaska
Island

Umna
k P

as
sHourglass pass

Longitude E (°)

Latitude N (°)

Figure 1

Ia

Ib

Ic
IIa

IIb

IIId

IIIa
IIIc

IIIb

(145)

(149)

(150)

(151)

(153)

(154)

(169)

(175)

(177)

(189)-/96

-/163

-/164

33/34
42/-

131/124

46/47

49/50

62/-

86/84

92/91

94/93

97/98

103/102

119/118

137/138

141/142

144/143
147/146

166/165
Tsunami deposit:
188/187

100/101

104/105

107/106
99/-

-/167(171)
(170) 108/-

115/114
116/117

(69)

-/7064/63

(18)

8/6

bulk
top/base

location

longitudinal 

vertical
azimuth

SECTIONS

SAMPLING

- not sampled

Individual layers (top to base):
113,109,111,110,112

X/Y



Fall sequence A

Fall sequence B

Fall sequence C

A2

C3
C2
C1
B2

B1

50
 c

m

A1

<8
0 

m
poorly to well
sort. scoria

well sorted scoria
well sorted pumice

well sorted blocky pumice layers
well sorted blocky scoria layers

well sorted pumice layers

well sorted ash

reversly graded pumice

well sorted pumice

Stratified facies

Massive facies

soil

soil

poorly sort. lithics

Grain size (φ)

Figure 2

<1
 m

poorly sorted
scoria

0

2

4

6

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

0

4

8 basal unitupper unit

0

10

20

-5 -4 -3 -2 -1 0 1 2 3 4 5 6-2 -1 0 1 2 3 4 5

0 2-2-4
0

10

20

30

0 2-2-4
0

10

20

30

40

0 2 4-2-4
0

10

20

30

Scoria

Pumice
Lithic

Crystal
Glass
Not analyzed

unit
C1

unit
A1

w
t.%

w
t.%

w
t.%

w
t.%

w
t.%

w
t.%

Grain size (φ) Grain size (φ)

Grain size (φ)

Grain size (φ)Grain size (φ)

unit
B2



5 km

1

50
10

1

10 <86

10

<9

2
3

<2

<1.2

<0.6

<1

<2.5

<1

<2
<1.5

80

1

12

<0.5

<0.8

<0.2

(8)

<86

>5

<9

1
1

<2

<1.2

<0.6

<1

<2.5

<1

<2
<1.5

34

1

14

<0.5

<0.8

<0.2

[-3.2]

[-4.3]

[-1]

[0]

-168.4 -168.3 -168.2 -168.1 -168.0 -167.9 -167.8 -167.7

53.20

53.25

53.30

53.35

53.40

53.45

53.50

53.55

53.60

<1

<1

Isopach Thickness

Unit A1

Unit A2

[-2]

Latitude N (°)

Longitude E (°)

Okmok
caldera

Caldera wall

Type section

[Md φ]

Figure 3



5 km

53
.2

0
53

.2
5

53
.3

0
53

.3
5

53
.4

0
53

.4
5

53
.5

0
53

.5
5

-168.4 -168.3 -168.2 -168.1 -168.0 -167.9 -167.8 -167.7 -167.6 -167.5 -167.4

<1

<1

Isopach

Unit B2
Unit B1

Okmok
caldera

Latitude N (°)

Longitude E (°)

Type section

Thickness

1

5
10

1

5

<2

22

>1

2.5

<1.2

<0.6

<1

3.5
6.5

5.5

4 2

<5

3

<5

<4

<0.5

<0.8

17

>0.5

1.5

0.5 0.2

0.51.5

1.5

11

4

7

<2

<1

<0.5

<0.8

<1.2

<0.6

Caldera wall

Figure 4



10

5

1

0.5

5

10

1

>1

<5

1.8
3

>1 3

>3

1.5

3

8.8

9

9.3

15.7

3.5

3

>2

4

>2

<3 2

<3.5

<2

2.5

<6

<1.5

<1

<3

<2.5

11

>1

>2

<5

>2 >3

>0.5

7

9

4

2

1.6

>2

4

<3

<1

11<3

<2.5

2.9

2.5

<3.5

<2

2.5

<6

<1.5

>1

1 0.52

>0.2

0.1

0.9

0.4

0.1

0.5

1.5 2.5

4

(7)

-168.4 -168.3 -168.2 -168.1 -168.0 -167.9 -167.8 -167.7 -167.6 -167.5 -167.4

53
.2

0
53

.2
5

53
.3

0
53

.3
5

53
.4

0
53

.4
5

53
.5

0
53

.5
5

Latitude N (°)

Okmok
caldera

<1

<1

Isopach Thickness
Unit C3
Unit C2

<1 Unit C1

Longitude E (°)

Caldera wall

Type section

Figure 5

5 km



-168.4 -168.3 -168.2 -168.1 -168.0 -167.9 -167.8 -167.7 -167.6 -167.5 -167.4

53
.2

0
53

.2
5

53
.3

0
53

.3
5

53
.4

0
53

.4
5

53
.5

0
53

.5
5

Latitude N (°)

Longitude E (°)

Okmok
caldera

>10

10

<10

Massive facies >10 m thick

Massive facies <10 m thick

Stratified facies (cm)

0.7 Reworked deposit (m)

Secondary oxidation

Idak
plateau

5 km

?

?

>16

>18

0.5

0.7

>46
3

2

22

>25

71

>6

6

>21

>4

>20

>17

>6

>20

>4
11

>33

5

>6

>14

>5

3

55

4 25

>40

>19

2

2

>35

10

14

>20
1

>10

>30

>18

67

76

5 27

33

4

13

11

12

7

71 8
24 5

2

10

79
71

29

6

6

30
7

7

Figure 6



5 
cm

B.

A.

Figure 7



0

0.5

1

1.5

2

2.5

3

3.5

4

-3 -2.5 -2 -1.5 -1 -0.5 0

Median size Md (φ)

So
rti

ng
 σ

Base sample
Top sample

Figure 8

106

91

93

118

119

105

124

138

34

98

33

165

47

49 97

166103

107
94

131
50

137

102 104

4692



-4 -3 -2 -1 0 1 2
Grain size (φ)

-100

-50

0

50

100

%
 D

iff
er

en
ce

0%50%100%

-5 -4 -3 -2 -1 0 1 2 3 4

-4 -3 -2 -1 0 1 2 3 4

-5 -4 -3 -2 -1 0 1 2 3 4

AOK131

T
o
p

AOK124

B
a
s
e

-100

-50

0

50

100

%
 D

iff
er

en
ce

-100

-50

0

50

100

%
 D

iff
er

en
ce

-100

-50

0

50

100

%
 D

iff
er

en
ce

AOK97

T
o

p

AOK98

B
a

s
e

AOK94

T
o

p

AOK93

B
a
s
e

AOK104

T
o
p

AOK105

B
a
s
e

enriched in right sample

enriched in left sample

Figure 9

Glass

LithicScoria

Crystal



AOK164 AOK166 AOK131 AOK62

AOK62 AOK94 AOK103

-4 -2 0 2 -4 -2 0 2

-2 0 2 -4 -2 0 2 -4 -2 0 2

164

166

131
62

94

103

Glass

Lithic
Scoria

Crystal

-100

-50

0

50

100

%
 D

iff
er

en
ce

-100

-50

0

50

100

%
 D

iff
er

en
ce

Grain size (φ)

Grain size (φ)

0%50%100%

-1.5

-1

-0.5

0

0.5

1

1.5

0 45 90 135 180 225 270 315 Azimuth (°)
N SE W

M
d 

(φ
)

Section Azimuth

section
Azimuth

Figure 10

A.

B.



A.

B.

C.

D.

-2.5

-2

-1.5

-1

-0.5

0

0 5 10 15

section Ia
section Ib

section Ic

Distance from rim (km)

M
d 

(φ
)

Section Ic

Section Ib

Section Ia

Figure 11

Glass

Lithic
Scoria

Crystal
AOK137 AOK46 AOK62

-4 -2 0 2 -4 -2 0 2

AOK99 AOK98 AOK104 AOK103 AOK108

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 -4 -2 0 2

AOK34 AOK42 AOK131

-4 -2 0 2 -4 -2 0 2
-100

-50

0

50

100

%
 D

iff
er

en
ce

-100

-50

0

50

100

%
 D

iff
er

en
ce

-100

-50

0

50

100

%
 D

iff
er

en
ce

Grain size (φ)

Grain size (φ)

Grain size (φ)

0%50%100%

34

42

131

137
46

62

99 98

104
103

108



1

1.5

2

2.5

3

-2 -1.5 -1 -0.5 0 0.5 1 1.5

basal unit

Kettle Cape - individual beds

AOK117 AOK116

AOK114 AOK115

So
rti

ng
 σ

Md (φ)

-2

-1.5

-1

-0.5

10 15

Idak plateauM
d 

(φ
)

Distance from rim (km)

A. B.

upper unit

Kettle Cape

Basal unit

C.

D.
AOK113 AOK109 AOK111 AOK110 AOK112

-2 0 2-2 0 2-2 0 2-2 0 2 4

Glass

Lithic
Scoria

Crystal

B
a

s
a

l 
u

n
it
 -

 b
u

lk
 s

a
m

p
le

s

U
p

p
e

r 
u

n
it
 -

 b
u

lk
 s

a
m

p
le

s

Kettle Cape - upper unit, individual beds

B
a
s
e

T
o
p

-100

-50

0

50

100

%
 D

iff
er

en
ce

-100

-50

0

50

100

%
 D

iff
er

en
ce

-100

-50

0

50

100

%
 D

iff
er

en
ce

64

116112
111

109

114117
117

114

63

115

113

110

Kettle Cape - basal vs. upper unit

Figure 12

-4 -3 -2 -1 0 1 2

-3 -2 -1 0 1 2

Grain size (φ)

Grain size (φ)

Grain size (φ)

0%50%100%



0.
2 

m

massive facies stratified facies lithic-rich layer scoria accumulation

fall units

fall units

stratified
facies

massive
facies

lithic-rich
layer

370 m

5 m

South side of
Idak plateau

Figure 13

scoria accumulation:

Generalized cross-section

uphill

B.

A.

0

25

50

75

100

-8 -6 -4 -2 0 2 4 6

AOK96

AOK86

AOK100

Grain size (φ)

C
um

ul
at

ed
 w

t.%

5 
m

50 m



104 167 171

169 170 177 175

?                       ? ??

-4

-3

-2

-1

0

1

2

3

4

5 10 15 20 25
Distance from rim (km)

section IIa
(massive)

section IIb
(stratified)

16%

84%

Md

AOK104 AOK167 AOK171

AOK169 AOK170 AOK177 AOK175

-4 -3 -2 -1 0 1 2

-3 -2 -1 0 1 2

-4 -3 -2 -1 0 1 2

Section IIb (stratified facies)

-2 -1 0 1 2-3 0 1 2

Section IIa (massive facies)

Glass

Lithic
Scoria

Crystal

massive stratified2 km

A.

B.

C.

D.

104
167

171

169 170
177

175

-100

-50

0

50

100

%
 D

iff
er

en
ce

-100

-50

0

50

100

%
 D

iff
er

en
ce

Grain size (φ)

Grain size (φ)

G
ra

in
 s

iz
e 

(φ
)

Caldera

NE SW

0%50%100%

Figure 14

100 m



-3

-2

-1

0

15 20 25 30 35 40 45
Distance from rim (km)

section IIIa

section
IIIb

A.

B.

AOK143 AOK146 AOK151 AOK149 AOK153

AOK142 AOK189

-4 -2 0 2

-2 0 2-4

-2 0 2 -2 0 2 -2 0 2

Glass

Lithic
Scoria

Crystal

Section IIIa

Section IIIb

P
ro

x
ii
m

a
l

D
is

ta
l

P
ro

x
ii
m

a
l

D
is

ta
l

143 146

151
149

153

142

189

-100

-50

0

50

100

%
 D

iff
er

en
ce

-100

-50

0

50

100

%
 D

iff
er

en
ce

Grain size (φ)

Grain size (φ)

G
ra

in
 s

iz
e 

(φ
)

84 wt.%

16 wt.%

50 wt.%

0%50%100%

Figure 15



5

10

15

20

25

-4 -3 -2 -1 0 1 2 3 4 5 6 7
0

w
t.%

Grain size (φ)

144
145
147

150
154

Se
ct

io
n

III
c

Se
ct

io
n

III
d

2.0
2.3
6.4

21
349
155

0.1
8.8

30
181

sample distance from 
coast (km)

elevation
(m)

Finer grain size
away from the coast

Bimodality close
to the coast

Figure 16



-3

-2

-1

0

1

2

15 20 25 30 35 40 45
Distance from rim (km)

section IIIc

section IIId

AOK144 AOK145 AOK147

AOK154AOK150

-3 -2 -1 0 1 2

-2 -1 0 1 2

-3 -2 -1 0 1 2

Glass

Lithic
Scoria

Crystal

144
145

147

150

154

A.

B.

-100

-50

0

50

100

%
 D

iff
er

en
ce

-100

-50

0

50

100

%
 D

iff
er

en
ce

Grain size (φ)

Grain size (φ)

G
ra

in
 s

iz
e 

(φ
)

84 wt.%

16 wt.%

50 wt.%

0%50%100%

section IIIc

section IIId

Figure 17



10
 c

m stratified deposit
(lower unit)

tsunami deposit
(flood in)

tsunami deposit
(backwash)

fall depositswell sorted scoria
and pumice layers

moderately to well
sorted scoria

moderately to well
sorted sand

moderately sorted
sand

soil

soil
Scoria

Lithic

Crystal

Glass
Not analyzed

AOK187

0

5

10

15

20

25

AOK188

0

4

8

12

16

AOK189

0

5

10

15

20

-4 -3 -2 -1 0 1 2 3 4

-2 -1 0 1 2 3 4

-3 -2 -1 0 1 2 3 4 5 6 7

5 6 7

Grain size (φ)

Grain size (φ)

Grain size (φ)

w
t.%

w
t.%

w
t.%

Figure 18



100 m

I.

II.

III.

2 km

Dilute cloud

Lift-off

Distance from calderaNE SW

Dense current

Figure 19



AOK70 AOK142

GlassLithic
Scoria Crystal

-30

-20

-10

0

10

20

30

-2 -1 0 1 2

0

20

40

60

80

100

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

AOK70
(Umnak)

AOK142
(Unalaska)

A.

B.

Grain size (φ)

C
um

ul
at

iv
e 

w
t.%

U
n

a
la

s
k
a

U
m

n
a

k

Grain size (φ)

%
 D

iff
er

en
ce

Figure 20

0%50%100%



2.5

75

50

25

7.5
5

4 6 8 10 12 14 16

-5

-4

-3

-2

-1

0

1

2

3

4

1

10 -0.5

10 0.5

G
ra

in
 s

iz
e 

(φ
)

Urms (m s-1)

14
314

6

15
1 

/ 1
4915

3

5 95 wt.%845016 δi

ΣT

Figure 21



0

2

4

6

8

10

12

14

16

5 10 15 20 25 30 35 40 45

Distance from rim (km)

U
rm

s (
m

 s
-1

)

section IIIa

Idak plateau

section IIId

section IIIc

section IIIb

64

69

70

169

145
144

175

177

170

150

189

142

147

149
151

146

143

154

153

Figure 22

section IIb



20
0 

m

2 km

Dense current 120 m
Massive unit

Dilute current 250 m

?

Strat. basal unit

Tsunami
deposit

55 m/s, 250 m

Tsunami
30 m/s, <15 m

Blocking
dense part

40 m/s, 150 m

60 m/s

Scoria rafts

Strat. upper unit

Strat.
basal unit

40 m/s, >300 m

25 m/s

?

Decoupling at
sea entrance

Umnak UnalaskaUmnak Pass

C.

B.

A.

W E

W E

W E

Figure 23


	PHYSICAL VOLCANOLOGY OF THE 2050 BP CALDERA-FORMING ERUPTION OF OKMOK VOLCANO, ALASKA
	ABSTRACT
	INTRODUCTION
	METHODS AND THEORY
	STRATIGRAPHY OF THE OKMOK II ERUPTION
	Fall deposits
	Pyroclastic current deposits
	Massive facies of the pyroclastic current deposits
	Stratified facies of the pyroclastic current deposits

	Relationship between massive and stratified facies
	Southwestern Ridges
	Unalaska Island


	DISCUSSION
	Eruption dynamics
	Interactions of the density current with topography
	Travel of the density current over water
	Estimates of dynamic parameters from density current deposit data
	Dynamics of distal decoupling


	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
	FIGURE CAPTIONS

