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INTRODUCTION

In concentrations ranging from parts per million to weight

percent, hydrogen is always present in natural minerals or melts

in the form of a variety of species with different redox states

(H+, OH–, H2O, or H2) (Ingrin and Skogby 2000; Johnson et al.

1994; Schmidt et al. 1998; Stolper 1982). The identification of

the nature and the mobility of the different H species is a key

for understanding the Earth because H incorporation in min-

eral or melt dramatically modifies their physical properties. In

nominally anhydrous minerals (NAM), the kinetics and mecha-

nisms of H incorporation or extraction have been and still are

studied intensively. Water-derived species incorporation/extrac-

tion in NAM recently has been revealed to evolve through a

two-stage process (Kohlstedt and Mackwell 1998). The fastest

stage was demonstrated to be related to redox processes in-

volving H motion as protons and electronic defects related to

Fe3+-Fe2+ exchange (Kohlstedt and Mackwell 1998; Hercule and

Ingrin 1999). Therefore, both the H content and Fe3+/Fe2+ ratio

in NAM are strongly interdependent parameters. The slower

stage does not involve redox exchanges and seems to be asso-

ciated with intrinsic defect mobility (Kohlstedt and Mackwell

1998).

With respect to silicate melts, it is generally accepted that

H-bearing species diffuse as H2O molecules (e.g., Zhang et al.

1991; Behrens and Nowak 1997). However, at low water con-

tents (<0.8 wt%) the mobile water-derived species may be

NaH2O
+, H3O

+, or H+ (Stanton et al. 1990). Schmidt et al. (1998)

have also identified the possibility of hydrogen incorporation

as H2 molecules in Fe-free silicate melts. In natural melts, which

all contain H and Fe, redox interactions occur between H2-H2O

and Fe3+-Fe2+ (Gaillard et al. 2002). Currently, the mechanisms

and the mobilities of the species involved in these interactions

are still not known accurately.

Gaillard et al. (2002) studied the kinetics of Fe redox reac-

tions at 2 kb in H2O-rich (5–6 wt%), Fe-poor (1–3 wt% FeOtot)

melts that occur in response to variations of hydrogen fugacity

(fH2
). No redox fronts were observed. The kinetic data were

interpreted in terms of a two-step reaction mechanism that in-

volves first a virtually instantaneous diffusion of H2 in the

sample and then slower structural/chemical reorganizations,

involving slower interactions of water-derived species with Fe

in the melt. Oxidation-reduction of Fe in these low-Fe, high-

H2O rhyolitic melts is reaction-limited, in contrast to the diffu-

sion-limited process identified by Cooper et al. (1996) for the

oxidation of dry basaltic melts.

From these two studies, it is clear that the redox mecha-

nisms in silicate melts strongly depend on the presence or ab-

sence of hydrogen (as H2 and OH/H2O). In addition, another

major difference concerns the Fe concentration of the studied

melts. Both factors make direct comparisons between the two

studies difficult.
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ABSTRACT

Kinetics and reaction paths of Fe3+ reduction by H2 in high-Fe and low-H2O silicate melts have

been investigated at 800 ∞C. Time-series experiments were performed in cold-seal pressure vessels

at 50 bars of pure H2 using rapid-heating and rapid-quench strategies. Within the first minutes of the

experiments, a fast partitioning of Na occurred between the gas and the melt due to the reducing

conditions. Kinetically decoupled from the Na partitioning, the progression of a front of Fe3+ reduc-

tion within the quenched melt was observed and was identified as a diffusion-limited process. The

growth of the reduced layer is accompanied by an increase in concentration of OH-groups suggest-

ing that reduction operates through proton incorporation within the melt. As this growth rate is

slightly faster than predicted from the diffusion of molecular H2O, a different and mobile water-

derived species seems likely. One possible mechanism is the reduction of Fe3+ by the transport of

molecular H2. As this process is limited by the flux of H2, it will depend on both diffusivity and

solubility of H2 in the melt. Alternatively, migration of protons (H+) and electronic species within the

melt could control the velocity of the reduction front. The increase in concentration of the reaction-

derived OH groups produces a water over saturation followed by partial dehydration of the melt.

This dehydration leads to a change in the redox conditions within the gas that influences the Na

partitioning between gas and melt.
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In this work, reduction experiments have been performed

in a near-pure H2 atmosphere on a nearly anhydrous Fe-rich

silicate melt at low pressures to help elucidate the role of H2 on

redox mechanisms in the low-water concentration range. We

show that, in contrast to previous observations for Fe-poor and

high-H2O melts, a redox front is clearly identified. We charac-

terize the rate law for the progression of this redox front and

the associated chemical mass transfers in the melt. We demon-

strate that the process that rate-limits reduction is much slower

than rates of molecular H2 diffusion in the Fe-free system, but

is slightly faster than molecular H2O diffusion. Therefore, this

study brings evidence that different water-derived species with

different apparent mobilities may exist in silicate melts.

EXPERIMENTAL TECHNIQUES

Starting glass

Crystal-free, natural peralkaline obsidian was used as a start-

ing material (Eburru, Kenya; MacDonald and Bailey 1973).

The composition of the glass, including Fe and Fe2O3 (25% of

iron as Fe3+) and water content (0.25 wt% H2O), is provided in

Table 1. A series of 11 water content determinations, performed

by FTIR (see Analyses), on different wafers yielded

0.25 ± 0.01 wt% H2O, suggesting a homogeneous distribution

of water-derived species in the starting glass.

The strong peralkalinity of this obsidian places the glass

transition temperature at 400–500 ∞C, and allows us to per-

form low-temperature experiments under nearly dry conditions

in the melt stability field without crystallization. A dry glass of

the albite-orthoclase-quartz (AOQ) system was also used in

one experiment as an Fe-free reference (Table 1).

Materials and strategy

Cylinders of the Eburru glass were placed in tubes of pure

gold (ID = 5 mm, OD = 5.4 mm; the glass cylinder was cored

using a drill of 5 mm ID). These assemblies, with one end of

the capsule arc-welded and the other end open, were placed in

cold-seal pressure vessels at 800 ∞C under 50 bars of pure H2

for various durations (see Table 2). One additional experiment

was performed using a platinum-capsule with one end sealed

by an AOQ glass cap and the other end open to H2 (Fig. 1a).

The AOQ glass cap was formed by melting glass powder in the

platinum-capsule at 1400 ∞C and 1 bar for 6 hours. A cylinder

of Eburru glass was then placed in the same capsule in contact

with the AOQ glass. This assembly was heated to 1200 ∞C at 1

bar for 7 minutes to make an airtight contact between the two

glasses and between the samples and the capsule wall. The end

of the capsule with the AOQ glass was cut so that the AOQ

glass was directly exposed to the H2 gas in the experiment, and

thus behaved as a screen between one end of the Eburru glass

and the H2 atmosphere. The other end of the Eburru glass was

in direct contact with H2.

The vessels used in the experiments allow rapid heating and

quenching to be performed by mechanically moving the sample

rapidly while at pressure between the cool and hot parts of the

vessel. Once the experimental temperature was attained (~30

min), the samples were moved to the hot part of the vessel.

Using this strategy, each sample was heated from ambient tem-

peratures to 800 ∞C within less than 5 min. After the experi-

ment, the sample was quenched rapidly by moving it to the

cool part of the vessel. Subsequently, the samples assemblies

were cut into slices and polished for optical observation, elec-

tron microprobe analysis (EMPA), and infrared spectroscopy

(FTIR). Wet-chemical analyses and Mössbauer spectroscopy

were also performed on selected samples.

Analyses

EMPA was performed using an SX-50 Cameca electron

microprobe under the following conditions: 15 kV accelerat-

ing potential, 6 nA beam current, 10–20 mm beam size, 10 s

counting time on element peak positions and 5 s counting time

on the background. Multi-element chemical profiles were per-

formed with a 20 mm step increment across the sample.

FTIR analysis was performed on doubly polished samples

using a Nicolet 760 Magna spectrometer equipped with an in-

frared microscope. A CaF2 beamsplitter was used with a vis-

ible light source and liquid N2 cooled MCT/A detector. The

mean beam size was 80–100 mm. Total H2O content was esti-

mated from the height of the 3600 cm–1 stretching O-H band.

The extinction coefficient of the 3600 cm–1 absorption band

was calibrated against measurements using Karl-Fisher titra-

tion performed on the starting glass (Table 1). The extinction

coefficient was determined to be 40 L/g/cm.

Wet-chemical techniques were used to determine the FeO

content of selected samples. The method and its precision are

detailed in Gaillard et al. (2001). Fe2O3 contents were obtained

by subtraction of FeO from total Fe analyzed by EMPA. As

wet chemistry is a bulk technique, only the samples interpreted

as chemically homogeneous based on their uniform color were

analyzed (samples Eb/0, Eb/6). In addition, analyses using the

Mössbauer milliprobe (McCammon et al. 1991; McCammon

1994) were performed on sample no. Eb/5 with a spot size of

~300 mm to determine Fe3+/Fetot in the two regions of the sample

with different colors.

RESULTS

Optical observation

The glasses quenched from all time-series experiments

showed a sharp contrast in color, having translucent-green rims

and inner regions with the same dark color as the starting glasses

(see Fig. 2). The boundary between translucent-green and dark

TABLE 1. EMP analyses of the starting Eburru Obsidian and the AOQ glass

Sample SiO2 TiO2 Al2O3 MgO FeOtot MnO NiO CaO Na2O K2O SO3 P2O5 Total

Eburru 70.13 0.28 8.16 0.02 6.84 0.23 0.04 0.21 6.48 4.40 0.01 0.02 96.81
Eburru FeO = 5.31wt%, Fe2O3 = 1.7 wt%, H2O = 0.25 wt%
AOQ 70.10 0 12.10 0 0.02 0 0 0.03 4.40 5.10 0 0 98.75

Notes: Wet chemistry was used for FeO and Fe2O3 contents and H2O was determined by Karl Fisher titration. All data are given in wt%.
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zones moved toward the inner part of the sample as the experi-

ment duration increased. The rate of progression of this bound-

ary was characterized optically. Table 2 summarizes the 6

observations from the 6 different run durations. After a run of

2916 min (~49 h), the sample was completely translucent-green

(Eb/6). Micro-crystals were observed within the glasses after

the runs. Using optical techniques we identified feldspar crys-

tals, but these were not analyzed with the EMP.

Fe3+/Fetot

Wet chemistry results, expressed in terms of Fe3+/Fetot, are

presented in Table 2. The starting obsidian (Eb/0) has Fe3+/Fetot

= 0.23 ± 0.05, whereas sample no. Eb/6 was characterized as

an essentially Fe3+-free glass (Fe3+/Fetot = 0.01 ± 0.01). The two

micro-Mössbauer analyses were performed on sample no. Eb/

5 at the positions shown in Figure 2. The dark zone yielded

Fe3+/Fetot = 0.25 ± 0.05, similar to the starting obsidian (Eb/0),
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FIGURE 1. Sketch of the albite-orthoclase-quartz + Eburru glasses + Pt-capsule assembly used for experiments no. Eb/1. (A) Before experiments,

(B) After experiments. FTIR spectra of AOQ (note the observed H2-band) and both reduced and non-reacted zone of the Eburru glass are also

shown. See text for additional details.
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whereas no Fe3+ was measurable in the green zone (Table 2).

This observation gives credence to the argument that the dif-

ference of color between the green and dark zone indicates

a strong difference of Fe redox state. Given the strongly re-

ducing conditions of the experiment and the homogeneity

of color within the green zone, we propose that the Fe3+ con-

tent is constant in this region and nearly equal to 0 for all

runs (Table 2).

Major elements

EMP chemical profiles were performed on each experimen-

tal charge. In the run products no. Eb/1, no. Eb/2, and no. Eb/3,

no clear major-element concentration variations were observed

across the glasses. Comparisons with the starting glass revealed

that Na content decreased by about 7% for all of these run prod-

ucts (Table 2). For samples no. Eb/4 and no. Eb/5, gradients in

the concentration of Na at the samples rims were observed (Fig.

3). The maximum in Na concentration located at the gas-melt

interface was equal to the Na content of the starting glass. Sur-

prisingly, the position of this chemical gradient does not match

that of the redox boundary. Rather, it is located behind the re-

duction front. Thus, for run no. Eb/5 (Figs. 2 and 3), the re-

duction front is at 480 mm from the sample surface, whereas

the first evidence of Na motion was identified at 150–180

mm. No motion of other major elements was detected by

EMPA (Fig. 3). For sample no. Eb/6, the Na2O distribution

within the sample was homogeneous and matched that of

the starting glass.

H2O

FTIR profiles were performed for several samples (see Table

2, and Figs. 2 and 3). In all samples analyzed, we observed

water to be present mainly in the form of OH groups due to the

dominance of the 4500 cm–1 O-H band over the 5200 cm–1 H2O

band. The green zone has significantly higher water contents

than the dark zone (0.73–0.43 vs. 0.25 wt% H2O, respectively).

In the dark zone, the water content was similar to that of the

starting glass. Between the green and the dark zones, the water

content seems to decrease sharply although the spatial resolu-

tion of the FTIR analysis does not allow precise determination

of the shape of the water profile at this boundary. The H2O

content of the green zone is not homogeneous. Rather, a maxi-

mum H2O concentration is reached near the green/dark bound-

ary (0.73 wt%) and it drops to ~0.43 wt% at the sample rims.

For the longest experiment, no. Eb/6, the color and the chemi-

cal composition including H2O content are homogeneous. The

uniform H2O content of 0.42 wt% is similar to the values mea-

sured at the edges of the other samples (Table 2).

H2 mobility in melts

Experiment no. Eb/1, where the sample adjoined the AOQ

glass, was characterized by growth of reduced green layers that

are similar in width on the sides directly exposed to H2 and in

contact with the AOQ glass (Fig. 1). FTIR spectra were col-

 TABLE 2. Summary of the run conditions and descriptions of starting and run products

Experimental: 800∞C, fH2 = 50 bar
Sample name Eb/0* Eb/1 Eb/2 Eb/3 Eb/4 Eb/5 Eb/6

Run duration
(Minutes) 0 30 65 90 150 180 2916
Capsule – Pt+AOQ Au Au Au Au Au

Optical
Advancement of the 0 180 302 355 430 480 >1800
reduction front in mm

Fe3+/Fetot  (Wet chemical analyzes no. Eb/0 and Eb/6; Mössbauer analyzes no. Eb/5, see figure 2)
Green zone none n.a n.a n.a n.a 0 0
Dark zone 0.23 n.a n.a n.a n.a 0.25 none

FTIR (H2O wt%)
Green zone
External† none 0.66 n.a 0.57 0.41 0.43 0.42‡
Middle† none n.a n.a 0.69 0.67 0.42‡
Internal† none 0.75 0.74 0.73 0.71 0.73 0.42‡
Dark zone (homogeneous) 0.25 0.23 0.24 n.a 0.26 0.25 none

Notes:  n.a. = Non analyzed; None = Not visible within the sample.
* Starting glass.
† Position relative to the sample geometry (see figure 2 for the location).
‡ 6 FTIR points were measured on this sample indicating a homogeneous H2O content (±0.04 wt%).

FIGURE 2. Transmitted light photomicrograph showing the change

in color of the glass associated with reduction of Fe3+. The two large

circles indicate the location of the Mössbauer milliprobe analyses listed

in Table 2. The five small circles illustrate the location of FTIR analyses

from Table 2. Charge no. Eb/5.
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lected on the AOQ sample before and after the experiment.

The water content was about 0.01 wt% before and 0.015 wt%

H2O after the experiment (see Fig. 1). A striking peak at 4115

cm–1 was observed everywhere in the AOQ glass. This peak,

which is always observed after annealing under very high fH2

conditions (Schmidt et al. 1998), is due to molecular H2 dis-

solved in the glass. This observation establishes unambiguously

that, within a very short time, molecular H2 had permeated the

entire AOQ glass whose thickness is about 4 mm. No H2 peak

was observed for the Eburru glass in this experiment.

DISCUSSION

In these experiments, several reactions operate as suggested

by the decoupling between H2 mobility, Na migration and the

reduction rate of Fe3+. For clarity, hereafter we discuss sepa-

rately the different processes.

Constraints on the Fe3+ Æ Fe2+ rate constant

Figure 4 shows a plot of the square of the reduction front

position as a function of time. The linear relationship suggests

that the reduction of Fe3+ to Fe2+ is a diffusion-limited process.

The calculated slope gives the parabolic rate constant for Fe3+

Æ Fe2+ at 800 ∞C, KFe3+ Æ Fe2+ = 2 ¥ 10–11 m2/s. Chekhmir et al.

(1985) also observed the progression of a reduction front in

albite melt (claimed to be Mn7+ Æ Mn2+), which they postu-

lated to be controlled by diffusion and internal decomposition

of molecular H2. We calculated a parabolic rate constant from

their single experiment and we find KMn7+Æ Mn2+ = 2 ¥ 10–10

m2/s at 1000 ∞C, which seems reasonably consistent with our

lower temperature results. However, because Chekhmir et al.

(1985) did not perform systematic time-series experiments, the

comparison is tenuous. It is interesting to note that, in both

studies, the parabolic rate constant is close to but slightly higher

than the diffusion of molecular water [(~ 0.5 to 0.8 log unit

higher, DH2O calculated after Zhang et al. (1991)]. For run no.

Eb/5, the coupled incorporation of H plus the reduction of Fe3+

have progressed over 480 mm (Table 2), whereas in the same

time, migration of molecular H2O should have operated over

~220 mm. Thus, we have obtained evidence that redox interac-

tion between H2 and Fe gives rise to a transfer of water-derived

species with mobilities different from molecular H2O diffusion.

Constraints on H2 mobility from no. Eb/1

The presence of molecular H2 in the AOQ glass, and the

similarity between the widths of the reduction rim at the H2-

melt and melt-AOQ interfaces, suggest that H2 has diffused

very rapidly through the AOQ melt (run no. Eb/1). We excluded

the possibilities of H2 migration at the AOQ-Eburru boundary

because we consider the interface to be welded tightly in the

previous anneal. We estimate that if H2 had taken more than 5

min to cross the 4 mm length of the AOQ cap, we should have

been able to see asymmetry in the width of the reduction rim.

Therefore, we can calculate a minimum diffusion coefficient

for molecular H2 in the AOQ melt using the relationship x =

(D·t)1/2, where x is the diffusion length (4 mm), D the diffusion

coefficient, and t the minimum duration required for diffusion

across the cap. We estimate DH2 ≥ 10–8 m2/s at 800 ∞C. This

value is significantly higher than the diffusion coefficient pro-

posed by Chekhmir et al. (1985) for diffusion of molecular H2

in amorphous albite under essentially the same conditions.

Mechanisms of reduction: Ionic vs. molecular migrations
Macroscopically, reduction of a melt results from an increase

of the cation/oxygen ratio. This can be accomplished by a loss

of oxygen anions or by incorporation of cations (see Fig. 5 for

an illustration of all the likely scenarios). The growth of re-

duced rim is accompanied by an abrupt increase of the OH

content, which is consistent with an incorporation of protons

(increase of cation/oxygen ratio). Mechanism 1, shown in Fig-

ure 5, involves inward migration of cations as a mirror image

of the oxidation-reaction path operating under dry conditions

(Cooper et al. 1996). As no migration of divalent cations was

observed, this mechanism does not operate here.

From a microscopic point of view, there are several ways to

incorporate these protons into the Eburru melt. If molecular

hydrogen (H2) solubility in the melt is sufficiently high, proton

incorporation can be achieved by H2 dissolution at the vapor-

melt boundary together with H2 diffusion within the melt plus

H2 breakdown by reduction of Fe3+ at the reduction front, re-

sulting in the formation of two Fe2+ and two protons (see Fig.

5). In a peralkaline melt such as Eburru, Fe3+ (in tetrahedral

coordination) is charge-compensated structurally by alkalis

(Dickenson and Hess 1986). Therefore, to account for the in-
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crease of OH content accompanying reduction of Fe3+ by H2,

we write [in the notation of Hess (1980)]:

H2 + 2 NaFe3+O2 + 2 SiOSi Æ 2 NaOH + 4 (Fe2+)0.5OSi

(1)

accompanied by a structural partioning of water:

NaOH + SiOSi ´ NaOSi + HOSi. (2)

If the rate of reduction is controlled by solubilization of

molecular H2 at the vapor-melt interface, the growth of the re-

acted layer should depend linearly on time. However, as the

process shows a parabolic dependence on time, diffusion within

the melt must be rate limiting. Diffusion of molecular H2 in

AOQ is 3 to 4 orders of magnitude faster than the growth rate

of the reduction rim in Eburru. Either: (1) H2 diffusion in the

AOQ and Eburru melts are very different; (2) H2 diffusion is

rate-limiting, but additional processes delay the reduction rate

of the Eburru melt; or (3) H2 is not directly involved in the

reaction and diffusion of H2 is not rate limiting.

In the first case, no specific investigation on the composi-

tional dependence of DH2
 is available. Hence, we cannot argue

in favor of variable diffusion rates for hydrogen. However, many

studies devoted to diffusion properties of neutral molecules in

silicate melts [He, Ne, Ar, H2O… see Watson (1994)] showed

that the smaller the molecule is, the weaker is the composi-

tional dependence of the diffusion coefficient. For He whose

size is close to that of H2, DHe varies by much less than one log

unit between basalt and rhyolite (Watson 1994) whereas we

observed a difference of 3 log unit between DH2
 in AOQ and

the reaction rate in Eburru. We therefore consider that even if

DH2
 can be different in the AOQ and Eburru melts, this differ-

ence cannot explain the contrast in velocity between DH2
 in

AOQ and the reaction rate in Eburru.

For the second case (Fig. 5, mechanism 2), Crank (1975)

gave an approximate solution for the growth of the reaction

layer controlled by the dissolution rate of a reactive gas.

X = [(2DH2
·SH2

·t)/(2 CFe3+)]1/2 (3)

where D, S, and C are, respectively, the diffusion coefficient,

solubility, and concentration of the subscripted species, and X

gives the thickness of the reacted layer as a function of time, t.

This equation may provide an explanation for the difference

between the reaction rate and the diffusivity of the mobile spe-

cies. In the present case, if the ratio SH2
/2 CFe3+ <<1 but still

large enough that transport of molecular H2 dominates the re-

duction process, the growth of the reduced rim can be much

slower than diffusion of H2 while still obeying a diffusion-lim-
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FIGURE 5. Flow chart illustrating the different likely mechanisms

for Fe3+ reduction in the Eburru melt. All of these mechanisms must

satisfy a required increase of the cation/anion ratio: (1) Molecular H2 is

not soluble in the melt, therefore reduction proceeds through O

extraction, which is rate-limited by inward migrations of cations or

electronic species; this scenario is the mirror image of the oxidation

mechanisms observed by Cooper et al. (1996). (2) Adsorption, diffusion,

and reaction of molecular H2 with Fe3+ in the melt. (3) Molecular H2 is

not soluble in the melt but inward migration of protons and electronic

species may occur producing the reduction.
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ited law. The lack of an H2 signature in the infrared spectra of

the Eburru glass is consistent with this solubility criterion.

In the third case, if we consider that molecular H2 is so in-

soluble in the melt that there are insufficient H2 species avail-

able to reduce the Fe3+, other water-derived species must be

rate limiting. Thus, molecular H2 may react with Fe3+ to pro-

duce Fe2+ and OH groups at the gas-melt interface, as shown in

Equation 1. Then the redox potential is conveyed toward the

interior of the sample by coupled transport of protons and elec-

tronic species (see Fig. 5, mechanism 3). In Equation 1, H2

should then be replaced by H+ and electrons e– or electron holes

h+. Because Fe-bearing glasses and melts are polaron-type semi-

conductors (Cooper et al. 1996, and references therein), such

migration of cations in a redox gradient is charge-compensated

by electronic migration. Diopside (Hercule and Ingrin 1999)

and olivine crystals (Kohlstedt and Mackwell 1998) have been

shown to facilitate incorporation of protons coupled to out-

ward migration of electron holes caused by reduction of Fe3+.

In that case, the growth rate of the reduced rim is controlled

either by proton or electronic mobilities. According to

Schmalzried (1981), the width of the reacting layer is directly

proportional to the square root of time, t, to the diffusion coef-

ficient of the rate-limiting species i (H+ or electronic species),

and to the Gibbs free energy of the ongoing reaction normal-

ized by the temperature, T:

X = [ 2 DI·DG / (RT)·t ]1/2 (4)

In general, proton diffusion in SiO2-rich silicate melts is

not regarded as a likely mechanism (Zhang et al. 1991; Nowak

and Behrens 1997). Although Behrens and Nowak (1997) ruled

out the possibility of proton migration in Fe-free SiO2-rich melt,

incorporation of Fe may introduce electron holes (Fe3+) that

provide charge compensation for proton jumps. Also, accord-

ing to Stanton et al. (1990) (see also the review of Dingwell

1995), a mobile, positively charged H-bearing species can domi-

nate the transport of water-derived species in low-H2O melts

(<0.8 wt% H2O; Stanton et al. 1990). This mobile, water-de-

rived species could be NaH2O
+, H3O

+, or H+. We can exclude

NaH2O
+ in our experiments because the chemical profile for

Na does not extend all the way to the redox front. A mass-

balance calculation, based on the Mössbauer data (Fe3+/Fetot)

and FTIR spectra (OH) close to the reduction front, indicates

variation of Fe3+ and OH concentration that reasonably matches

with proton rather than H3O
+ incorporation (one OH band cre-

ated for the reduction of one Fe3+). Therefore, the parabolic

rate constant extracted from Figure 4 should reflect either pro-

ton or electron migration rates, depending on which is the slowest.

Na migration

The migration of Na seems to be decoupled kinetically from

the redox interaction between H2 and iron. A rapid decrease in

the Na content (of ~7%) is observed within the first 30 min of

exposure to an H2 gas. We interpret these results as the conse-

quence of the redox partitioning of Na between melt and gas

already observed under H-free conditions (see Georges et al.

2000). The fO2
 during the beginning of the runs is very reduc-

ing so that it causes a displacement toward the RHS of the

following equilibria:

Na2O
melt ´ Na2

gas + 1/2O2
gas (5)

As we did not observe any Na gradient in sample no. Eb/1,

the above equilibria should be achieved very rapidly consis-

tent with very high Na diffusion rate in peralkaline melts

(Henderson et al. 1985). Molecular O2
gas is not stable, as H2O

will be produced instead at the melt/gas interface by oxidation

of H2 by Na2O. This oxidation may effect a small, transient

change in the fO2
 of the gas near the surface of the melt. In

sample no. Eb/4 and no. Eb/5 (Fig. 3), as well as dehydration

of the melt, we observed chemical migration of Na. The re-

lease of water into the gas phase should increase the fH2O/fH2

ratio and therefore increase the fO2
 in the gas. Equation 5 is

therefore displaced to its LHS and Na migration from the gas

toward the melt occurs. Figure 3 shows that the position of

both Na migration and dehydration fronts nearly corresponds

to the calculated position of a front of molecular H2O migra-

tion [calculated after Zhang et al. (1991), see caption of Fig.

3]. Therefore, we anticipate that migration of Na from the gas

to the melt operated at a rate controlled by melt dehydration

(i.e., H2O mobility) and not by Na diffusion in the melt.

Comparison with previous work

The kinetics of Fe oxidation-reduction in anhydrous basal-

tic melts has been demonstrated to be rate-limited by diffusion

of divalent cations (Cooper et al. 1996; Cook and Cooper 2000).

In contrast, we provide clear evidence that, for low H2O melts,

molecular hydrogen or coupled proton-electronic species are

the mobile species controlling the advance of the reduction

front. The kinetics of change in Fe3+/Fe2+ is thus much faster in

H-bearing systems than in anhydrous systems (representing the

several orders of magnitude difference between Ca2+ and H2,

H+ diffusion rates). Given that H-bearing species are always

present in natural magmas, modification of the Fe redox state

is most likely to occur following the mechanisms we have iden-

tified in this study. It should be noted, however, that for high-

H2O, low-Fe melts, Gaillard et al. (2002) have not detected

any coupled proton/electronic species motion. The reason for

this discrepancy may be due to reduced electronic conductiv-

ity in Fe-poor melts and/or high concentration of water in the

melts that may affect both diffusion and solubility of H2.

CONCLUDING REMARKS AND PERSPECTIVES

The major points from this study are: (1) reduction of Fe3+

in the melt by H2 operates by the progression of a redox front

that is accompanied by an increase in the concentration of OH-

groups; (2) H2 diffusion in silicate melts is much more rapid

than the observed rate of reduction of Fe3+; (3) the velocity of

the redox front within the melt is faster than the mobility of

molecular H2O, suggesting that various hydrogen-bearing spe-

cies with different diffusivities may exist in a silicate melt; and

(4) exchange of Na between the gas and the melt occur at a very

high rate and are extremely sensitive to the redox conditions.

Understanding the response of a magma to changes in its

environment, such as during degassing or exchanges during

mixing or interaction with surrounding solids requires the
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knowledge of the identity and the mobility of all H-derived

species. In this study, we have shown that redox exchanges

between H and Fe causes incorporation of OH groups at a rate

different from H2O migration. We have also shown that the H

content and Fe3+/Fe2+ ratios in melt are strongly correlated. We

should thus question the robustness of Fe3+/Fe2+ of melts as an

indicator of pre-eruptive oxygen fugacity because these melts

may have undergone degassing (Christie et al. 1986). Further

studies, however, are clearly needed to quantify the relation-

ship between Fe redox state and H incorporation/extraction for

a range of melts compositions and experimental conditions that

permit direct comparison with natural magma processes.
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