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Abstract

The Nagoundéré Pan-African granitoids in Central North Cameroon belong to a regional-
scale massif, which is referred to as the Adamawa-Yade batholith. The granites were
emplaced into a ca. 2.1 Ga remobilised basement composed of metasedimentary and meta-
igneous rocks that later underwent medium- to high-grade Pan-African metamorphism. The
granitoids comprise three groups: the hornblende—biotite granitoids (HBGs), the
biotite + muscovite granitoids (BMGs), and the biotite granitoids (BGs). New Th-U-Pb
monazite data on the BMGs and BGs confirm their late Neoproterozoic emplacement age (ca.
615 +27 Ma for the BMGs and ca. 575 Ma for the BGs) during the time interval of the
regional tectono-metamorphic event in North Cameroon. The BMGs also show the presence
of ca. 926 Ma inheritances, suggesting an early Neoproterozoic component in their protolith.

The HBGs are characterized by high Ba—Sr, and low K,O/Na;O ratios. They show fairly
fractionated REE patterns (Lan/Yby 6-22) with no Eu anomalies. The BMGs are
characterized by higher K,O/Na,O and Rb/Sr ratios. They are more REE-fractionated
(Lan/Yby = 17-168) with strong negative Eu anomalies (Eu/Eu” = 0.2-0.5). The BGs are
characterized by high SiO, with K,O/Na,O > 1. They show moderated fractionated REE
patterns (Lan/Yby = 11-37) with strong Eu negative anomalies (Euw/Eu” = 0.2-0.8) and flat
HREE features (Gdn/Yby=1.5-2.2). In Primitive Mantle-normalized multi-element
diagrams, the patterns of all rocks show enrichment in LILE relative to HFSE and display
negative Nb—Ta and Ti anomalies. All the granitoids belong to high-K calc-alkaline suites and
have an I-type signature.

Major and trace element data of the HBGs are consistent with differentiation of a mafic
magma from an enriched subcontinental lithospheric mantle, with possible crustal
assimilation. In contrast, the high Th content, the LREE-enrichment, and the presence of
inherited monazite suggest that the BGs and BMGs were derived from melting of the middle
continental crust. Structural and petrochemical data indicate that these granitoids were
emplaced in both syn- to post-collision tectonic settings.



1. Introduction

The Central African Fold belt (CAFB) in Cameroon is dominated in its central part by
abundant late-Pan-African granitoids (Fig. 1), which extend south of the Tchollire-Banyo
shear zone up to the Bertoua region and continue eastward into the Yade massif (Central
African Republic and Chad). The granitoids belong to a complex batholith referred to here as
the Adamawa-Yade batholith. The importance of this batholith results from its location north
of the late-Neoproterozoic nappe system of southern Cameroon and its emplacement into a
remobilised Paleoproterozoic basement that is interpreted as part of an active continental
margin (Toteu et al., 2001 and Toteu et al., 2004). The importance of the Adamawa-Yade
batholith also results from its spatially close association with major transcurrent shear zones
of central Cameroon (Dumont, 1986, Neako et al., 1991 and Ngako et al., 2003). These shear
zones continue into NE Brazil, where they control the emplacement of late-Brasiliano (Pan-
African) granitoids (Neves et al., 1996, Neves et al., 2000, Guimaraes and da Silva Filho,
2000 and Guimarides et al., 2004).

Despite this importance, the Adamawa-Yadé batholith is poorly surveyed, particularly with
regard to geochemical and geochronological studies. Data exist only for a few isolated
massifs, which probably belong to another batholith in south-western Cameroon (Tagne-
Kamga et al., 1999, Tagne-Kamga, 2003, Nguiessi Tchankam et al., 1997 and Nzolang et al.,
2003). In this paper, we report petrographical, geochemical and geochronological data on the
Ngaoundéré granitoids, which permit discussion of the source and tectonic setting of the
Adamawa-Yade batholith.




Tertiary to Present voleanics

Past Pan- African cover

Syn- to post-tectonic granitoids { 300-600 Ma)
Pre- to svn-tectonic orthogneisses (G00-660 Ma)
Meso- to Neoproterozoic Linits {700-1000 Ma)

Yokadouma and Dja Group (age unknown)
Proterosoc gneiss and orthogness (2100 Ma)
A1 Neem Complex (3000 Ma)

/Ir'ﬂl'lt ﬁ'hru.ql ﬂf’/ ;;:l‘l‘:"—‘-ﬂhp

I
157

JOONUOHUE

10° 4

Fig. 2

() km 150 3 3 b ~
: ' | ._ —Ngaoundéré v

WUYUEY

Lol | LT T - Ay
i . AN

- L L A vy
A

a -
~- Yokadouma

B N o A w N A )
/z/zx‘/z/z/r/z/z #
\f:x:f:a‘z\r Ex -'\-"-‘\f:.l':.l:f:f :x:.r:..-: = "
A F"'L P e e A e AN A
AL o '}I(jl(]'\.ﬂ. d._,\’\_,\,\,\,\,\,\,\.’\’\_}\’\ 2,

W N G A N
N N A N N AN NN NN,
f f/f/,f’/ffl/’/ffl/,////‘,/~/\f‘f\\\~\\l'
KCF B A W A A I A
A R et Ny
e e P o,
!Ua \\_‘,\t\xf\./\/\.,x\\\.\xx 15

Fig. 1. Geological context (A) Geology of West-central Africa and northern Brazil in a Gondwana (pre-drift)
reconstruction (modified from Castaing et al., 1994 and Toteu et al., 2001). Dashed line boundary of Cameroon.
Thick line, boundary of the two continents: (1) Phanerozoic cover; (2) Neoproterozoic formations; (3) Regions
of Brasiliano/Pan-African deformation in which Paleoproterozoic basement is absent or only present as small
isolated blocks; (4) Regions of Brasiliano/Pan-African deformation with large amounts of reworked
Paleoproterozoic basement; (5) cratons; (6) faults. (B) Simplified geological map of Cameroon (after Toteu et
al., 2001) showing the location of the Ngaoundéré plutonic and major lithotectonic units. KCF, Kribi-Campo
fault; AF, Adamaoua fault; SF, Sanaga fault; TBF, Tcholliré-Banyo fault.




2. Regional geological setting

The Adamawa-Yade massif is dominated by a NE-SW elongated regional-scale plutonic
complex intrusive into a Paleoproterozoic basement and locally covered by Cretaceous
deposits (Mbere and Koum basins) and by Cainozoic volcanic rocks of the Cameroon line.
The hosting basement rocks, which now crop out as large septa within the batholith, comprise
2.1 Ga high-grade metasediments and orthogneisses showing an important contribution from
Archean crust (Nd isotope and inherited zircons) and were intensively reworked during the
Pan-African orogeny (Toteu et al., 2001). The Pan-African has also developed the late-
Neoproterozoic Lom schist belt (Soba et al., 1991 and Toteu et al., this volume) and numerous
dextral transcurrent shear zones underlined by low- to medium-grade mylonites.

The Adamawa-Yade batholith consists of a great variety of more or less deformed rock-types
of different ages. Except for the sub-circular post-tectonic plutons, which have been easily
mapped due to their high relief, there is a very poor cartographic distinction between the other
components of the batholith; thus detailed mapping of the batholith is necessary. The various
lithologies of the batholith include: dominant biotite and amphibole granites, biotite granites,
biotite, amphibole and pyroxene granites, biotite and muscovite granites, diorites, gabbros,
and syenites. According to the state of deformation, these rock-types have been classified as
syntectonic, late-tectonic and post-tectonic (Lasserre, 1961 and Toteu et al., 2001). The few
geochemical data that are available for the batholith are from the late to post-tectonic
granitoids of the Lom region and show a transitional composition (Soba, 1989).

Numerous Rb—Sr whole-rock and mineral ages in the range 500—600 Ma have been recorded
in the Adamawa-Yade batholith in Cameroon, Chad and Central African Republic (Bessoles
and Trompette, 1980). Preliminary U-Pb zircon ages on two granitoids of the Ngaoundéré
region yielded 622 + 25 Ma for the Moungel orthogneiss and very discordant plots with upper
intercept at 635422 Ma for the Ngaoundéré granite (cf. samples 83-27 and 83-38
respectively, Toteu et al., 2001); on the other hand, there are indications of ca. 800-1036 Ma
inherited zircons in some granitoids of the same region (Toteu et al., 2001). Nd crustal
residence ages from the northern border of the batholith at Makat are between 1.16 and
1.94 Ga with exg at 600 Ma from —0.8 to —9.2. One sample of medium-grained biotite—
muscovite granite west of Moungel yielded an age of 1.09 Ga with eng at 600 Ma of —1.5
(Toteu et al., 2001). The choice of the Ngaoundéré region for the beginning of the study of the
Adamawa-Yade batholith was justified by the presence of these preliminary isotopic data.

The host rocks of the Adamawa-Yade batholith in the Ngaoundéré region crop out north of
Ngaoundéré and comprise alternating layers of more or less migmatized hornblende—biotite-
and biotite—garnet gneisses, associated with mafic to intermediate orthogneisses and
amphibolites (Fig. 2). The dominant structural feature of these rocks is the presence of a steep
NE-SW mylonitic foliation associated with the regional-scale sinistral Tchollire-Banyo shear
zone. This shear zone is the latest stage of a polyphase D;—D, deformation associated with a
high-grade Pan-African metamorphism that overprinted Palaeoproterozoic relicts of granulitic
assemblages (Penaye et al., 1989). The region was subsequently affected by WSW—-ENE
dextral faults of the CCSZ. Granitoids of the Ngaoundéré region can be grouped into pre-
tectonic granitoids represented by the hornblende—biotite granitoids (HBG), syn- to late-
tectonic granitoids represented by the biotite + mucovite granitoids (BMG), and post-tectonic
granitoids represented by the porphyritic biotite + hornblende granitoids (BG).
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Fig. 2. Main geological units of the Ngaoundéré granitoids and surrounding areas (Koch, 1953, Guiraudie, 1955

and Lasserre, 1961) showing location of samples. Tertiary volcanic rocks: (1) trachyte and phonolite domes; (2)
basalts. Neoproterozoic granitoids: (3) biotite + hornblende porphyroid granitoids (BGs); (4) biotite + muscovite
granitoids; (5) hornblende biotite granitoids. Paleoproterozoic basement: (6) amphibole- and garnet gneisses; (7)

faults.



3. Petrography of the Ngaoundéré Pan-African granitoids

A total of 125 rock samples from the granitoids and enclaves were collected for petrographic
studies. Mineral compositions were determined using a Cameca SX-50 electron microprobe at
the CNRS-University-BRGM laboratory of Orléans (France).

3.1. Pre-tectonic granitoids (HBG)

The HBG crop out as elongated massifs in the northern part of the Ngaoundéré region (Fig.
2). They are strongly deformed and transformed into orthogneisses under amphibolite facies
conditions and underwent both D; and D, regional deformations. The first one is marked by a
gently dipping S; foliation defined by elongated amphibole, biotite and plagioclase,
sometimes associated with compositional banding marked by alternating dark and light layers.
S; is subsequently transposed by P, upright folds with nearly horizontal fold axes. The D,
deformation continues with development of NE-SW C, sinistral shear zones concordant to S
and associated with nearly horizontal plunging lineations. S, Foliation trends vary from
N55°E to N70°E and dip steeply (>70°) SE or NW. D, is accompanied by a progressive
migmatization which outlasted D, deformation. Several N110°E dextral shear zones occupied
by felsic dykes are also present.

The HBG are pinkish grey, medium-grained and contain plagioclase (Anjs_»9), orthoclase,
quartz, hornblende (Mg ratio = 0.31-0.50), and biotite (Mg ratio 0.36-0.41; TiO, 1.41-
3.37 wt%). Biotite occurs locally as a replacement of hornblende. Among the accessory
minerals, titanite may reach 5-10 vol% in the dark layers. Other accessory minerals are
magnetite, zircon, rutile and thorite. Thorite is included in rutile and magnetite. Some
euhedral thorite crystals were also observed in quartz. Secondary minerals are sericite, epidote
and chlorite.

3.2. Syn- to late-tectonic granitoids (BMG)

The BMG crop out as elongated intrusions into the HBG and the remobilised basement. They
probably represent the margin of the Leunda massif, a very large massif that crops out north
of the study area. Field evidence around Wak village shows that BMG post-dated the HBG
and were emplaced during D, and its subsequent development. This sequence is supported by
the presence of numerous enclaves of HBG progressively digested within the BMG and by
the presence of ghost structures. The emplacement of BMG began during D, (dykes along P,
axial plane) and continued later (cross-cutting relations). The later pulses only display a
magmatic layering, including schlieren and planar organization of K-feldspars. The BMG are
fine- to medium-grained with local porphyritic texture. Mineralogy consists of plagioclase
(Anj327), K-feldspar (orthoclase and microcline), quartz (or myrmekite), biotite (Mg ratio
0.32-0.51; TiO; 2.59-3.21); muscovite (Na and Ti rich) is present in some differentiated rock
types as small euhedral inclusions in feldspars or as well-shaped flakes. Accessory minerals
are represented by apatite, zircon, allanite, monazite, ilmenite, and magnetite.

3.3. Post-tectonic granitoids (BG)
The post-tectonic granitoids consist of numerous sub-circular bodies which constitute hillocks

in and around Ngaoundéré town (Fig. 2). It was not possible to observe the relationship with
HBG and BMG because of the Cainozoic basaltic cover. Two rock types are distinguished:



dominant biotite granite and hornblende—biotite monzogranite are both characterized by
equant porphyritic texture with megacrysts of K-feldspars. Microgranular mafic magmatic
enclaves are locally observed.

The mineralogy of the dominant biotite granite is quite uniform and comprises potassic
feldspar (orthoclase and microcline), plagioclase (An; j6), quartz and biotite (Mg ratio 0.19—
0.35; TiO, 1.98-3.83). The scarce accessory minerals include zircon, monazite, magnetite,
ilmenite, apatite, xenotime, and fluorite. Biotite occurs as dark brown or greenish yellowish
flakes. Most biotite has been altered to chlorite, or broken down to epidote, magnetite, titanite
and quartz. Apatite is the most common accessory mineral, occurring in various sizes from
large anhedral to small hexagonal crystals as inclusions in biotite, along with magnetite.
Similarly, prismatic to rounded zircon crystals are also present and some show oscillatory
zoning. Monazites are anhedral to euhedral and are rich in Th (62,874 ppm in average).
Xenotime occurs as small anhedral and rarely as large subhedral grains close to monazite. In
some samples (NG1 and FC1) secondary muscovite occurs as small flakes of various
dimensions. Myrmekites are observed as small spots disseminated in some plagioclases or
invading K-feldspar and plagioclase from their margins.

The hornblende—biotite monzogranite differs from the biotite granite by the abundance of
sphene and magnetite growing into hornblende (Mg ratio = 0.70-0.94). The plagioclase in the
monzogranites is oligoclase (Anjs_;3), and biotites are rich in Mg (Mg ratio 0.47-0.70; TiO,
2.57-3.43). The accessory minerals are zircon, magnetite, apatite and sphene.

The mafic enclaves exhibit a rounded shape and igneous texture, and they are usually
surrounded by a chilled margin of variable thickness. They are fine-grained and darker than
the BG hosts. These enclaves contain the same minerals as the hosting granitoid but in totally
different proportions. They are broadly composed of biotite (from 40% to 50%), altered
plagioclase, orthoclase and quartz.

4. Geochemical characterization

Samples weighing 0.5-1.5 kg were reduced and finely chipped. Sample chips were cleaned,
crushed in an agate mortar, split by quartering and finely ground. Representative samples
were analysed by ICP-AES and ICP-MS at the Centre de Recherches Pétrographiques et
Géochimiques of Nancy, France.

4.1. Classification of the granitoids

Major and trace element data for representative samples of granitoids are listed in Table 1.
We used the normative ANOR vs Q' diagram (Fig. 3) of Streckeisen and Le Maitre (1979) for
nomenclature. HBG evolve from diorite, monzodiorite, quartz monzodiorite to granodiorite
fields. BMG and BG have a syenogranitic composition. The sample BA-4, corresponding to a
porphyritic biotite hornblende monzogranitic facies of BG, plots in the quartz syenite field.
Based on the Al saturation index (4/CNK = molar Al,03/(CaO + Na,O + K,0)) of Shand
(1927), HBG are metaluminous, while BG and BMG are metaluminous to slightly
peraluminous. In the A/CNK vs SiO, diagram (Fig. 4), only the most evolved BMG sample
overlaps the S-type granite field; all the other rocks are in the I-type granite field. I-type
geochemical signature of HBG is supported by the mineralogy (predominance of hornblende,
biotite as mafic silicate minerals, and the abundance of sphene and magnetite as accessory
phases). In the AFM and (Na,O + K;0) vs SiO, diagrams (not shown) granitoids show a calc-




alkaline trend and plot mostly in the field of high-K calc-alkaline series (Pecerillo and Taylor,
1976; Fig. 5).

Table 1. : Representative analyses of Ngaoundéré granitoids. Analyses performed by ICP-AES and ICP-MS at
the  Centre de  Recherches  Pétrographiques et  Géochimiques (CRPG) of  Nancy,
France
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Fig. 3. Streckeisen and Le Maitre (1979) ANOR-Q' normative diagram. Q'= 1000/(Q + Or + Ab + An),
ANOR = 100An/(An + Or). afg, alkali feldspar granite; sg, syenogranite; mg, monzogranite; gd, granodiorite; gs,
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4.2. Geochemical features

4.2.1. Pre-tectonic granitoids

The HBG show an intermediate to slightly acid composition (SiO; = 50.1-69.4%) coupled
with high Al,O; (15.5-22.4 wt%) and P,Os (mostly > 0.30 wt %) contents, high Mg values
(Mg# =29.1-38.6) and low K,O/Na,O ratios (0.3—1.1, mostly <1). Compared to other
Ngaoundéré granitoids, the HBG have low abundance of Rb (33—-204 ppm), Th (1.5-4.9 ppm;



except the sample EWA1 with high Th concentration, 13.1 ppm) and Zr (98-289 ppm; except
the sample EWA1 with high Zr concentration, 476 ppm) and high abundance of Ba (784
2033 ppm, except the sample EWA2 with low Ba, 298 ppm), and of Sr (534-937 ppm). The
Rb/Sr ratios cluster around 0.04-0.24. Chondrite-normalized REE patterns (Fig. 6A) are
moderately fractionated (Lan/Ybn 5.9-22.2, except EWA1 with Lax/Yby = 39.8). There are
no Eu anomalies (Eu/Eu” 0.8-1.0), but one diorite (CK5) and one granodiorite (FT1b) display
a weak positive Eu anomaly (Eu/Eu” = 1.5 and 1.4). The lack of prominent Eu anomalies and
the high Sr contents exclude important fractional crystallization of feldspar in the HBG
petrogenetic evolution (except for EWAT1) or abundant feldspar in the residuum of the HBG
source. The primitive mantle-normalized incompatible element patterns (Fig. 7A) show
enrichment in LILE relative to HFSE. They are moderately fractionated with uniform
negative anomalies in Nb—Ta (Nbx/Laxy = 0.1-0.5), Ti (Tin/Gdn = 0.5-0.9). Samples CK5 and
FT1b show positive Sr anomalies, which may be due to weak plagioclase accumulation, while
EWAL, the most enriched rock (e.g., P,Os=0.94 wt%) displays a negative Sr anomaly,
probably due to plagioclase and/or apatite fractionation. The very slight Ti troughs, and lower
Y, Yb, and Nb values, result in a trace element distribution pattern that is characteristic of
calc-alkaline arc granitoids.

4.2.2. Syn- to late-tectonic granitoids

The BMG are acid (SiO; =68.9-74.5 wt%) and highly potassic (K,O =4.6-6.8% with
K,O/Na,O > 1). They are characterized by low Sr contents (125-279 ppm), moderate Ba
contents (511-968 ppm) and high abundance of Th (33.1-83.8 ppm), Rb (233-346 ppm), Zr
(163418 ppm) and REEs (3 REE =149-822 ppm). Rb/Sr ratios range from 0.8 to 2.8.
Chondrite-normalized REE patterns (Fig. 6B) show LREE enrichment with respect to HREE
(Lan/Yby = 73-168) and strong negative Eu anomalies (Eu/Eu” = 0.2-0.5). Compared to
other Ngaoundéré granitoids they are significantly depleted and fractionated in HREE
(Gdn/Ybx = 2.1-9.2). In the primitive mantle-normalized incompatible element diagram (Fig.
7B), all of the BMG samples display patterns with negative anomalies of Nb-Ta
(Nbn/Lan = 0.2-0.5), Sr (Sry/Ndy = 0.1-0.4) (except for WA10) and Ti (Tin/Gdy = 0.1-0.3).
The Eu and Sr negative anomalies can be explained by plagioclase fractionation. But, the Nb,
Ta and some Ti negative anomalies are inherited from the petrogenetic process.

4.2.3. Post-tectonic biotite granitoids

The biotite syenogranites are highly acid (SiO, = 71.5-73.9 wt%) and rich in potassium
(K20 =4.5-6.2%) with K»,O/Na,O > 1. They are characterized by low Ba (266414, except
for one sample, TVO11b with 705 ppm), low Sr (83—353 ppm), high Th (14.9-92.4 ppm, with
51.3 in average), Y (16.4-54.9 ppm), REE (3 .REE =219-556 ppm) and Rb/Sr ratios (1.9—
7.1). Chondrite-normalized REE patterns (Fig. 6C) are moderately fractionated
(Lan/Ybn = 11-37, mostly <20), and show a clear Eu negative anomalies (Euw/Eu™ = 0.2-0.5)
and a flat HREE profile (Gdx/Yby = 1.5-2.2). In the Primitive mantle-normalized plot of
incompatible trace elements, the rocks show homogenous composition with strong negative
anomalies in Ti (Tin/Gdy = 0.9-0.1), Sr (Srx/Ndy = 0.1-0.7), Nb (Nbx/Lay = 0.1-0.5) and Ba
(Fig. 7C).
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The fine-grained mesocratic enclave (NG4c) collected in the biotite syenogranites shows
higher Al,O3, MgO, Fe,Ost, TiO,, REE, Th, Y, Rb, Nb, Hf, Zr and lower SiO,, Sr, Ba values
than all of the other biotite syenogranite samples. The REE pattern is moderately fractionated
(Lan/Ybn = 5.7), with high HREE and Y contents (Gdn/Yby = 1.2 and Y= 216 ppm).

Compared to the biotite syenogranite, the porphyritic hornblende—biotite monzogranite facies
of BG (sample BA-4) shows an intermediate composition (SiO, = 65.2 wt%). This sample
displays higher Al,Os, Mg#, Ni, Cr, Sr, Ba and Th and lower Rb than the biotite syenogranite.
The chondrite-normalized REE pattern (Fig. 6C) is moderately fractionated (Lan/Ybn 22)
with a lack of negative Eu anomalies (Eu/Eu” = 0.8). The incompatible element pattern of the
hornblende—biotite monzogranite is characterized by Nb and Ti negative anomalies and the
absence of Ba and Sr anomalies (Fig. 7C).

4.3. Thermobarometry

In the ternary Q-Ab-Or normative diagram (Fig. 8A), two samples of HBG (samples with
normative quartz > 10 wt%) and all the BG and BMG felsic compositions plot near or close to
the water-undersaturated (app0=0.5) granitic minimum determined experimentally to 775 °C
at P — 2 k'““'by Holtz et al. (1992). The relatively high normative orthoclase content of
the natural granites may be explained by pronounced H,O-undersaturated conditions in the
source materials (Scaillet et al., 1990 and Nabelek et al., 1992). Although the pressure of
formation of these granites is unknown, the high orthoclase content, and therefore the
generation under water-undersaturated conditions, indicates a comparatively high temperature
for the melting process.

Assuming equilibrium with quartz, K-feldspar, plagioclase, titanite and magnetite, the
crystallization pressure of magmatic porphyroclastic hornblende (Pyy) is estimated using an
experimental calibration of the Al-in-hornblende barometer (Johnson and Rutherford, 1989)
and subsequent discussion (Blundy and Holland, 1990 and Schmidt, 1992). For the HBG the
pressure is between 4.5 and 5.6 kbars, and for the BMG, the occurrence of primary muscovite
in some differentiated samples (WA8C, WAG6) places pressure limits of the crystallization at
4-2.6 kbar, i.e. the upper crust (Gardien et al., 1995 and Villa et al., 1997).

The Zr and REE contents of the melt and the mineral compositions of zircon and monazite
can be used as independent chemical geothermometers for estimating the temperature of the
magma (Watson and Harrison, 1983, Rapp and Watson, 1986 and Montel, 1993). We applied
these thermometers to the BMG and BG to estimate the minimum temperature of the melts.
The solubility model of Montel (1993) yields monazite saturation temperatures of 830-977 °C
for BMG (average of 907 °C) and 842-939 °C (average of 900 °C) for BG. The zircon
saturation temperatures (Watson and Harrison, 1983 and Rapp and Watson, 1986) range from
842 to 859 °C (average of 848 °C) for BMG and from 816 to 855 °C (average of 848 °C) for
BG. The fine-grained mafic enclave (NG4c) exhibits higher monazite and zircon saturation
temperatures (991 and 857 °C) compared to the biotite granite host rock. The monazite and
zircon saturation temperatures are 777 and 738 °C respectively for the sample BA-4, the
porphyritic hornblende—biotite monzogranite. The plot of the sum of LREE (La, Ce, Nd)
against temperature, calculated using the monazite solubility method (Fig. 8B), shows a good
positive correlation. This suggests that concentration of LREE in these rocks may be
controlled by the crystallization of monazite and other accessory phases (allanite) that
concentrate LREE.
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5. Chemical Th-U-Pb monazite dating

BG and BMG yielded enough monazite for chemical Th-U-Pb dating. Two samples of BG
(EN-4 and NG-3) and two samples of BMG (WA3D and WA10) were collected. Analyses
were carried out using a Cameca SX-100 electron probe microanalyser at the BRGM-CNRS-
Université d’Orléans laboratory (France), on in situ grains (NG3, WA-3D and WA-10) and on
grains mounted in resin (EN4). The analytical procedure was described by Suzuki and
Adachi, 1991, Suzuki and Adachi, 1994, Montel et al.. 1996, Cocherie et al.. 1998 and
Cocherie and Albarede, 2001. Average weighted ages calculation was performed using the
Isoplot/exe program (Ludwig, 2000) and refined with Th/Pb vs U/Pb isochron plot (Cocherie
and Albaréde, 2001). The analytical results are given in Table 2.




Analytical data for monazite from biotite granitoids and biotite £ muscovite granitoids

Table 2.
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5.1. Biotite-muscovite granitoids (BMG)

Two BMG samples (WA3D and WA10) were investigated. Monazite is fresh and associated
with allanite. A total of 35 chemical spot ages on three grains was obtained from sample
WA3D. The calculated age histogram displays a Gaussian distribution indicating a
homogeneous population. Spot ages range from 880 = 55 to 1008 + 65 Ma with an average
weighted age of 926 + 12 Ma (Fig. 9A), not different from the 926 + 12 Ma obtained with the
Th/Pb vs U/Pb plot. Monazites from the sample WA 10 are very small in size. Its average age,
calculated directly from the four individual ages is 615 +27 Ma (Fig. 9B). This age is very
different from that obtained for sample WA3D and indicates the presence of monazites of
various ages in the BMG.
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Fig. 9. Plots of average weighted age using individual ages and errors (20) for the monazite from biotite
muscovite granitoids (A, sample WA3D; B, sample WA10) and for biotite granitoids (C, sample NG3; D,
sample EN4).

5.2. Biotite granitoids (BG)

Two samples (samples NG3 and EN4) of biotite granites were investigated for monazite
dating. The monazite occurs as inclusions in feldspar or biotite, where it is associated with
zircon. A total of 44 chemical spot ages on four monazite grains was obtained from sample
NG3, and a total of 54 spot ages on three monazite grains from sample EN4. The age
histogram for monazites from each sample defines a Gaussian distribution indicating a



monogenetic population in each sample. The average weighted ages are 648 + 14 Ma for EN4
(Fig. 9C) and 610 + 10 Ma for NG3 (Fig. 9d) respectively. The precision of these ages using
the Th/Pb vs U/Pb plot (Cocherie and Albaréde, 2001) gives 652 + 10 and 610 £+ 17 Ma for
EN4 and NG3 respectively.

5.3. Interpretation of the results

Field observations indicate that the HBG and BMG are respectively pre- tectonic and syn-
tectonic while the BGs are post-tectonic. The zircon age of 622 + 25 Ma obtained on the
HBG, the age of younger monazites in BMG (615 + 54 Ma), and in BGs (610 + 10 Ma) are
consistent within the error limits with the age of the syntectonic granitoids of northern
Cameroon (Toteu et al., 2004). We interpreted these ages as the emplacement age of the HBG
and BMG. As a consequence, the ca. 926 £ 12 Ma monazites of BMGs are inherited grains.
Similarly, the 652 + 10 Ma monazites of the post-tectonic BGs also correspond to inherited
grains.

To understand the significance of the 610 + 10 Ma monazites of BG, we recall the U-Pb
results for bulk zircon analyses of the same granite (8338, Toteu et al., 2001) which yielded
very discordant ages with an upper intercept at 635 + 22 Ma. One additional data point for a
single zircon from the same sample (unpublished data from Toteu) is slightly above the
concordia with a *?°Pb/**U age of 575 + 8 Ma. This suggests that the 635 + 22 Ma intercept
does not correspond to the emplacement age, but rather represents a mean age of mixed
populations that include inherited and young syn-magmatic zircons. This means that the
emplacement age of the Ngaoundéré biotite granite is probably close to 575 Ma, identical to
the individual lower monazite spot ages. As a consequence, monazittes with the 610 + 10 Ma
ages may be interpreted as inherited grains.

Our data also give some indications of the age of the source for BMG and BG. The inherited
monazites with ages of ca. 926 Ma recorded for BMG and the 1.09 Ga Tpy age on a similar
granite west of Moungel indicate an early Neoproterozoic source for the protolith. Ages of
this range are also known on detrital zircons from metasediments in Cameroon (Toteu et al.

this volume) and in NE Brazil where they are related to the Cariris Velhos event (Van Schmus
et al.. 1995 and Santos et al., 1997).

The presence of younger inherited monazites and zircons in BG also suggests the contribution
of a Neoproterozoic source to the protolith. Although country rocks for the Ngaoundéré
granitoids are of Paleoproterozoic age, no indication of monazite or zircon of this age has
been recorded. This is an indication that inherited monazites and zircons are probably from
the source, rather than from contamination by the country rocks. In conclusion, the present
study strongly suggests a major contribution of a Neoproterozoic source to the generation of
the Ngaoundéré granitoids.

6. Discussion

6.1. Source rock characteristics

The Ngaoundéré granitoids display mineralogical and chemical features of I-type granites
(Fig. 4) and belong to high-K calc-alkaline suites (Fig. 5). Considering the Ba and Sr
abundances (Table 1), the HBG correspond to the typical high-Ba—Sr granitoids, though BG



and BMG are low-Ba—Sr granitoids (Tarney and Jones, 1994, Fowler et al., 2001 and Quian et

2003). Major and trace element data of the HBG high-Ba—Sr granitoids agree with
differentiation of a mafic magma from an enriched subcontinental lithospheric mantle (Fig.
10), with possible crustal assimilation, as shown by the high Th/Yb and Rb/Th ratios
compared to the Rb contents. The HREE undepleted patterns indicate melting of a source with
a residual HREE-rich phase such as garnet.
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Fig. 10. Plots of the Neoproterozoic Ngaoundéré granitoids in a molar Al,O3/(MgO + FeOt)-CaO/(MgO + FeOt)
diagram (Altherr et al., 2000), with composition fields of partial melts deriving from experimental
dehydratation—melting of various source rocks (Wolf and Wyllie, 1994, Gardien et al., 1995, Partino Douce and
Beard, 1995, Partino Douce and Beard, 1996 and Singh and Johanneses, 1996).

The BG and BMG trace element patterns (Fig. 7) are also characterized by strong Th- and
LREE-enrichment. They may derive from partial melting of igneous protoliths (Fig. 10), but
at a temperature above monazite and zircon saturation temperatures (>750 °C). The presence
of inherited monazite (ca. 926 Ma), the presence of numerous enclaves of HBG progressively
digested within the BMG, and the presence of ghost structures are all the consequence of a
significant crustal contribution. BG that show weak Ta negative anomalies and low Nb/Ta
ratios (Fig. 7) may have originated from a lower to middle crust of mafic to intermediate
composition with inherited low Nb/Ta ratio (metagreywackes?) (Fig. 10), because these Nb—
Ta abundances cannot be explained either by titanite—rutile fractionation or by the presence of
these phases as source residue (Green and Pearson, 1987).

BMG are characterized by the presence of enclaves of HBG that occur mostly along the
margin of the intrusion. This indicates that enclaves were incorporated during the
emplacement and do not represent restites from the source. This is confirmed by the
geochemical data (Fig. 6, Fig. 10 and Fig. 11), which indicate that BMG and HBG intrusions
originated from a distinct source.
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6.2. Tectonic settings and tentative geodynamic context

The overall geochemical features of the Ngaoundéré granitoids are compatible with the
compositions of calc-alkaline magmas of orogenic domains. In the Y +Nb vs Rb
discrimination diagram (Pearce et al., 1984; Fig. 12), the HBG clearly plot within the
volcanic-arc granite field, while BG plot in the within-plate granite field. The BMG plot in the
field of syn-collisional granites. On the Zr vs (Nb/Zr)x diagram (Fig. 13) of Thiéblemont and
Tegyey (1994), most HBG plot from the subduction to collision zone fields while BMG plot
in the collision zone field, and BG overlap the collision and intra-plate fields. These
characteristics and their high-potassic calc-alkaline compositions are consistent with a
continental collision setting (Liégeois et al., 1994, Liégeois et al., 1998 and Toteu et al.
2004). Therefore, some within-plate granite features observed in the BG (Fig. 12) may be
interpreted as an evolved trend of calc-alkaline suites, as shown by the trace element patterns
(Fig. 7C). These geochemical features are similar to those documented for numerous syn- to
late-collisional Pan-African granitoids of western Cameroon (Nguiessi Tchankam et al., 1997,
Tagne-Kamga, 2003 and Nzolang et al., 2003). Compared to the granitoids of NE Brazil, the
HBG with lower FeOt/(FeOt + MgO) ratios (=0.70), Nb, Y, Yb, and K,O are similar to the
normal calc-alkaline and high-K calc-alkaline granitoids (Conceicao and Itaporanga types),
whereas the BG and BMG that have higher contents of alkalis, lower contents of Ba and Sr,
high FeOt/(FeOt + MgO) ratios (0.70), and pronounced Eu anomalies, are similar to the
calc-alkaline to transitional granitoids of Soliddo and Cerra Blanca type (Guimardes et al.,
1998 and Guimaréaes and da Silva Filho, 2000).
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(1984). Syn-COLG, syn-collision granite; VAG, volcanic arc granite; WPG, within-plate granite; ORG, ocean
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granitoids: (A) subduction-zone magmatic rocks, (B) collision zone rocks; (C) alkaline intra-plate zone rocks.
Normalization values from Sun and McDonough (1989).

A BRGM (Bureau de Recherches Géologiques et Minicres d’Orléans) database, including a
compilation of analyses of recent Andean lavas (Thiéblemont, 1999), was used to test further
the analogy between the Ngaoundéré Neoproterozoic granitoids and Andean magmatic rocks.
Averaged analyses were calculated (Table 3) using only the highly potassic calc-alkaline
lavas from the central Andes. For comparison with the HBG, the Andean average was
calculated in the 60% = SiO, = 68% interval, based on ~.400 determinations of major
elements and 100400 determinations for trace elements, depending on the elements. For
many elements (Hf, Zr, and most of the REE in particular), this average shows low standard
deviations (Table 3), which makes it possible to assign a representative composition at the
scale of the central Andes. The average compositions of Andean rocks and HBG show strong
analogies (Fig. 14), but also show differences among some trace elements, such as Ba and Sr.




These elements show high standard deviations, however, and cannot be used for comparison
with other granitoid suites.

Table 3. : Average chemical analyses for the hornblende biotite granitoids and biotite granitoids

Neoproterozoic

Ngaoundéré

Average
(n=9)

Major elements (wt%)

Si0,
AlLOs
TiO,
Fe,Ost
MnO
MgO
CaO
Na,O
K,0
P,0s

LOI

Total

Trace elements (ppm)

Ba

Co

Cr

Hf

Nb

Ni

Rb

HBG

58.09

17.29

1.08

6.89

0.104

3.03

5.64

3.99

2.85

0.38

0.66

100.00

1191

20.73

63.73

5.22

10.5

36.83

99.54

Central Andes average

Average calc-alkaline lavas
SiO, = 60-68%

Average | {iton |
63.2 1.78 418
16.27 0.73 383
0.8 0.17 382
4.96 1.09 391
0.08 0.04 383
2.14 0.61 383
4.53 2.35 383
3.78 0.57 383
3.11 0.53 413
0.39 0.08 326
1.17

869 289 322
18 9 261
37 31 262
5.41 0.65 148
12.8 6.4 167
16 11 290
109 42 377

Neoproterozoic

Ngaoundéré
Average BG (n =9)

71.95
14.02
0.30
2.53
0.03

0.36

3.55

5.44

0.51

99.92

545
3.28
12.48
9.01
29.12
5.32

285.26

Central Andes average

Average calc-alkaline lavas
SiO, > 70%

Average | G cton |

72.74 2.16 89
14.13 1.25 83
0.26 0.14 &3
1.66 0.8 83
0.06 0.03 82
0.49 0.32 84
1.58 0.81 84
3.66 0.79 84
431 0.97 89
0.08 0.06 75
626 350 56
9 14.4 42
10 9 38
4.07 0.84 30
18.4 7.9 24
9 21 47
177 95 71



Neoproterozoic

HBG

Ngaoundéré
Average
(n=9)
Sr 732.64
Ta 0.74
Th 3.96
1.39
v 127.48
21.24
Zr 215.53
La 38.87
Ce 80.67
Pr 9.90
Nd 38.96
Sm 7.24
Eu 1.91
Gd 5.52
Tb 0.756
Dy 4.05
Ho 0.729
Er 1.978
Tm 0.283
Yb 1.846
Lu 0.284

Central Andes average

Average calc-alkaline lavas
SiO, = 60-68%

Average | (il
558 180 399
1.27 0.73 127
13.9 74 176
4.16 2.9 143
107 30 225
17.5 5.4 160
195 35 241
39.00 9.7 184
80.00 22.1 149
35.00 9.8 103
6.4 1.5 120
1.4 0.31 189
5.03 1.4 24
0.6 0.14 179
3.00 0.73 11
1.2 0.32 10
1.4 0.54 130
0.2 0.07 115

Neoproterozoic

Ngaoundéré
Average BG (n=9)

209.85
3.33
49.02
8.71
17.49
37.77
302.66
86.74
165.92
17.60
59.71
10.62
0.904
791
1.167
6.53
1.219
3.532
0.544
3.645

0.546

Central Andes average

Average calc-alkaline lavas
SiO, > 70%

Average | Gton

260 190 71
1.67 1.55 30
18.3 10.5 38
7.3 5.33 30
23 18.4 27
16.4 10.3 35
158 68.4 49
28.2 10.1 35
533 17.9 36
21.8 8.9 29
4.5 1.4 28
0.85 0.49 35
0.4 0.15 32
1.3 0.78 28
0.2 0.15 15

The average composition (and standard deviation) of the high-K calc-alkaline andesite, dacite and rhyolite from
the central Andes is given for comparison (BRGM geochemical database on Andean magmatic rocks)
(Thi¢blemont, 1999) and was calculated using a number of measurements that varied depending on the element.
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Fig. 14. Primitive mantle-normalized incompatible element patterns for the average HBGs and BGs compared to
the Central Andes average of calc-alkaline lavas. Normalizing values from Sun and McDonough (1989).

For comparison with BG, the Andean average was calculated by using only the most acid
rocks (i.e. SiO, > 70%) and for an age range extending to the late Miocene. The primitive
mantle-normative patterns of BG show some analogies to the Andean rocks (Fig. 14),
although BG are much more differentiated. It is concluded that the Ngaoundéré granitoids in
central North Cameroon that are part of the Adamawa-Yad¢ batholith may be the roots of a
continental margin that was active during the late Neoproterozoic (Toteu et al., 2004). In pre-
drift reconstructions, this active continental margin may be correlated with the Central
Tectonic Domain or Transverse Zone of the Borborema province in NE Brazil (Ebert, 1970
and Van Schmus et al., 1995), which is characterized by abundant late Neoproterozoic
plutonism and development of continental-scale shear zones (Neves et al., 1996).

7. Conclusions

Petrography, geochemistry and new geochronological work carried out in the Ngaoundéré
region on the Adamawa-Yade batholith revealed three main types of Pan-African granitoids:
the hornblende—biotite granitoids (HBG), the biotite £ muscovite granitoids (BMG), and the
biotite granitoids (BG). Monazite dating is not conclusive but strongly indicates the presence
of pre-magmatic monazite inheritances at ca. 926 Ma.

Geochemical data indicate that the Ngaoundéré Pan-African granitoids are calc-alkaline, high-
K and of I-type. The HBG are of the high-Ba—Sr sub-type and were generated by
differentiation of mafic magmas derived from an enriched subcontinental lithospheric mantle,
with substantial crustal contamination. By contrast, the BGs and BMG are of a low-Ba—Sr
sub-type and were possibly derived from melting of middle continental crust. Differences in
these granitoid groups can be explained by variations in the source composition, the melting
conditions and the degree of mineral fractionation. The large-scale melting of the source rocks
could have been promoted by high heat flow during Neoproterozoic deformation and/or by
the upward migration or underplating of mantle-derived magmas generated during a
convergent phase.



The chemical signature of the HBG shows strong analogies with the magmatic suites of recent
active margins and, more precisely, with calc-alkaline rocks of the central Andes. These
analogies suggest a setting above a subduction zone at an active margin. Generation of the
BMG by crustal melting may have occurred subsequent to a collisional stage, with
emplacement along SW-NE left-lateral strike slip faults. Then, the BG plutons were emplaced
in a post-orogenic setting.
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