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Abstract 

Nine Early Cretaceous paleomagnetic sites have been collected in the Yumen area of the Hexi 

Corridor (NW China). Magnetic directions isolated at lower temperatures fail the fold test, 

and lie close to the geocentric axial dipole field direction before tilt correction. High 

temperature components are carried by magnetite and/or hematite, all with normal polarity, 

and pass the fold test. The average paleomagnetic pole from the nine sites is at λ=75.5°N, 

φ=169.9°E (A95=7.7°). These results are consistent with those from other areas of the North 

China block (NCB), but significantly different from those from the Qaidam Basin on the 

southern side of the Qilian Mountains. They suggest that: (1) the Yumen region behaved as a 

rigid part of the NCB since at least the Early Cretaceous; (2) 740±500 km of north–south 

directed convergence has taken place between the NCB and Qaidam, within the Qilian 

Mountains and (3) extrusion of Qaidam was accompanied by a 23±5° relative rotation with 

respect to North China. This is larger than implied by the maximum left lateral slip on the 

Altyn Tagh fault system. The same data imply some 1000±800 km of Cenozoic motion 

between the Tarim and NCB blocks, which were so far believed to have formed a rigid entity 

since at least the Jurassic. One interpretation could be that all Tarim and Qaidam Cretaceous 

paleomagnetic samples from red beds, but not those from Yumen and the NCB, suffered 

significant inclination shallowing, as observed in Cenozoic red beds from Central Asia. So 

far, we do not find support for this possibility. Possible tectonic interpretations include: (1) 

the existence of a large, as yet uncharted, tectonic discontinuity between Tarim and the NCB 

in the vicinity of the desert corridor near 95–100°E longitude; (2) the occurrence of 

significant deformation within southwestern Tarim, to the north of Yingjisha where 

paleomagnetic sites were obtained, or (3) persistent clockwise rotation of Tarim with respect 

to the NCB, for at least 20 Ma, at the rate found for current block kinematics. 
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1. Introduction 

In the last two decades, a large number of field and laboratory studies have considerably 

expanded our knowledge of the successive phases of accretion and deformation of the Asian 

continent, both prior to and following its collision with India. Paleomagnetic studies have 

contributed constraints on the paleogeographic position and amount of deformation of several 

of the larger blocks that comprise the Asian mosaic. The first data, gathered two decades ago, 

started with Cretaceous and Eocene rocks in southern Tibet, not far from Lhasa, and then 

expanded to all of Tibet, including the Qiangtang, Kunlun and finally Qaidam (Fig. 1). In 

parallel, data were acquired from the apparently more rigid blocks of Tarim and Junggar to 

the north, and North and South China to the east. This has allowed a number of 

paleogeographic syntheses to be proposed (e.g. [1] for the Cretaceous). 



 

Fig. 1. (a) Topographic map, and (b) tectonic cross section from India to the Gobi Desert (from [26]). 

The sampling areas are shown by a star for Yumen, a diamond and a cross for the Xining–Lanzhou 

Basin, a solid (open) triangle for the Tarim Basin ([9], [50], [8] and [52], respectively); A, B and C are 

for the Sunan, Lanzhou and Zhangye sites of Frost et al. [27]. (c) Simplified geological map of the 

sampling area [41]. 



 

Attention was first focused on relative paleolatitude differences between blocks, in general 

interpreted as indications of north–south convergence, believed to be a direct consequence of 

the collision. Little motion was found between the apparently rigid blocks of South China 

(SCB), North China (NCB, including Mongolia) and Siberia since at least Cretaceous time 

(e.g. [2], [3], [4], [5], [6] and [7]), whereas large northward movement apparently affected 

blocks to the west of ∼100°E longitude, i.e. Tibetan blocks, Tarim and Junggar [8] and [9]. 

This contrasting behavior on either side of ∼100°E longitude was emphasized early on by 

Enkin et al. ([4]; see also [9]). 

Attention was also focused on rigid versus non-rigid behavior, when the block was large 

enough, as enough widely separated sites became available. The same papers referenced 

above attest to the non-rigid deformation of Tibetan blocks, notably the Lhasa and Qiangtang 

blocks [10], whereas the NCB [11], [12] and [13] and the SCB [7] and [13] were found to 

have behaved as rigid entities (within paleomagnetic uncertainties) since the Cretaceous. Part 

of the pre-Cretaceous SCB was non-rigid, as it was deformed during the NCB–SCB collision 

when Dabie Shan acted as a rigid indentor and punctured it [14]. Analysis of declinations, 

hence rotations about locally vertical axes, was an important part of these studies. 

More recently, attention has focused on ongoing deformation at the northern boundaries of 

Tibet, i.e. around the Qaidam block [15], [16], [17], [18] and [19], which is separated from 

Tarim to the northwest by the Altyn Tagh, one of the largest strike-slip fault systems in the 

world [20] and [21], and from North China to the northeast by the Qilian Shan [17], 

[22] and [23]. This interest has resulted in new models of northward growth and propagation 

of the Tibetan plateau since the onset of the collision [24], [25] and [26]. 

Paleomagnetic constraints from the same areas have become concurrently available (Fig. 1): 

Frost et al. [27] for either side of the Qilian Shan and Haiyuan fault, Halim et al. [9] for the 

Qaidam block near Lanzhou in the eastern Nan Shan–Qilian Shan range, Cogné et al. [6] 

more to the west in the eastern Kunlun ranges, Gilder et al. [28], Dupont-Nivet et al. [29] and 

Chen et al. [30] for the Qaidam Basin, near and to the south of the Altyn Tagh fault. Halim et 

al. [9] and Cogné et al. [6] concluded that the Qaidam, Tarim, Kunlun and Junggar had been 

assembled roughly in their present respective positions in the Cretaceous, but that there was a 

large discrepancy with respect to the Siberia, Mongolia, NCB, SCB assemblage amounting to 

a possible NS convergence of ∼800±500 km between the two ensembles. This problem had 

emerged from the earlier studies of Chen et al. [10], Frost et al. [27] and Gilder et al. [31]. But 

given the site locations, the convergence could only vaguely be assigned to any part of the 

crust between Qaidam and Siberia. And the idea of some major yet so far unobserved tectonic 

transition zone either in the Qilian Shan, Tarim, Tian Shan, Mongol–Okhotsk or Sayan Tuva 

ranges was not particularly palatable to geologists, given the lack of field evidence. 

Another growing problem has been increasing evidence for anomalously low inclinations, 

particularly in Paleogene and, most of all, in Neogene rocks in central and eastern Asia (see 

[6], [28], [31], [32], [33] and [34]). Remagnetization, overlap of components (e.g. [35]), non-

dipole field geometry (e.g. [36]), error in reference apparent polar wander path (APWP) for 

Siberia (e.g. [6]), age errors and sedimentological problems (e.g. [28], [37] and [38]) have 

been invoked to account for these observations. 



In order to provide further constraints on this ongoing discussion, we have undertaken 

paleomagnetic sampling of Early Cretaceous rocks in the Yumen area of the Hexi corridor, in 

the Gansu province of Northwestern China (Fig. 1). We conclude that our study apparently 

provides a primary paleomagnetic direction and pole for Yumen, which turns out to be part of 

the NCB, located immediately adjacent to (and north of) the Qilian Shan and Qaidam block, 

thereby greatly reducing the aforementioned localization uncertainty of intracontinental 

convergence. But this study also raises some puzzling questions. 

2. Geology and paleomagnetic sampling 

The 5 km high Qilian Shan forms the NE edge of the Tibetan plateau. It connects 

kinematically to the large active Altyn Tagh left-lateral strike-slip fault to the West [20], 

[24] and [26]. In contrast, the 1.5 km high Hexi corridor of Gansu, just north of Qilian Shan, 

forms a topographic trough linking the Tarim Basin to the West with the Gobi Desert to the 

east. Tectonic activity in the Qilian Shan can be traced back at least to the Paleozoic (e.g. 

[39]), with several (not always well dated) phases of re-activation, for instance possibly 

between the Upper Triassic and Early Cretaceous (200–140 Ma, i.e. prior to deposition of our 

samples [40]) and more recently in the Eocene (∼40 Ma) and between the Miocene (20 Ma) 

and Present (fission track dating by Jolivet et al. [19]). 

Paleomagnetic sampling was carried out near Yumen at the Early Cretaceous Xinminpo type 

section (star in Fig. 1a[41]). The ∼1000 m thick formation is divided into two parts, with 

underlying dark red and yellow-green colored fine grained sandstone intercalated with 

limestone and shale, and overlying brick red sandstone intercalated with conglomerates [41]. 

The Xinminpo Formation is underlain by the Sinian (∼700 Ma) Longshoushan Formation and 

is unconformably overlain by the Neogene Baiyanghe Formation. The angular unconformity 

is less than 10°. At the sampling site, the oldest Tertiary sediments overlying the Xinminpo 

Formation are Neogene (<24 Ma), but at the basin scale these can be as old as Oligocene (<38 

Ma), giving a weak constraint on the age of folding. Fossils which were found in the 

Xinminpo type strata are listed in GBGMR [41]. Cyridea sinensis, Darwinula contracta 

(Ostracoda) and Cypridea latiovata are loosely constrained as Jurassic to Cretaceous. The 

species of Sphaerium (a lamellibranch) span the whole of the Cretaceous, whereas Darwinula 

contracta and Darwinula tubiformis were described in the lower part of the upper Dzunbain 

Formation in Mongolia and lie uniquely within the Lower Cretaceous. Thus the Xinminpo 

Formation is thought to be Lower Cretaceous. 

Nine sites were sampled from the upper part of the Early Cretaceous Xinminpo Formation at 

Xiagouchun and Hongliuxia villages, north of Yumen city (Table 1). Eight to 10 cores were 

drilled, representing a minimum thickness of 10 m at each site, and oriented with both 

magnetic and, when possible, sun compasses. The average difference between the two sets of 

measurements is 0.5°±1.7 (N=49), an almost negligible correction which was however applied 

to those cores without sun compass orientation. 

 

 

 



Table 1. Paleomagnetic results from Lower Cretaceous Xinminpo Formation (Yumen, 

Hexi Corridor, Gansu Province) 

Site Coordinates Bedding n/N Dg Ig Ds Is k α95 

 
lat. (°N) long. (°E) Strike/dip 

       
YM01 39.9 97.9 102/9.5 6/6 20.4 45.4 22.2 54.7 42.5 10.4 

YM02 39.9 97.9 102/9.5 6/7 17.3 40.0 18.2 49.5 38.8 10.9 

YM03 39.9 97.9 102.5/9.5 7/7 22.9 50.8 25.7 60.1 69.7 7.4 

YM04 40.0 97.9 133.5/19.5 7/7 29.3 54.6 14.6 72.8 249.6 3.8 

YM05 39.9 97.9 75.5/14 7/8 11.1 48.0 21.1 60.2 61.1 7.8 

YM06 39.9 97.9 105.5/15 7/7 30.7 49.9 38.2 64.1 159.5 4.8 

YM10 40.0 97.3 80.5/41 5/6 4.4 31.4 26.4 69.5 20.6 17.3 

YM11 40.0 97.3 95.5/42.5 7/8 2.2 20.8 358.7 63.2 101.8 6.0 

YM12 40.0 97.3 95.5/42.5 4/6 5.7 15.4 6.0 57.8 580.1 3.8 

Mean 
   

9 14.4 40.1 
  

25.3 10.4 

       
18.9 61.7 82.0 5.7 

N and n: number of samples measured and used to calculate mean; Dg, Ig, Ds, Is: 

declination and inclination in geographic and stratigraphic coordinates respectively; k 

and α95: Fisher statistical parameters. 

 

3. Laboratory analyses 

We first carried out experiments to determine the magnetic mineralogy of some representative 

samples. Isothermal remanent magnetization (IRM) experiments (using an IM30 pulse 

magnetizer) indicate both hard and soft coercivity magnetic minerals; saturation is not 

reached by 1000 mT (Fig. 2a). A rapid increase of IRM up to about 200 mT is sometimes 

observed. After removal of a (sometimes large) paramagnetic component, magnetic hysteretic 

curves show that the induced magnetic moment is saturated at about 200–300 mT (Fig. 2b). 

Thermal magnetic experiments (using a KLY3 kappabridge susceptibility meter coupled with 

a CS3 furnace) show either a sharp drop in magnetic susceptibility at about 580°C, indicating 

magnetite as the main magnetic mineral, or a progressive decrease from 500 to 680°C, 

indicative of hematite (Fig. 2c). In addition, sample 12-102 in Fig. 2c shows some evidence 

for a Hopkinson peak near 580°C, indicative of single domain magnetite (e.g. [42]). No 

significant drop was observed at lower temperatures (Fig. 2c). 



 

Fig. 2. Magnetic mineralogical studies and demagnetization curves. (a) IRM. (b) Magnetic hysteresis 

curves. (c) Thermomagnetic experiments. (d,e) Orthogonal vector plots (thermal demagnetizations). 

 

Thermal demagnetization was conducted in a laboratory-built furnace in 12–16 progressive steps, with 

intervals of 20–150°C. Magnetic remanence was measured with a JR5 spinner magnetometer. The 

magnetic susceptibility of each sample was measured after each heating step, and no significant 

variation was observed, indicating a probable lack of mineralogical transformation during heating. 

Two components were isolated from most samples (Fig. 2d,e). Lower unblocking temperatures (LT) 

were less than 200°C, and higher temperatures (HT) went up to 580°C (Fig. 2d) and 680°C (Fig. 2d). 

Magnetic directions were isolated using principal component analysis [43]. The HT directions 

identified in all samples showed only one polarity, with downward inclination and northeastward 

declination. There are actually two (partly overlapping) higher temperature components carried 

respectively by magnetite (up to 580°C) and hematite (beyond 580°C and up to 680°C, but also below 

580°C), but both showed a consistent magnetic direction (Fig. 2d,e). Fisher statistics were used to 

compute site averages. The LTC (Dg=4.3°, Ig=53.4°; α95=4.9°, N=9 sites) is close to the present Earth’s 



field direction (D=1.3°, I=56.7°), with a negative fold test (ks/kg=0.7). The high temperature 

component (HTC) yields a positive fold test at the 95% significance level [44] with Ds=18.9°, Is=61.7° 

(α95s=5.7°, N=9; ks/kg=3.2; see Fig. 3a,b and Table 1). The Watson and Enkin [45] test gives a 

maximum grouping of directions at 82% unfolding (with uncertainties ranging from 64 to 103%), 

statistically indistinguishable from total unfolding. Hence the characteristic paleomagnetic direction 

was likely acquired prior to folding. Because consistent directions are carried by both magnetite and 

hematite, and because of the positive fold test, the magnetization is probably primary. The oldest 

sediments overlying the unconformity would appear to constrain the acquisition age to be older than 

Oligocene. The fact that only normal polarities are observed is consistent with deposition and 

magnetization within the Cretaceous Long Normal Superchron, hence with an age between 118 and 83 

Ma. Because paleontological analysis of these rocks indicates that they are Early Cretaceous, the age 

range comes to ∼100–118 Ma, i.e. roughly the 110±10 Ma span. The corresponding VGP is at 

λ=75.5°N, φ=169.9°E (A95=7.7°). 

 

Fig. 3. Equal-area stereographic plot of site-mean directions before (a) and after (b) bedding 

corrections with their 95% confidence circle. 

 

4. Discussion 

Frost et al. ([27]; in which two of us participated) reported preliminary paleomagnetic results 

from the Hexi corridor, in which they combined data from three localities (Sunan, Lanzhou 

and Zhangye areas; see fig. 2b of Frost et al. [27]; these are respectively labelled A, B and C 

in Fig. 1a). Results from locality C were found to be noisy and were eventually discarded. 

Localities A and B yielded lower temperature and less stable HTC. To better isolate the HTC 

magnetic directions, the remagnetization great circle technique was applied to 14 out of 21 

specimens. Actually, the 16 samples from Sunan area (A) were more dispersed after bedding 

correction (k decreasing from 75 to 56). Only five specimens from Lanzhou region (area B) 

were heated, and only up to 640°C: they could have been incompletely demagnetized. Even 

more important, from both geographic and tectonic points of view, the Sunan area is situated 

in the northeastern piedmont of the Qilian range, whereas the Lanzhou area lies on the 

western flank of the southeastern termination of the Qilian Mountains (Fig. 1). Major deep 

crustal left-lateral faults, most prominently the Haiyuan fault [46], cross this region and 

separate the Tibetan plateau from the NCB. Based on more numerous and higher quality data, 

Halim et al. [9] argued that the paleolatitude and paleodeclination of the Lanzhou–Xining 

Basin were more compatible with those from the Qaidam Basin than with the NCB in the 

Early Cretaceous. Therefore, the two areas studied by Frost et al. [27] probably belong to 

distinct tectonic units (Qaidam and the NCB) that have suffered differential deformation since 



the Cretaceous and should not be combined. Because of this tectonic problem, and because of 

the small quantity and lack of robustness of the preliminary data from Frost et al. [27], their 

results are superseded by those from the present study for the Sunan area (Hexi corridor) and 

of Halim et al. [9] for the Lanzhou (i.e. Qaidam) area. 

Three studies are available for the Early Cretaceous of the NCB [3], [12] and [14]. These are 

listed in Table 2 and shown in Fig. 4a. The distance between the mean of the three NCB K1 

poles and our Yumen pole is 11.2±10.9°, hence appears significantly different from zero at 

the 95% confidence level. However, the mean of the four studies (including Yumen) is at 

80.1°N, 204.2°E (A95=7.9°) and comprises all four poles in its 95% cone of confidence (Fig. 

4a). Moreover, three mean poles: (1) the Yang and Besse [7] pole for the Early Cretaceous of 

both the NCB and Mongolia (recalculated with a correction to Pruner’s [47] pole for 

Mongolia), (2) the Early+Late Cretaceous pole of Gilder and Courtillot [5], and (3) a pole we 

calculate from seven Early+Late Cretaceous poles (Table 2), are all virtually identical with 

the new mean Early Cretaceous pole obtained above. We conclude that the Yumen site very 

likely belonged to the NCB, within paleomagnetic uncertainty, at least since the Cretaceous. 

This would make Yumen the westernmost location where paleomagnetic constraints 

representing the NCB have been obtained so far, lying closest to the Tibet–NCB (or Qaidam–

NCB) boundary in the Qilian Shan. 



 

Table 2. Cretaceous paleomagnetic poles from the NCB, SCB, Qaidam and Tarim 

blocks, and Eurasian reference 

Age Coordinates N λp φp A95 References and notes 

 
lat. (N°) long. (E°) 

     
NCB 

K1 42.0 119.2 6 82.9 249.5 5.7 [3] 

K1 35.0 108.0 10 75.8 208.7 7.5 [12] 

K1 37.0 120.7 11 81.3 217.3 5.9 [14] 

K1 39.9 97.7 9 75.5 169.9 7.7 This study 

Mean K1 NCB 4 80.1 204.2 7.9 This study 

K1–2 37.2 105.0 10 74.5 203.4 8.2 [62] 

K1–2 31.6 116.0 10 74.5 201.0 4.7 [5] 

K2 40.1 112.9 4 79.6 170.1 5.8 [11] 

Mean K1–2 NCB 7 78.6 199.2 4.5 This study 

Mean K1–2 NCB 5 78.6 202.6 6.2 [5] 

Mean K1 NCB (includes Mongolian data) 3 82.5 225.1 10.2 Recalculated by [7] 

SCB 

K1 29.7 120.3 7 77.1 227.6 5.5 [63] 

K1 22.2 114.2 12 78.2 171.9 10.6 [64] 

K1
a
 30.0 102.9 23 77.9 244.5 3.2 [65] 

K1
a
 25.9 101.7 

 
64.6 199.6 3.3 [66] 

K1
a
 26.8 102.5 7 69.0 204.0 4.3 [67] 

K1
a
 22.7 108.7 8 86.5 26.4 6.8 [68] 

K1
a
 18.8 109.4 6 83.2 143.0 9.8 [69] 

K1
a
 27.9 102.3 11s 77.4 196.2 14.5 [70] 

Mean K1 SCB 8 78.8 202.1 9.9 This study 

K2 25.0 116.4 20 67.9 186.2 9.2 [71] 

K2 32.0 119.0 19 76.3 172.6 10.3 [49] 

K2 23.0 115.0 43s 66.0 221.5 3.4 [72] 

K2 26.0 117.2 5 66.9 221.4 5.4 [73] 

K2
a
 30.0 102.9 16 74.8 250.8 6.6 [65] 

K2
a
 26.5 102.3 18 81.9 220.9 7.1 [67] 

K2
a
 26.0 117.3 20 65.1 207.2 5.0 [68] 

K2
a
 23.1 113.3 19 56.2 211.5 3.9 [68] 

K2
a
 23.7 108.7 9 79.4 7.1 10.0 [68] 

K2
a
 26.6 102.4 20s 78.9 186.6 5.5 [70] 

Mean K2 SCB 10 74.3 211.1 6.2 This study 

Mean K1–2 SCB 18 76.3 207.8 5.2 This study 

Qaidam 



K1 36.2 103.5 10 50.8 195.2 5.5 [9] 

K1 35.8 103.4 19 62.2 193.4 3.2 [50] 

K1 QAI 29 58.3 194.1 3.3 This study 

Tarim 

K1 39.5 75.0 10 70.1 225.8 7.0 [8] 

K1 41.8 82.0 6 64.6 208.9 9.0 [52] 

K1 TAR 16 67.0 214.1 6.0 This study 

Eurasia 

110±10 Ma BC01 18 79.9 181.9 3.9 [48] 

λp, φp and A95 are pole latitude, longitude and radius of 95% cone of confidence. 

a 

Poles suspected to have suffered local rotations. 

 

Fig. 4. (a) Equal-area stereographic plot of paleomagnetic poles from the NCB (smaller circles) and 

their mean (larger circle). The squares and diamonds are for individual poles from Qaidam 

[9] and [50] and Tarim [8] and [52] respectively. (b) Comparison of mean Cretaceous poles for the 

NCB (circle), Tarim (square), Qaidam (diamond) and stable Europe (star; 110±10 Ma synthetic pole 

for stable Europe from [48]). The Yumen site is indicated by a cross, together with small circles 

around it going through mean poles to indicate possible relative rotations about vertical axes. 

 

Table 2 also lists available Cretaceous studies from the SCB. The Early Cretaceous mean pole 

for the SCB based on eight studies is indistinguishable from the mean of four NCB studies 



(including Yumen), or from the 110±10 Ma synthetic pole of Besse and Courtillot [48] for 

Eurasia, all three mean poles being within or on the joint intersection of their 95% confidence 

intervals. When all Early and Late Cretaceous data for the NCB (seven studies) and SCB (18 

studies) are averaged (Table 2), the mean poles are indistinguishable (angular difference 

3.2±6.9°). Altogether, it seems that the Cretaceous poles of the NCB, the SCB and Eurasia are 

compatible (although the distance between K1–2 NCB and Eurasian reference poles is on the 

verge of significance at 6.4±6.5°), suggesting that these cratons have not undergone 

significant relative motion since, which further implies that the India–Asia collision has not 

had large (paleomagnetically measurable) consequences on the relative configuration of these 

large blocks. This reiterates a conclusion already reached by Kent et al. [49], Enkin et al. [4], 

Gilder and Courtillot [5], Cogné et al. [6] and Yang and Besse [7], although it is also clear 

that some deformation occurred in the Cretaceous within the Mongol–Okhotsk suture [9]. 

Indeed, note that, seen from Central Asia, the three Cretaceous poles for the SCB, the NCB 

and Siberia/Eurasia fall in sequence with no major rotational differences and a latitudinal 

progression compatible with little shortening at the SCB/NCB and NCB/Siberia suture zones. 

However, both estimates of shortening are on the order of 3±6°, hence not statistically 

resolvable. Two paleomagnetic studies of Early Cretaceous formations have recently been 

carried out in two separate localities of the Lanzhou–Xining Basin in the Qaidam [9] and [50]. 

The 95% confidence intervals of these two poles fail to intersect (Fig. 4a). However, the two 

studies share a number of characteristics: in both, the HTC is carried by magnetite and 

hematite, and positive fold and reversal tests are obtained. For the sake of the present 

discussion, the differences are small enough that averaging the 29 sites together provides a 

reasonable estimate of the mean Early Cretaceous Qaidam pole: the corresponding mean lies 

at 58.3°N, 194.1°E (A95=3.3°; Table 2 and Fig. 4b). 

As seen in Fig. 4b, the Early Cretaceous NCB and Qaidam poles are different. This results in 

a significant paleolatitude difference (Δλ) of 6.7±4.5° and a large declination difference (ΔR) 

of 23.1±5.4° at a reference site near Yumen (39.9°N, 97.7°E) (uncertainties calculated 

following [51]). Corresponding values would be smaller (resp. larger) if the Yang et al. [50] 

(resp. [9]) results were used for Qaidam, which indicates that the Qaidam Basin has probably 

suffered heterogeneous deformation and one limited area might not be representative of the 

whole block [30]. The declination difference is interpreted as indicating an overall 23±5° 

clockwise tectonic rotation of Qaidam with respect to Asia. The latitudinal discrepancy, taken 

to represent 740±500 km of north–south convergence between the NCB and Qaidam across 

the Qilian Shan and related ranges, is in any case in excess of 240 km at the 97.5% confidence 

level (with the 740 km value being rigorously the most probable based on the paleomagnetic 

data alone). 

Before exploring the consequences of these results for the history of Tibet–NCB convergence, 

we need to take into account another important tectonic block, namely Tarim (Fig. 1a). Two 

Early Cretaceous studies are available for Tarim: Li et al. [52] on the northern margin (near 

42°N, 82°E) and Chen et al. [8] on the southern margin (near 40°N, 75°E). The two poles are 

statistically similar (Fig. 4a) and their mean is at 67°N, 214.1°E (A95=6.0°). It is seen in Fig. 

4b that the Tarim and NCB poles are not compatible with one another (their 95% confidence 

intervals barely intersect). At the same reference in Yumen, the paleolatitude and rotational 

differences are respectively 9.6±6.0° and 9.2±7.0°. 

The corresponding differences for Qaidam versus Tarim are Δλ=2.9°±5.5° and ΔR=13.9±6.9°. 

This result does not come as a major surprise. Literally, it would imply insignificant 

latitudinal motion and a 14±7° clockwise rotation of Qaidam with respect to Tarim since the 



Cretaceous. The latter result is similar to the significant clockwise rotation of 15±5° already 

found by Chen et al. [30] to have taken place in the last 20 Ma or so. 

On the other hand, the Yumen+NCB pole produces puzzling implications. Although the large 

clockwise rotation of Qaidam with respect to the NCB is compatible with recent kinematics 

[53] and with major intracontinental convergence in the Qilian Shan, the paleolatitudinal 

results require further discussion. If we remove the probable 250 km of Cenozoic 

convergence, identical and kinematically linked to what is observed on the Altyn Tagh fault, 

we are left with an overall convergence of 490±500 km. Clearly, this is not statistically 

significant, i.e. it cannot be ascertained at the 95% probability level to be distinct from zero. 

However, the mean value remains the one with maximum probability and we cannot discard 

the idea that a few hundred kilometers more of motion could have taken place in this ∼200 

km wide orogenic range, larger than the values suggested by geological observation, or by the 

current width and height of the Qilian range. 

A recent synthesis [26] on the formation of Tibet since the onset of the collision, 50–65 Ma 

ago [54] and [55], involves three major successive steps of growth and uplift of crustal thrust 

wedges, up to 500 km each in width. An Eocene, then an Oligo–Miocene, and finally a Plio–

Quaternary plateau are identified, built following oblique subduction of mantle lithosphere 

and extrusion along large sinistral faults. The most recent phase corresponds to the build-up of 

the Qaidam plateau, its extrusion along the Altyn Tagh fault (to the west) and Haiyuan and 

Qinling faults (to the east), and rise of the Qilian Shan. We must undo this major last phase of 

deformation to contemplate what Tibet may have looked like in the Miocene, with its northern 

boundary located along the Kunlun Shan and Kunlun fault. It should be emphasized (Fig. 1b, 

and [26], from which it is excerpted) that major intracontinental convergence, with subduction 

of continental lithosphere, must have occurred along the Jinsha, then Kunlun sutures, and may 

be starting along and under the Qilian suture. So one could conclude that paleomagnetic data 

indicate an earlier phase of convergence in the Qilian suture area. Recall that at least one 

Eocene tectonic phase is suggested by the data of Jolivet et al. [19]. 

But the tectonic analysis must be kinematically consistent, and all three blocks of Tarim, NCB 

and Qaidam must of course be considered together. And the major discrepancy comes from 

considering the pair of Tarim and NCB poles (Fig. 4). Tarim and the NCB had long been 

assumed to have formed the same tectonic unit because of lack of a clear suture between the 

two (but see [40]). Paleomagnetic data show that the two blocks could not have attained their 

present relative configuration before at least the Mesozoic [56]. Gilder and Courtillot [5] see 

final amalgamation of the NCB and the SCB at 159±8 Ma. Therefore, poles from Tarim and 

the NCB younger than Jurassic would have been expected to be identical. But we see from 

Fig. 4 that the Tarim and NCB poles are not compatible and would seem to require 1000±800 

km motion, whereas there is no generally recognized Cenozoic tectonic boundary between the 

two. 

To resolve this large amount of convergence, we can suggest at least three ‘tectonic’ 

interpretations and one ‘sedimentary’ counter-interpretation. First, we could propose that an 

as yet unobserved boundary between Tarim and the NCB occurs, maybe in the desertic 

corridor near 95–100° longitude (as proposed for instance by [4]). This might extend as a NS 

trending strike-slip zone now obliterated beneath the eastern Kunlun and Qaidam thrusts. It 

could link in some way with the Mongol–Okhotsk and Altai–Sayan Tuva ranges and sutures. 

However, geological observations do not provide support for what should be a fairly 

conspicuous zone of large-scale Cenozoic deformation. A second hypothesis would imply a 



clockwise rotation of the Tarim block, with a hinge or pole of rotation not far from the eastern 

termination of Tarim. This is akin to the kinematic model of Avouac and Tapponnier [53], 

which has Tarim currently rotating clockwise with respect to Siberia in a clockwise sense at 

0.65°/Ma about a pole at 43.5°N, 95.7°E, i.e. 500 km to the NW of Yumen (Fig. 1a). For an 

order of magnitude calculation, continued rotation for the last 20 Ma, i.e. at the time of main 

development of the NE Altyn Tagh and Qilian Shan, would result in a 13° finite rotation, or a 

250 km northward motion at the locations of Yingjisha (39°N, 76°E [8]) and Paicheng-Kuche 

(42°N, 82–83°E [52]): these Tarim (sensu stricto) sites are located respectively on the 

southern and northern margins of the block, 1700 and 1500 km west of our Yumen site. This 

would have the advantage of corresponding to the documented recent motion of the blocks, 

and of avoiding intense deformation (again not observed) at the junction between Tarim and 

the NCB. A third hypothesis is that the Tarim data, which are still few, may not everywhere 

represent the stable Tarim block. Again, the southern margin data near Yingjisha are 1700 km 

west of our Yumen site, and there are no other data available on the Tarim margin in between. 

There have been suggestions [57] and [58] that there was an older phase of motion on the 

Altyn Tagh fault and on major parallel strands to the north (Checheng fault). Some Cenozoic 

motion could have taken place between the southern Tarim site and some thrust system 

located north of Yingjisha, up to the Maza Tagh in Central Tarim. Note that all three 

mechanisms could contribute some amount to the total larger displacement, but this is not 

testable in the current state of our knowledge and data. 

An alternative to a tectonic hypothesis would be to invoke some form of shallowing of the 

paleomagnetic inclinations (by about 10°) of all Lower Cretaceous sediments in the Tarim 

and Qaidam, but not those in North China or at Yumen. Inclination shallowing has been 

uncovered in many paleomagnetic studies of Cenozoic red beds in Asia [6], [28], 

[34] and [38]. Interpretations other than tectonic include non-dipole field geometry [36], 

errors in the reference APWP for Siberia [6], errors in age determination of the largely non-

fossiliferous red beds, or inclination shallowing due to sedimentary or rock magnetic 

problems at the time of acquisition of magnetization [28] and [37]. Besse and Courtillot 

[48] and [59] find no evidence for significant long-standing non-dipole field components 

other than a small axial quadrupole less than 5% of the axial dipole in the global data base. 

A critical test could come from vindicating the paleomagnetic characteristic remanent 

magnetization (ChRM) determined from red beds with observations of ChRM from coeval 

lavas. This is unfortunately a difficult test, due to the dearth of adequate volcanic outcrops in 

Central Asia. Two such tests have recently become available. The first is from Paleogene 

basalts (estimated at 50±15 Ma) from the Kyrgyz Tien Shan near 41°N, 76°E, studied by 

Bazhenov and Mikolaichuk [38]. These yield an inclination difference of 7.9±4.8° with 

respect to those predicted by the Besse and Courtillot master curve at 50 Ma, and virtually 

zero if the age were 60 Ma, which is within the estimated age uncertainty. In any case this is 

10–20° steeper than most observed inclinations in Cenozoic red beds from Central Asia, 

confirming the occurrence of significant inclination shallowing in these red beds (see also 

[28]). Should these results be confirmed, it seems that the hypothesis that the Siberian APWP 

is not well modelled by the Eurasian APWP due to internal deformation [6] is not required by 

the data. 

The effect is far smaller, if not negligible in older Mesozoic red beds [38]. Zhao et al. [60], 

and X. Zhao (personal communication, 2002) have measured K–Ar dated Cretaceous basalt 

samples from the Trans-Baykal region (50–52°N, 105–111°E), which yield positive fold and 

reversal tests and are not statistically different from the 95–130 Ma reference poles of Besse 



and Courtillot [59] in terms of latitude. Therefore, the Eurasian based reference APWP is 

apparently appropriate for Cretaceous Siberia, and there is no reason to revise the 

interpretations based on data of this age (e.g. [6] and [8]), contrary to what is suggested by 

Bazhenov and Mikolaichuk [38]. There is therefore no reason to suspect that Mesozoic 

paleomagnetic data are affected by large inclination shallowing, contrary to what is observed 

in Cenozoic data. With this in mind, we have analyzed the anisotropy of magnetic 

susceptibility (AMS) of 60 samples from our Yumen collection. The mean anisotropy is in the 

order of 1.5% or less, and the mean principal (k1) axes have a westward declination and a 

shallow inclination of about 11° to the NNE, which, if interpreted as indicating that the 

sediments were not initially horizontal, would lead to an even larger discrepancy in 

inclinations, hence paleolatitudes. We therefore believe that the AMS of our samples is a 

primary, sedimentary one which gives no reason to invoke inclination shallowing. It would of 

course be interesting to further conduct experiments and corrections as outlined for instance 

by Kodama [61], and we intend to undertake these rather time-consuming experiments. 

5. Conclusion 

We have reported new paleomagnetic results from nine sites of the Early Cretaceous 

Xinminpo Formation collected near Yumen in the Hexi Corridor of Northwestern China. A 

normal polarity, high temperature characteristic magnetic component is isolated and passes a 

fold test: we argue that this is a primary magnetization which can be dated at 100–118 Ma. 

The corresponding direction is slightly steeper than, but consistent with results from three 

other studies from the NCB. We conclude that, within paleomagnetic uncertainty, Yumen was 

part of the NCB as early as the beginning of the Cretaceous, and that the Hexi Corridor 

formed its westernmost extension. A review of published poles confirms previous views that 

the South and North China (plus Mongolia) blocks and the Siberian craton have not 

undergone very significant internal deformation since the Cretaceous, and therefore have not 

been very significantly modified by the India–Asia collision. It should be once more recalled 

that the still large uncertainties that pertain to these paleomagnetic results allow for 

tectonically significant latitudinal motions on the order of a couple of hundred kilometers or 

even more, for instance in the SCB/NCB and NCB/Siberia (Mongol–Okhotsk) suture zones. 

When the NCB results are compared to the two studies available from the Qaidam block, i.e. 

the northeasternmost component of the Tibetan plateau (sensu lato), a major discrepancy is 

observed between the two poles. One might worry that some of the results are affected by 

inclination shallowing, as is observed in many Cenozoic red bed studies from Central Asia. 

Recent (but still partly unpublished and few in number) paleomagnetic studies of coeval lavas 

seem to confirm the inclination shallowing of Cenozoic rocks, and also to confirm the validity 

of the Eurasian reference APWP when it is considered applicable to the Siberian craton, both 

in the Paleogene and in the Cretaceous. But there is no evidence that most or all of Asian 

Mesozoic red beds suffer the same inclination shallowing as the Cenozoic ones. In any case 

no inclination shallowing is suggested (or needed) to account for our Yumen results (which 

on the contrary tend to be a bit steep), and measurements of AMS seem to confirm a flat 

sedimentary fabric. An interpretation in terms of inclination shallowing would actually 

require that all results from Tarim and Qaidam suffer from this effect, yet none of those from 

North China or Yumen, which would seem a strange coincidence. Since non-dipole field 

hypotheses seem equally untenable, we are left with tectonic interpretations, some of which 

may seem puzzling and require further testing by field observations. 



The fact that our Yumen results, and those from the NCB, require a significant (∼20°) 

clockwise rotation of Qaidam with respect to the NCB (and ∼15° with respect to Tarim) 

confirms previous results and does not come as a surprise. The significant north–south 

convergence between the NCB and Qaidam in the Qilian Shan is not a surprise either, 

although its value, even after correction for up to 250 km of latitudinal motion due to large 

strike-slip in the Altyn Tagh fault, is quite large at 490±500 km (if very uncertain). A larger or 

earlier phase of convergence in the Qilian Shan is therefore suggested by paleomagnetism, 

which could correspond to Eocene fission track ages recently reported from there. But the 

most puzzling results implied by the combined Yumen and NCB results is a large latitudinal 

motion of 1000±800 km between Tarim and the NCB: these two blocks had been generally 

considered as forming a single stable entity since about 160 Ma. Three tectonic hypotheses 

can be made to interpret these results: (1) the existence of an as yet unobserved major NS 

trending strike-slip boundary between Tarim and the NCB near 95–100° longitude in the 

desertic corridor between the two blocks; (2) the existence of major NS motion in the Maza 

Tagh, north of our southernmost western Tarim margin sites, which would therefore not have 

been part of stable Tarim since their deposition; and (3) clockwise rotation of the Tarim plate 

with respect to the NCB about a pole located near its eastern termination. Twenty million 

years of persistent rotation about the pole found by Avouac and Tapponnier [53] to describe 

current block kinematics at the current rate would lead to 13° of rotation and 250 km of NS 

motion at the western sites sampled in Tarim for paleomagnetism. In any case, the Yumen 

results narrow down the location of large, previously documented NS motion between Tibet 

and Siberia which must have taken place in the Qilian Shan. In the last 20 Ma of the collision, 

the Qilian Shan has become the northern margin at which an increasing fraction of the India–

Asia collision is absorbed. 
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