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Mass Proportion of Microaggregates and Bulk Density in a Brazilian 

Clayey Oxisol 

 

ABSTRACT  

The physical properties of Brazilian Oxisols are closely related to the development of 

their microstructure, which typically consists of stable microaggregates smaller than 1 

mm. There is no model available to predict changes in microstructure in Oxisols. The 

objective of this work was to relate the proportion of microaggregates to the bulk density 

(Db) in the soil studied. Five sites of a typic Haplustox under native vegetation (two sites) 

and pasture (three sites) were sampled. Soil bulk density, sand, silt, and clay content and 

aggregate size distribution were measured from the surface to 1.6 m deep in increments 

of 0.1 m. Thin sections were prepared from undisturbed samples collected in duplicate 

from 0-0.1 m, 0.3-0.4 m, 0.8-0.9 m and 1.5-1.6 m depth, and backscattered electron 

scanning images (BESI) were generated. Clay content ranged from 672 to 798 g kg
-1

 and 

bulk density between 0.87 and 1.18 g cm
-3

 among the 80 samples studied. Db was poorly 

correlated with clay content (R² = 0.358) and at any depth was not significantly smaller 

under native vegetation than under pasture. Visual assessment of BESI revealed that soil 

material corresponded to either microaggregates (< 0.1 mm) in loose arrangement or to 

much larger aggregates. Quantification of BESI from the deepest sampling depth of all 

soils showed that 96.2 and 95.7 % of microaggregates were < 0.8 mm with 73.2 and 95.7 

% between 0.1 and 0.5 mm under native vegetation and pasture, respectively. The mass 

proportion of microaggregates can be estimated using the < 0.84 mm soil material that is 

obtained by dry sieving (<0.84). Finally, our results showed that <0.84 varied with Db. 

Linear regression coefficients were calculated for the relationship between <0.84 and the 

reciprocal of bulk density (1/ Db) (<0.84 = 1.97 (1/ Db) – 1.52, R² = 0.82), assuming no 

interaction between microaggregates and macroaggregates, the porosity of these two 

structural types was estimated as 0.71 and 0.51, respectively.  

 

 

 



INTRODUCTION 

Due to the lack or minimal development of macrostructure, the physical properties of 

most Oxisols in Brazil are closely related to their microstructure, which usually consists 

of very stable microaggregates 0.08 to 0.20 mm in size (e.g. Lima and Anderson, 1997; 

Furian et al., 1999; Neufeldt et al., 1999). Therefore and despite the small development of 

macrostructure, the bulk density (Db) under native vegetation is usually lower than in 

many other Brazilian soils (Camargo et al., 1988; Brossard et al., 1997). Values of Db < 1 

g cm
-3

 are common in Oxisols with a strong microstructure (Bernoux et al., 1998; 

Neufeldt et al., 1999). When land is cleared for pasture or more intensive agricultural 

usage, the structure is usually altered and results in an increase in Db (Stone and Da 

Silveira, 1978; Curmi et al., 1992; Tavares-Filho and Tessier, 1998; Kondo and Dias 

Junior, 1999). When the soil is cultivated, macropores that resulted from biological 

activity under native vegetation are the first to disappear, particularly in the topsoil 

(Borges et al., 1999). Tavares Filho (1995) studied tilled clayey Oxisols developed on 

basalts in southern Brazil and showed that macroaggregates development both in topsoil 

and subsoil was increased by management practices. This was also observed by Balbino 

et al. (2001 and 2004) as well as a decrease in microaggregates development in Brazilian 

clayey Oxisols on clearing for pasture. This was interpreted as resulting from a change in 

the faunal activity in the soil. Neufeldt (2001) showed that under a low productivity 

pasture, Db was 1.2 g cm
-3

 at 0–0.1 m depth, compared with < 1.1 g cm
-3

 at the same 

depth under native vegetation. On the other hand, Lilienfein et al. (1999) compared Db of 

Savana Oxisols in Brazil and did not record any significant difference at 0–0.1 m depth 

between the soil under native vegetation and under degraded pasture. Finally, Desjardins 

et al. (2004) studied the effect of forest conversion to pasture on soil carbon content in 

Brazilian Amazonia. They did not record any variation of Db after 15 years of pasture in a 

clayey Oxisol, but an increase of about 0.2 g cm
-3

 in a sandy clayey Oxisol.  

 

Numerous studies in the literature have related Db to some combination of sand, silt, 

clay, organic matter content, water retention at -1500 kPa, including sometimes depth and 

CaCO3 content (Alexander, 1980; Rawls, 1983; Manrique and Jones, 1991; Prevost, 

2004). Bernoux et al. (1998) studied 62 Brazilian Oxisols and also found that Db was 



closely related to clay and organic carbon content (R
2

 = 0.71). Finally, Calhoun et al. 

(2001) developed pedotransfer functions for Db using a data set of 987 horizons from 

Ohio soils. They showed that using a combination of continuous variables (laboratory 

data) and nominal variables (site/state factor and morphological class description) 

significantly improves prediction of Db. This improvement can be explained by the 

residual variation of Db within classes combining particle size distribution (sand, silt and 

clay content) and organic carbon content, particularly in topsoils because of variation 

related to soil use and its consequences on soil structure development (Neves et al., 

2003). According to Calhoun et al. (2001), when soils developed in the same parent 

material and exhibit similar texture, Db is mainly related to the development of the 

structure. The objective of this study was to relate the mass proportion of 

microaggregates to Db for the soil studied. 

 

MATERIALS AND METHODS  

Site Characteristics  

The study site is located in the Brazilian Savannah biome (Cerrado) on a farm (Fazenda 

Rio de Janeiro), 15 km north of Planaltina de Goiás (15°14’S, 47°42’W) in the state of 

Goiás. The native vegetation is a xeromorph forest (Cerradão) with most trees less than 

20 m high. Most of the area was cleared in the last 20 years. The elevation at the site 

ranges from 780 to 810 m. The mean annual temperature is 22°C and the mean annual 

rainfall is 1100 mm with less than 100 mm over the period from May to September.  

The soils are Typic Haplustox in the U.S. Soil Taxonomy (Soil Survey Staff, 1996) or 

Latossolo Vermelho according to the Brazilian classification (Embrapa, 1999). They 

developed in deeply weathered Meso-neoproterozoic metasedimentary rocks (Paranoá 

Group), which are conglomerates topped by quartzite and metasiltite (Freitas-Silva and 

Campos, 1998). Balbino et al. (2002a) studied Oxisols in the same area and found that the 

soils show little or no distinct horizonation. They also found that the macrostructure is 

weak to moderate and they have typically a strong microstructure with near spherical 

microaggregates from 0.05 to 0.50 mm in size. Balbino et al. (2002a) also found that the 

clay content ranges from 700 to 800 g kg
-1

, the bulk density from 0.8 to 1.2 g cm
-3

. They 



showed that the organic carbon content is < 30 g kg
-1

 in the surface horizons under native 

vegetation.  

Two soils under native vegetation (NV1 and NV2) were selected at two locations along a 

700 m long slope with a 5% gradient. The soils NV1 and NV2 were located 

approximately upslope and in the middle of the slope, respectively. Three soils under a 

pasture of Brachiaria brizantha cv. Marandú (BRA–000591, CIAT 6294) were selected: 

a 13 year-old pasture (PA1), a 10 year-old pasture (PA2) and a 2 year-old pasture (PA3). 

The soil PA2 on one hand and PA1 and PA3 on the other hand were at similar location 

along the slope than the soils NV1 and NV2, respectively. The five soils were located 

within a quadrilateral area of about 1 km
2
.  

 

Soil sampling and methods  

We sampled five pits in April 2002. A single sample was collected every 0.1 m from 

the surface down to 1.6 m depth, air-dried and passed through a 2 mm sieve prior to 

organic carbon and particle size distribution analysis. Organic carbon contents are not 

discussed in this article. For the samples collected from 0 to 0.4 m depth, organic matter 

was removed with H2O2 prior to dispersion. The soil was dispersed by adding 10 g of < 2 

mm soil to 100 ml of water with 10 ml of NaOH (40 g L
-1

) and 10 ml of Na 

hexametaphosphate solution (50 g of hexametaphosphate with 7 g of Na2CO3 in 1 L of 

deionised water) (Camargo et al., 1986; Balbino et al., 2001). After resting 10 hours, the 

suspension was mechanically agitated overnight. Fractions smaller than 0.002 mm and 

from 0.002 to 0.02 mm were obtained by the pipette method. The sand fraction (> 0.05 

mm) was separated by sieving. The 0.02–0.05 mm fraction was estimated as the 

difference between the sum of the different measured fractions expressed as g kg
-1

.  

Undisturbed samples were collected in duplicate using Kubiena boxes, at 0–0.1, 0.3–

0.4, 0.8–0.9 and 1.5–1.6 m in each soil for thin section preparation. The undisturbed 

samples were impregnated under a suction of 5 kPa, with a polyester resin that was 

diluted with styrene monomer and left 4 weeks to ensure complete polymerisation. One 

thin section 45 mm × 60 mm was made with every impregnated sample following the 

method of FitzPatrick (1984). They were polished with diamond grains of decreasing size 

and coated with carbon (Bruand et al., 1996). Thin sections were examined in scanning 



electron microscopy (SEM, Cambridge 90B) using the emission of backscattered 

electrons. The size distribution of microaggregates was determined using backscattered 

electron scanning images (BESI) taken at a magnification of 20x of samples collected at 

1.5–1.6 m depth in NV2 and PA2. A total of ten BESI were used and between 180 and 

230 individual microaggregates were delineated manually on every BESI. The surface 

area of microaggregates was determined using Visilog image analysis software (NOESIS, 

Velizy, France). Equivalent diameters were computed by assuming circular 

microaggregates. The results are presented as a distribution of the surface area occupied 

by microaggregates according to their equivalent diameter on BESI with associated 

standard deviation.  

 

Cylindrical soil cores 1300 cm
3
 in volume were collected in triplicate from the 0–0.1, 

0.1–0.2 and 0.2–0.3 m layers. Between 0.3 and 1.6 m depth, they were collected in 

duplicate every 0.1 m. The water content ranged from 0.18 to 0.26 g g
-1

 in the soils 

studied. The bulk density (Db) was measured by weighing the soil within the 1300 cm
3

 

cylindrical soil cores after oven-drying at 105 °C for 60 hours. Then, the soil contained in 

every cylindrical soil core was sieved by dry sieving using a 0.84 mm meshed sieve, the 

smallest meshed sieve being able to separate the microaggregates. Because of great soil 

friability, the soil was sieved without any hand breaking prior sieving. Mechanical 

agitation with an horizontal movement was applied to the column of 5 sieves during 30 

seconds (PRODUTEST, Brazil). For each depth, results are presented as the mean values 

of mass (g kg
-1

) and its range. The SAS ANOVA procedure was used to find significant 

differences between Db at the 95 % confidence level using a simple t test (SAS Institute, 

1990).  

 

RESULTS AND DISCUSSION  

 

Visual assessment of BESI at low magnification showed areas with microaggregates 

in loose arrangement (Fig. 1a, c, d) and others where the aggregates were between 10 and 

45 mm in size and included many multiconcave voids (Fig. 1b, c, d). Areas with 

aggregates 10 to 45 mm in size were numerous at the 0-0.4 m depth under native 



vegetation and pasture. Areas with microaggregates in loose arrangement were dominant 

in all horizons deeper than 0.5 m, except in PA1 where they started to be prominent after 

0.9 m. In the first 0.1 m of PA1, the whole soil material corresponded to aggregates 10 to 

45 mm in size in close arrangement.  

 

Measurements on BESI from the deepest samples of soils NV2 and PA2 (1.5-1.6 m) 

revealed that 96.2 and 95.7 % of microaggregates were smaller than 0.8 mm, and 73.2 

and 95.7 % were between 0.1 and 0.5 mm, respectively (Fig. 2). Thus, microaggregates 

were partly bigger than those described in other Brazilian Oxisols (e.g. Lima and 

Anderson, 1997; Furian et al., 1999; Neufeldt et al., 1999) and the sieved material < 0.84 

mm can be used to estimate microaggregates proportion in the soil.  

 

If we assume that before land clearing similar topographic locations have similar 

values of Db at any depth, then NV1 can be compared with PA2, and NV2 with PA1 and 

PA3. There was no significant difference of Db (P = 0.95) at any depth between NV1 and 

PA2 (Fig. 3a). Our results also showed a significant difference of Db between NV2 and 

PA3 (P = 0.95) at 0.1 m depth and then no significant difference deeper in the soil. The 

small Db recorded at 0.1 m depth in NV2 would be related to presence of numerous 

biological channels as earlier recorded by Balbino et al. (2004) under native vegetation. 

Values of Db were significantly greater at PA1 than at NV2 (P = 0.95) at all depths from 

the surface to 1.3 m depth, and similar between 1.3 and 1.6 m depth. The lack of vertical 

variation in PA3 might be related to the youthfulness of the pasture (2 year-old pasture) 

compared to PA1 (13 year-old pasture). In this study, however, Db was not systematically 

smaller under native vegetation than under pasture as suggested in earlier studies.  

 

Db was poorly correlated with clay content (R
2
 = 0.36) and the texture was uniform 

across sites and with depth (Fig. 3c, d, e). The increase in Db shown in PA1 was related to 

the increase in macroaggregates development recorded by Tavares Filho (1995) in 

Oxisols of Southern Brazil. The greater Db values in PA1 are related to a decrease in the 

proportion of material < 0.84 mm (<0.84) (Fig. 3b). Balbino et al. (2002b) discussed an 



increase in Db in Oxisols of the same area as a decrease in microaggregates development 

when clearing the native vegetation for pasture.  

 

Assuming no interaction between microaggregates and macroaggregates, the structure 

can be described as a combination of areas with microaggregates and those with 

macroaggregates at any depth. The volume of voids in the soil (Vv, in cm
3

 per g of soil 

oven-dried at 105°C) can be written as follows:  

Vv = <0.84 Vv,magg + >0.84 Vv,Magg,        (1) 

where Vv,magg and Vv,Magg, are volume of voids of areas with microagregates and 

macroaggregates, respectively, and <0.84 and >0.84, are mass proportion of 

microaggregates and macroaggregates, respectively with:  

<0.84 + >0.84 = 1.          (2) 

Combining equations (1) and (2), we obtain:  

Vv = <0.84 Vv,magg + (1 – <0.84) Vv,Magg, 

and thus: 

Vv = <0.84 (Vv,magg – Vv,Magg) + Vv,Magg, 
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Bulk density (Db) is related to Vv as follows:  
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Where Vs is specific volume of the solid phase in cm
3

 of solid per g of soil. Combining 

equations (3) and (4), we obtain:  
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According to figure 2, <0.84 and >0.84 can be estimated using the proportion of soil 

material respectively smaller and greater than 0.84 mm.  

Figure 4 shows that (1/Db) increased linearly with <0.84 and the regression equation was:   
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Then, according to equations (5) and (6), we obtain:  
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Assuming Vs = 0.38 cm
3

 g
-1

, reciprocal of the average particle density 2.65 g cm
-3 

that was 

determined by Balbino et al. (2002b) on similar soils, we obtain:  

Vv,Magg 
= 0.40 cm

3
 g

-1 
 

Vv,magg
 
= 0.90 cm

3
 g

-1
.  

The porosity of microaggregates arrangement (Pmagg) and macroaggregates arrangement 

(PMagg) can be computed using Vv,magg and Vv,Magg, respectively with:  

 smaggv,

maggv,

magg

VV

V
P


         (7) 

and  

 sMaggv,

Maggv,

Magg

VV

V
P


 .        (8) 

Thus, we obtain: 

Pmagg = 0.71  

PMagg = 0.51. 

The porosity resulting from the arrangement of microaggregates was 39% greater than for 

the macroaggregates. 

 

 

 

 

 



CONCLUSIONS 

 

 Our results showed that between 0 and 1.6 m depth in the Brazilian clayey Oxisols 

studied, the mass proportion of soil material < 0.84 mm was closely related to Db. 

Assuming that soil material < 0.84 mm corresponded to microaggregates throughout the 

soils studied, we also showed that the porosity resulting from the arrangement of 

microaggregates was much greater than for the aggregates > 0.84 mm. Finally, our results 

showed that Db at a given depth was not systematically greater under pasture than under 

native vegetation. As regards the latter point, the relationship recorded that uses Db as 

easily accessible soil characteristic should enable a more accurate analysis of structural 

changes according to land use. 
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Figure captions 

 

Fig. 1. Examples of Backscattered Electron Scanning Images (BESI) illustrating soil 

structural features of soils sampled from native vegetation (NV2) and pasture (PA2, PA3) 

sites: a) microaggregates at 1.5-1.6 m (NV2), b) macroaggregates with multiconcave 

voids at 0.3-0.4 m (PA2), and macroaggregates associated with microaggregates at c) 1.5-

1.6 m (NV2), and d) 0.3-0.4 m (PA3). Black areas are voids, light gray areas are quartz or 

oxide grains, and darker gray areas correspond to porous clay. Scale bar: 2mm. 

 

Fig. 2. Microaggregate size distribution measured on Backscattered Electron Scanning 

Images (BESI) of soil sampled at 1.5-1.6 m depth from soil a) under native vegetation 

(NV2), and b) under pasture (PA2). Bars represent standard deviations. 

 

Fig. 3. Soil properties as a function of depth: a) bulk density, b) proportion of mass 

fraction < 0.84 mm, and fraction of c) clay, d) silt, and e) sand content. Bars represent the 

largest and the smallest values. 

 

Fig. 4. The inverse of bulk density (1/Db) as a function of the mass proportion of soil 

material < 0.84 mm (<0.84) for all the soils. The solid line is the linear regression of 

<0.84 against (1/Db). 
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