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Abstract

We study a one dimensional model of gravitational instability in a matter dominated
universe. Careful scaling in both space and time results in an N -body problem gov-
erned by an autonomous set of coupled equations for the evolution of the system in
phase space. Using dynamical simulation, we demonstrate that the system exhibits
hierarchical structure formation. In common with galaxy observations, careful anal-
ysis suggests that, as time evolves, the distribution of particle positions develops
bifractal geometry.
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1 Introduction

In the last few decades dynamical N body simulation of cold dark matter
(CDM) has experienced rapid advances due to improvements in both algo-
rithms and technology.[2, 4] It is now possible to carry out gravitational N
body simulations with upwards of 107 point mass particles. However, in order
to employ simulation methods for systems evolving over cosmological time
it is necessary to compromise the representation of the gravitational interac-
tion over both long and short length scales. For example, tree methods are
frequently employed for large separations, and it is typical to compute the
gravitational field from a grid and introduce a short range cut-off to control
the short-range singularity in the Newtonian pair potential. [2, 4] Unfortu-
nately, even if the simulations were perfect, a system of even 109 particles
provides only 103 particles per dimension and would thus be insufficient to
investigate the fractal geometry with confidence.

As a logical consequence of these difficulties it was natural that physicists
would look to lower dimensional models for insight. Although this sacrifices
the correct dynamics, it provides an arena where accurate computations with
large numbers of particles can be carried out for significant cosmological time.
It is hoped that insights gained from making this trade off are beneficial. In one
dimension, Newtonian gravity corresponds to a system of infinitesimally thin,
parallel, mass sheets of infinite spatial extent. Since there is no curvature in a
1+1 dimensional gravitational system, we cannot expect to obtain equations of
motion from general relativity. Then a question arises concerning the inclusion
of the Hubble flow into the dynamical formulation. This has been addressed in
two ways. In the earliest studies, carried out by Rouet et. al., the scale function
was directly inserted into the one dimensional dynamics.[16, 17] Alternatively,
starting with the usual three dimensional equations of motion and embedding
a stratified mass distribution, Fanelli and Aurell obtained a similar set of
coupled differential equations for the evolution of the system in phase space.[6]
However, it was necessary to adjust the background contribution to account
for the difference in dimension. While the approaches are different, from the
standpoint of mathematics the two models are very similar and differ only in
the values of a single fixed parameter. Following Fanelli, we refer to the former
as the RF model and the latter as the Quintic, or Q, model.

By introducing scaling in both position and time, in each model autonomous
equations of motion are obtained in the comoving frame. In addition to the
contribution from the gravitational field, in each model there is now a back-
ground term corresponding to a constant negative mass distribution, and
a linear friction term. By eliminating the friction term a Hamiltonian ver-
sion can also be constructed. At least three other one dimensional models
have also been investigated, one consisting of Newtonian mass sheets which
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stick together whenever they cross,[10] one evolved by directly integrating the
Zeldovich equations,[18, 19] and the continuous system satisfying Burger’s
equation[8]. In addition, fractal behavior has been studied in the autonomous
one dimensional system where there is no background Hubble flow.[11, 12]

In dynamical simulations, both the RF and Quintic model clearly manifest
the development of hierarchical clustering in both configuration and µ space
(the projection of the phase space on the position-velocity plane). In common
with the observation of galaxy positions, as time evolves both dense clusters
and relatively empty regions (voids) develop. In their seminal work, by com-
puting the box counting dimension for the RF model, Rouet et. al. were able
to directly demonstrate the formation of fractal structure.[16, 17] They found
a value of about 0.6 for the box counting dimension of the well evolved mass
points in the configuration space, indicating the formation of a robust frac-
tal geometry. In a later work, Miller and Rouet investigated the generalized
dimension of the RF model.[5] In common with the analysis of galaxy obser-
vations by Balian and Schaeffer [3] they found evidence for bifractal geometry.
Although they did not compute actual dimensions, Fanelli et. al. also found a
suggestion of bifractal behavior in the model without friction.[1] It is then not
surprising that the autonomous, isolated, gravitational system that does not
incorporate the Hubble flow also manifests fractal behavior for short times as
long as the virial ratio realized in the initial conditions is very small.[11, 12]
In addition, in the one dimensional model of turbulence governed by Burger’s
equation, the formation of shocks has the appearance of density singularities
that are similar to the clusters found in the RF and Quintic model. A type of
bi-fractal geometry has also been demonstrated for this system.[8]

Below we present the results of our recent investigation of multi-fractal prop-
erties of the Quintic model. In section two we will first describe the system.
Then we will outline a derivation of the equations of motion and explain how
they differ from the other models mentioned above. In section three we will
explain how the simulations were carried out and describe their qualitative
features. In section four we define the generalized dimension and other fractal
measures, present our approach for computing them, and present the results
of the multi-fractal analysis. Finally conclusions will be presented in section
five.

2 Description of the System

We are interested in the development of density fluctuations following the
time of recombination. For that, and later, epochs, the Hubble expansion has
slowed sufficiently that Newtonian dynamics provides an adequate represen-
tation of the motion in a finite region. Then, in a 3 + 1 dimensional universe,
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the Newtonian equations governing a mass point are simply

dr

dt
= v,

dv

dt
= Eg(r,t) (1)

where Eg(r,t) is the gravitational field. We wish to follow the motion in a
frame of reference where the average density remains constant, i.e. the co-
moving frame. We also want to scale the time in order to eliminate explicit time
dependence in the evolution equations. We introduce functions A(t) and B(t);

A(t) =
(

t
to

)
2

3 , B(t) = t
to

, and transform space and time according to r =

A(t)x, dt = B(t)dτ . The choice of A(t) gives the expansion factor for a matter
dominated universe [15] with density ρb(t) = (6πGt2)

−1
. In the above to is

some arbitrary initial time corresponding, say, to the epoch of recombination,
G is the universal gravitational constant, and ρb(t) is the average, uniform,
density frequently referred to as the background density. Since the average
Hubble flow is uniform, we note that ρb(to) = A(t)3ρb(t) and, as a result of
the inverse square law for the gravitational field, Eg(r,t = A2Eg(x,t) where
the functional dependence is preserved. Consideration of the above reduces
the equations of motion to

d2x

dτ 2
+

1

3t0

dx

dτ
−

2

9t20
x = Eg(x) (2)

which now includes both a linear friction (second term) and a negative back-
ground density (third term).

For the special case of a stratified mass distribution, from symmetry the grav-
itational field only has a component in the x direction. Moreover, the gravita-
tional field at particle i is proportional to the difference between the mass/area
on its right, i.e. due to sheets with xj > xi, and its left. The correct form of
the gravitational field occurring on the right hand side of equation 2 at the
location of particle i is then

Eg(xi) = 2πm(t0)G[NR,i − NL,i] (3)

where NR,i (NL,i) is the number of particles (sheets) to its right (left), and we
have noted that mj(t) = m(t0)/A

2. Let us assume that we have 2N particles
(sheets) confined within a slab with width 2L, i.e. −L < x < L. Then ρb(to) =

(6πGt2o)
−1

=
(

N
L

)

m(to) and the equation of motion for a particle in the system
can be written

d2xi

dτ 2
+

1

3t0

dxi

dτ
−

2

3t20
xi=

2

3t20

(

L

N

)

[NR,i − NL,i]. (4)
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In obtaining the above we have adjusted the background term (third term on
the left) so that it is equal to the field in the case of a uniform Hubble flow.
This is necessary because of the change in dimension from 3+1 to 1+1. This
is the Quintic model.

It is convenient to refer to Jean’s theory for the final choice of units of time
and length:

Tj = ω−1

j = (4πGρb(to))
−1/2 =

√

3

2
to, λj = σv/ωj =

√

3

2
σvto, (5)

where σ2
v is the variance of the velocity of the particles at the initial time.

Then, with the further requirement that L = nλj , 0 < n < N, and by
measuring time and length in terms of these units, our equations become

d2xi

dτ 2
+

1
√

6

dxi

dτ
− xi=

(

n

N

)

[NR,i − NL,i]. (6)

The description is completed by assuming that the system satisfies periodic
boundary conditions on the interval 2L.

3 Simulations

An attraction of these one-dimensional gravitational systems is their ease of
simulation. In both the autonomous and RF models it is possible to integrate
the motion of the individual particles between crossings analytically. Then the
temporal evolution of the system can be obtained by following the successive
crossings of the individual, adjacent, particle trajectories. This is true as well
for the Q model. If we let yi = xi+1 − xi, where we have ordered the particle
positions in the direction of increasing x, then we see the differential equation
for each yi is the same. By equating the general solution to zero we easily obtain
a fifth order algebraic equation in u = exp(τ/

√
6). Hence the name Quintic

model. These can be solved numerically in terms of the initial conditions by
analytically bounding the roots and employing the Newton-Raphson method.

Typical numerical simulations were carried out for a system of N = 218 parti-
cles with n = 3547 Jean’s lengths, λj. Initial conditions were chosen by equally
spacing the particles on the line and randomly choosing their velocities from
a uniform distribution within a fixed interval (waterbag). Other initial condi-
tions, such as Normally distributed velocities, as well as a Brownian motion
representation, were also investigated. The simulations were carried forward
for approximately fifteen dimensionless time units.
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Fig. 1. Density and representation in mu-space for τ = 0, 6, 10, 12 and 13 for a
system of 262143 particles. The units are such that the lenght of the system is ∼
3547 Jean’s lenght with ∼ 74 particles by Jean’s lenght.

In Fig.1 we present a visualization of a typical run. (see Fig. 1). In the left
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column we present a histogram of the particles positions at increasing time
units, while on the right we display the particle location in µ (position, veloc-
ity) space. It is clear from the panels that hierarchical clustering is occurring,
i.e. small clusters are joining together to form larger ones. The first clusters
seem to appear at roughly τ = 4 and there are many, while by τ = 10 there are
on the order of ten clusters. Qualitatively similar histories are obtained for the
RF model and the model without friction, as well as for the different bound-
ary conditions mentioned above. However, there are some subtle differences.
Simulations have also been performed where the system size is less that the
Jean’s length. The results support the stability analysis in that hierarchical
clustering is not observed.

4 Fractal Analysis

It is natural to assume that the apparently self similar structure which develops
in the phase plane as time evolves has fractal geometry, but we will see that
things aren’t so simple. In their earlier study of the RF model, Rouet and
Feix found a box counting dimension for the particle positions of about 0.6 for
an initial waterbag distribution (uniform on a rectangle in the phase plane-
see above) [17]. As far as we know, Balian and Schaeffer were the first to
suggest that the distribution of galaxy positions are consistent with a bifractal
geometry. [3] Since the structures which evolve are strongly inhomogeneous, to
gain further insight we have carried out a multi-fractal analysis [9] in both the
position coordinate and the phase plane. To accomplish this we partitioned
each space into cells of length l. At each time of observation in the simulation,
a measure µi = Ni(t)/NT was assigned to cell i, where Ni(t) is the population
of cell i at time t and NT is the total number of particles in the simulation.
The generalized dimension of order q is defined by [9]

Dq =
1

q − 1
lim
l→0

ln Cq

ln l
, Cq = Σµi. (7)

where D0 is the box counting dimension, D1, obtained by taking the limit
q → 1, is the information dimension, and D2 is the correlation dimension [9].
As q increases above 0, the Dq provides information on the geometry of cells
with higher population.

In practice, it is not possible to take the limit l → 0 with a finite sample.
Instead, one looks for a scaling relation over a substantial range of ln l with
the hope that a linear relation between ln Cq and ln l occurs, suggesting power
law dependence of Cq on l. Then, in the most favorable case, the slope of the
linear region should provide the correct power and, after dividing by q−1, the
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generalized dimension Dq. As a rule, or guide, if scaling can be found, either
from experiment or computation, over three decades of l then we typically infer
that there is good evidence of fractal structure.[13] Also of interest is τq, where
Cq ∼lτq for small l . τq and Dq are related to each other through a Legendre
transformation [14]. Here we present the results of our fractal analysis of the
particle positions on the line. It is well established by proof and example
that, for a normal, homogeneous, fractal, all of the generalized dimensions are
equal, while for an inhomogeneous fractal, e.g. the Henon attractor, Dq is a
decreasing function of its argument.[9]

As time progressed, for the initial conditions discussed above, typically two in-
dependent scaling regimes developed. The size of each scaling range depended
on both the elapsed time into the simulation and the value of q. While the
length of each scaling regime varied with both q and time, it was possible to
find good scaling over up to four decades in l!

In Fig. 2 we see a plot 1

q−1
ln Cq versus ln l for q = −3 at the time T = 13 for

the simulation the results of which are given Fig. 1. We clearly observe a single
large scaling range with a hint of some other behavior developing for ln l > 5.
Now let’s increase the value of q. In Fig.3 we again plot 1

q−1
lnCq versus ln l

but now with q = 2. We see that the large scaling range has split into two
smaller regions separated at about ln l = 2, and that the slope of the region
with larger l has decreased compared with the scaling region on its left. This
behavior commences at about q = 1 and persists until q = 10, which represents
the limit of our computations. Note that, as a rule, the scaling region with
smaller l is more robust. In Fig.4 we provide combined plots of τq versus q for
each scaling range. We observe that, for q < 0, they approximately overlap
with a fixed value of τq

∼= −0.9. On the other hand, for q > 0, τq is increasing
for each scaling range. The upper curve represents the smaller scaling range
and appears almost linear. In contrast the lower curve, corresponding to the
scaling region with larger l , seems to be composed of two linear elements and
undergos a change in slope at approximately q ∼= 1. We zoom in on this special
range of q (see Fig. 4) and observe that it is apparently composed of two linear
segments. In Fig. 5 we provide a combined plot of Dq versus q for each range.
The behavior for q < 0 is expected, since here τq is nearly constant so the
behavior is determined by the factor 1/(q − 1).Once again, for q < 0 the two
curves nearly coincide. However, for q > 0 things become more interesting.
The upper curve, corresponding to the smaller scaling region, continues to
increase until q ∼= 2 and then very gradually decreases. In contrast, the lower
curve, corresponding to the upper scaling region, has a peak at q∼=0 and then
decreases until it nearly levels off with a value of about 0.63.
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Fig. 2. ln(Cq)/(q − 1) function of
ln(l) for q = −3 at time 13. A
scaling range could be observed, for
ln(l) ∈ [−2.8; 6.2].
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Fig. 3. ln(Cq)/(q − 1) function of
ln(l) for q = 2. Two scaling ranges
could be observed, the first one for
ln(l) ∈ [−2.8; 2.1], called SC1 hereafter,
the second one for ln(l) ∈ [2.1; 6, 2],
called SC2 hereafter.
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Fig. 4. τ(q, l) = (q − 1)D(q, l) for the two scaling ranges SC1 (upper curve) and
SC2 (lower curve) as defined figure 3 for q in the range [−5, 10] by step of .1. The
encapsulated figure is a zoom of τq for SC2 for q ∈ [0, 2] showing two linear zones.

5 Discussion and Conclusions

As mentioned earlier, it is well established that, for a regular multifractal,
the generalized dimension, Dq , is a decreasing function of its argument.[9]
Therefore, for q < 0 , it would be a stretch to interpret the simulation results
as true generalized dimensions. There must be an alternative explanation for
the behavior we observe. The picture for positive q is rather different: The two
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Fig. 5. D(q, l) given by the slopes of the two scaling ranges SC1 (+) and SC2 (*)
as defined figure 3 for q in the range [−5, 10] by step of .1.

scaling regions give qualitatively different results. Although one would suspect
from the definition of the generalized dimension that the scaling region with
smaller l would give the correct result, this is hard to accept since the function
is still increasing until q = 2. On the other hand, the second scaling region
manifests a well behaved decreasing function which appears to approach a
constant value of Dq

∼= 0.63 for q . 10.

It is interesting that we have observed similar behavior with a well character-
ized, textbook, fractal that is discussed in numerous sources. As a test of our
computational approach we simulated the multiplicative binomial process.[7]
For this multifractal τq and Dq are known precisely.[7] When we carried out
the fractal analysis using the methods described above, we also found two
scaling regions. What is most striking is that the scaling region with larger
values of l yielded a τq (and therefore Dq) which agreed to within numerical
error with the theoretical prediction!

For q > 0 we seem to be seeing a similar phenomena in our simulations.
Then how do we explain the surprising and counterintuitive results for q < 0?
Since for negative q we obtain a nearly constant value for τq from each scaling
region, it seems safe to assume that a region of the data characterized by
a simple fractal behavior has the dominant influence. Moreover, since it only
involves q < 0, it represents the regions of low density, i.e. the voids. Assuming
monofractal behavior, we obtain τq = αq − f(α) where α is the strength of the
local singularity, or the pointwise dimension, and f(α) is the dimension of its
support.[14] Then the computations show that for q < 0 we must have α = 0
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and f ∼= 0.9. This suggests that the results for negative q are dominated by
regions of such low density that widely separated, ”isolated”, particles are
responsible for the spurious behavior of Dq, i.e. they are an artefact. At this
time this is simply a conjecture which needs to be investigated with further
computation.

Finally let’s consider in Fig.4 the plot of τq versus q for the larger scaling
region (lower curve) with q > 0. As we mentioned earlier, for 0 < q < 1.5 and
for 2 < q < 10 the curve appears linear with different slopes in each region.
This may be the manifestation of bifractality first discussed by Balian and
Schaeffer for galaxy positions. The first interval may represent the true fractal
structure of the under-dense regions, while the dense clusters are dominant
for the larger q values.

We have seen that one dimensional models develop hierarchical structure and
manifest robust scaling behavior over particular length and time scales. In
addition, they have an enormous computational advantage over higher dimen-
sional models. It is possible to study the evolution of large systems with on the
order of 200,000 particles per dimension and the evolution can be followed for
relatively long times without compromising the dynamics. As a consequence,
it is possible to study fractal geometry with some confidence.

In common with 3+1 dimensional cosmologies, with the inclusion of the Hub-
ble expansion and the transformation to the comoving frame, both the 1+1
dimensional Quintic and RF models reveal the formation of dense clusters and
voids. They also show evidence for bifractal geometry . This may be a con-
sequence of dynamical instability that results in the separation of the system
into regions of high and low density. An interesting observation is that the
lower bound of the length scale that supports the trivial space dimension of
unity grows with time. To the extent that similar behavior occurs in the 3+1
dimensional universe, this lends support for the standard cosmological model
on large scales.

The system studied here shows evidence of two nontrivial scaling regions. The
type of anomalous behavior of Dq and τq in the scaling region with smaller
boxes was also found in the standard multiplicative binomial model with a
similar sample size, suggesting that it is a finite size effect. This may also be
true for the region of negative q where a fractal analysis forces us to conclude
that the point-wise dimension vanishes. Computations with different initial
conditions reveal similar behavior, but this work is only in the preliminary
stages. Future work will include the analysis of fractal geometry in the µ
(position, velocity) space, the computation of dimension from the correlation
function, and the study of the properties of isolated under dense and over
dense regions.
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