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Abstract 
The article addresses Pb uptake and microstructural/morphological modifications of a (Mg, 

Ca) bentonite (Prrenjas, Albania) after interaction with solutions of elevated lead content. 

Comparison is made with a Wyoming montmorillonite transformed to the Mg-dominated 

form.  

Characterized by X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM) the 

Prrenjas bentonite is predominantly a smectite, containing 10% of interlayered illite, with 

associated kaolinite, antigorite, halloysite and minor chlorite. Significant magnesium is 

present in the octahedral layer in association with aluminium and iron. The CEC is rather high 

(above 80 meq/100g). Magnesium and calcium are the main cations exchanged during CEC 

determinations and Pb uptake experiments. From TEM studies, microstructural units are 

composed by closely packed clay particles with 10 to15 stacked platelets, in contrast with 

Wyoming montmorillonite.  



Exchange experiments with lead nitrate on suspended clays, have been performed with 

concentrations ranging from 10-5 M to 10 -2 M. A comparable capacity of lead sorption is 

observed by Atomic Absorption Spectrometry (AAS) for Prrenjas bentonite and Wyoming 

montmorillonite. At increasing lead uptake, a higher reduction of hydration in interlayer space 

is observed by XRD on Wyoming montmorillonite. At the highest lead concentrations, X-ray 

Photoelectron Spectroscopy (XPS) analyses of the Prrenjas Bentonite reveal Pb sorption in a 

“non interlayer” site. TEM images of the same clay show an important size decreasing of 

microstructural units in relation to the lead sorption. On the contrary, the Mg-Wyoming 

montmorillonite is not modified.  

Presumably, the “non interlayer lead” uptake results either from surface complexation at an 

edge site or from ionic exchange with edge-exposed octahedral magnesium. Both mechanisms 

could initiate at edge-to-face contacts and result in a breaking process of the microstructural 

units 
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1. Introduction 
 

The usefulness of bentonites in several applications can be attributed to their high capability 

for sorbing heavy metal ions. In this respect, the interaction between toxic heavy metals and 

clay minerals is of great interest in environmental-pollution studies, waste management and 

soil science. Retainment of heavy metals is at the basis of geochemical barriers against 

aquatic pollutants (Brigatti et al., 1995). In this regard, smectites are playing an important role 

as components of geological landfill barriers e.g. as Geosynthetic Clay Liners (Bouazza, 

2002). For a given smectite and fixed geometrical and hydrodynamical conditions, 

clay/solution interactions are controlled by the solution composition, in particular by ionic 

strength, pH and saturation state. These interactions result in various effects at different scales 

from nanoscopic (e.g. cation sorption with ion exchange; Sposito, 1984) to macroscopic (e.g. 

variation of hydraulic conductivity; Petrov et al., 1977, or shrink-swell behaviour; Tuller and 

Or, 2003).  

A percolation experiment carried out by Jozja et al., (2003) with a natural (Mg, Ca)-bentonite 

from Prrenjas, Albania, and a lead nitrate (10-2 M) solution, until saturation by lead of the 

compacted clay, has shown a great increase, by a factor forty, of the permeability during lead 

uptake. It was only by a factor two with a Mg-exchanged Wyoming Na-montmorillonite 

(Jozja, 2003). The great differences observed with a same solution and similar amounts of 

lead suggest different relations between metal sorption and permeability variations for these 

two clays. 

Thus, in order to explain the influence of elevated lead concentrations on the permeability 

increase of a (Mg, Ca)-bentonite, the aim of the present paper is to analyze microstructural 

modifications parallel to lead sorption. The general idea is to prepare samples of Prrenjas 

bentonite and reference Mg-exchanged Wyoming Na-montmorillonite equilibrated in 

suspension at different lead concentrations scattering in the range 0.01 to 10 mmol L-1 then to 

characterise lead fixation and the microstructure of clay aggregates. Solutions were analysed 

by Flame Atomic Absorption Spectrometry (F-AAS) and clay samples that had reacted with 

solutions were studied by X-ray diffraction (XRD), Transmission Electron Microscopy 

(TEM) and X-ray Photoelectron Spectroscopy (XPS). The results of these studies are then 

used to address two issues relating lead uptake with the clay microstructure: 

- the fixation mechanisms of lead with special respect to “non interlayer” sorbed metal 

(XRD, F-AAS, XPS) 



- the texture of clay aggregates and its variations after interaction with lead-rich solutions 

(TEM). 

 

2. Materials and Methods 
2.1. Samples 

The bentonite used in this work is originating from the Prrenjas region (Albania). It is 

derived from supergene alteration of Mg-rich ultrabasic rocks followed by transport 

then sedimentation of alterites in lagoons during Holocene times. It is largely made up 

of a smectite (Jozja, 2003). In order to preserve the initial “natural” state of Prrenjas 

bentonite, no chemical treatment was carried out. The coarse fraction was removed by 

sedimentation in pure water. In addition to clays, the purified bentonite sample contains 

several impurities, mainly quartz (about 2%), and less than 1% of plagioclase and 

carbonate. 

A Wyoming Na-montmorillonite (called SPV; Comptoir des Minéraux et Matières 

Premières, France; Auboiroux, 1998) was chosen as a reference material. As shown 

later, the main cation released during CEC determinations of the Prrenjas bentonite is 

Mg2+. For this reason, the Wyoming Na-montmorillonite was transformed to the Mg-

dominated form. Chemical composition of the two materials is presented in Table 1. 

 

2.2. Clay mineralogy and physicochemical properties 

XRD analyses were performed with a Nonius Diffractis 582 diffractometer, automated 

with an electronic device controlled by a Siemens Diffrac-AT system, using Cu Kα 

radiation (at 35 kV and 25 mA),. Characterisation of powders was carried out using both 

oriented air-dried samples and ethylene glycol solvated ones. Powder XRD patterns of 

Prrenjas bentonite indicate the predominance of smectite significantly affected by 

ethylene glycol solvation (17.55 Å) and are indicative of the presence of interstratified 

1:1 phases. Although no illite peaks were detectable by XRD, K2O contents would 

indicate the presence of illitic components. Otherwise, a study by Small Angle X-ray 

Scattering (Jozja, 2003) showed that the smectite phase of Prrenjas bentonite contains 

approximately 10% illite layers, in good agreement with K2O contents indicated by 

chemical analysis. Moreover, the smectite peaks are broader than generally observed, 

suggesting the presence of illite in random interlayering with smectite (Jozja, 2003).  

 



Clay samples were examined with a Philips CM 20 transmission electron microscope 

(TEM). To have a good transmission of the electron beam, the samples were prepared as 

ultra-thin sections. Investigations were carried out in the gel-like form (1.5 g H2O per 1 

g clay). For this purpose, and to perturb, as little as possible, the initial microstructural 

organisation of clay/water system, the sample internal water was substituted by a resin, 

using solvents (Tessier, 1984). TEM observations confirm the presence of smectite as 

the principal clay mineral and clarify the identity of 1:1 phases detected by XRD. There 

is a low percentage of antigorite (about 7%) and approximately 10% of kaolinite and 

halloysite. Minor chlorite is also detected. 

Moreover, the smectite phase of the Prrenjas clay studied by TEM displays a distinct 

structure. Indeed, one can observe microstructural units largely consisting of an 

association of small particles, closely packed together, without inter-particle pore space. 

These microstructural units can be defined as microaggregates (Figure 1a). The mean 

size of microaggregates is 0.3 to 0.4 µm with a maximum size of about 0.7 µm. The 

particles that compose the microaggregates are small, with a lateral extension generally 

lower than 0.1 µm. They are associated not only face-to-face and edge-to-edge, but also 

edge-to-face. In addition, particles of Prrenjas clay are more or less rigid and are made 

of a small number of layers (statistically 14). In comparison, Wyoming Mg-

montmorillonite was studied by TEM. Investigations show that the magnesium 

exchange of Wyoming Na-montmorillonite leads to a decrease of particle dimensions 

without modifying the typical texture of smectite (Figure 1b). 

The most important physicochemical properties of Wyoming Mg-montmorillonite and 

Prrenjas bentonite are presented in Table 2. Cation Exchange Capacity (CEC) was 

determined using the cobaltihexamine method (Morel,1957) and related to the weight of 

calcinated clay. Cobaltihexamine ion concentration was measured by the colorimetric 

method, using a HITACHI U-1100 Spectrophotometer, at 473 nm. The CEC of Prrenjas 

sample is slightly inferior to that of the Wyoming clay. Solution analysis by F-AAS 

shows that about 80% of exchangeable sites are occupied by Mg2+ and 20% by Ca2+. In 

fact, an evaluation of the nature of the layer charge was made using Hofmann and 

Klemen's procedure (Hofmann and Klemen, 1950). For Prrenjas bentonite about 45% of 

tetrahedral charge has been determined indicating, for this clay, a beidellitic character. 

External surface area (SE) was determined by nitrogen adsorption using a Micromeritics 

ASIP 2000 apparatus and applying the BET equation. With the same operating 

procedure (drying at 105 °C, desorption under vacuum at 105 °C, multi-points method) 



for the two samples, the surface area of 95.3 ± 1.2 m2.g-1 of Prrenjas bentonite, in 

comparison with Wyoming montmorillonite (surface area of 46.0 ± 1.1 m2 g-1), suggests 

smaller particle size The total specific surface (ST) was determined using the Ethylene 

Glycol Surface Method (Eltantawy and Arnold, 1974). The weight percentage of 

smectite layers of Prrenjas sample was evaluated about 80%, assuming a mean total 

surface area of respectively 140 and 750 m2 g-1 for pure illite and smectite. Furthermore, 

permeability with pure water, obtained according to the generalised Darcy's law, using 

an oedometer device (Jozja, 2003), is in the range of 10-11 m s-1, about ten times higher 

than that of the Wyoming Mg-montmorillonite (10-12 m s-1) determined by the same 

technique. 

 

2.3. Approximated structural formula 

The structural formula of the Wyoming montmorillonite sample (in Ca-exchanged 

form) was previously determined by Auboiroux (1998) from chemical analysis and 

assuming that Ca, Na and K are in exchangeable sites :  

 (Ca0.188Na0.003K0.002)(Al1.56Mg0.25Fe0.18Ti0.005)(Si3.91Al0.09)O10(OH)2 

 

For Prrenjas bentonite, the difficulties due to compositional variability, sample 

heterogeneity (i.e., illite/smectite interlayering) and impurities, even in the finest clay-

size fraction, complicate the determination of the true structural formula. In this case, a 

crystal-chemical formula of the 2:1 phase of Prrenjas bentonite was calculated from the 

chemical analysis of a Na-exchanged sample and also from hypotheses about the 

proportion of the additional phases (antigorite, kaolinite and halloysite) (Jozja, 2003). 

Moreover, an ideal  structural formula was assigned to these additional phases. 

In these conditions, the following structural formula, in which K corresponds to the 

minor interstratified illite component, was established: 

 (Na0.42K0.09Mg0.034Ca0.009)(Fe3+
1.26Al0.45Mg0.24Fe2+

0.006)(Si3.69Al0.30)O10(OH)2 

 

Taking into account uncertainties, this structural formula is considered as the most 

reliable approximation, But, it is obvious that this result must be used with caution. 

 

 

 

 



2.4. Experimental procedure 

Suspensions of clays were made by adding 360 mg of clay to 100 ml of lead nitrate 

solutions, with different Pb concentrations in the range 10-5 M to 10-2 M, in a 250 mL 

centrifugation container closed with a sealing cap to limit interaction with atmospheric 

CO2. Lead solutions were obtained by diluting, with ultra-pure water, a 10-2 M stock 

solution prepared from high grade lead nitrate (Merck). The pH was systematically 

measured. Depending on the metal concentration of the initial solution, it was found to 

be 5.7, for the lowest concentration and 3.8 for the highest one. In addition, the lead 

concentration of initial solutions was controlled by F-AAS using a HITACHI Z-8100 

spectrophotometer with Zeeman background correction. Working curves were 

established with standards obtained by dilution of a 1000 mg L-1 commercial standard 

solution. Analytical accuracy is ± 1 % with detection limits varying from 0.01 mg L-1 

for Na and Mg and 0.05 mg L-1 for K and Ca to 0.2 mg L-1 for Pb. 

Initially, kinetic experiments were performed, with two initial Pb concentrations (10-4 M 

and 10-3 M), to make sure that the exchange duration is sufficient to reach an 

equilibrium state. Six runs (0.5, 1, 2, 4, 16 and 24 h) were selected. A stationary state 

was reached within 0.5 h, indicating that exchange phenomena were very fast. However, 

a larger run duration (16 h) was chosen. 

To each initial Pb concentration there is a corresponding sample. The clay suspensions 

were shaken with an IKA HS 250 shaker during 16 h at room temperature (25°C). Then, 

the solid was separated from the solution by centrifugation during 20 minutes at 4500 

rpm with a SV8-FIRLABO centrifuge. Pb, Mg and Ca concentrations were determined 

in equilibrium solutions using F-AAS. At the end of runs, the pH of the suspensions 

were systematically measured. The separated solid samples were rinsed with ultra-pure 

water using a filtration device, then air dried and reserved for studies by XRD, TEM 

and XPS. 

For TEM observations of lead exchanged samples, the hydration phase has not been 

applied during the sample preparation, in order to minimise textural modifications and, 

to have a same object for other analysis techniques. In this case, the “voids” (water + 

air) are substituted with a resin by carrying out an inclusion.  

XPS analyses were performed with an AEI ES 200B spectrometer using a magnesium 

anticathode. In this technique (Paterson and Swaffield, 1994) the proportion of emitted 

photoelectrons that may escape the solid without energy loss decreases exponentially 

with depth and may be considered negligible beyond three “mean free paths” (i. e. about 



7 nm for silicates; Kuhr and Fitting, 1999; Jung et al., 2003). Samples were gently 

crumbled then put onto adhesive tape. The binding energy of Pb4f7/2 photoelectrons was 

determined with reference to Si2p photoelectrons with Eb = 102.7 eV (Wagner et al., 

1978) rather than adventitious carbon because of the electrical insulator character of the 

samples. Quantitative results are expressed as atomic concentration ratios normalised to 

silicon. Sensitivity factors for quantitative analysis were previously determined from 

glasses of known composition. Uncertainties on atomic ratios can be estimated to ± 5% 

(Pb/Si) to ± 10% (for other ratios) since heavy elements, i.e. Pb, are more sensitive. 

 

 

3. Results of clay-lead solutions interaction 
 

3.1. Solution analyses 

After lead exchange, the pH of solutions is in range 7.3 to 4.6 for the highest lead 

concentrations. Figure 2 displays Pb amounts (mmol g-1) sorbed by the clay and 

amounts of cations released in solution for Wyoming Mg-montmorillonite and Prrenjas 

bentonite. A good agreement between sorbed lead and the sum of released cations is 

noticed. For Wyoming Mg-montmorillonite, the results are similar to those obtained by 

Auboiroux et al., (1996) for the Ca-exchanged form. In both samples of Wyoming clay, 

the plateau value is lower than the CEC value determined by the cobaltihexamine 

method. A good capacity of lead retention is also observed for Prrenjas bentonite with a 

plateau value slightly higher than the CEC. 

 

3.2. X-Ray Diffraction patterns 

The initial and Pb-exchanged samples were analysed by XRD to observe the evolution 

of the d001 reflection with an increasing lead content in clay (Figure 3). Diffractograms 

of Wyoming Mg-montmorillonite and Prrenjas bentonite show that the lead exchange 

results in a shift of the peak to higher angles. Moreover, for Prrenjas bentonite a 

broadening of the peak is clearly observed while, for Wyoming Mg-montmorillonite, 

the peak remains narrow except at the concentration of 2 mmol L-1 where two peaks are 

found. The d001 value of the initial Prrenjas clay is 15.23 Å while it is 15.11 Å for the 

Wyoming Mg-montmorillonite. Figure 4 shows the evolution of d001 with increasing 

lead concentrations. For both materials, the d001 values decrease when the concentration 



of lead is higher than about 1 mmol L-1. This effect is enhanced in the Pb-exchanged 

Wyoming samples (d001 = 12.70 Å) in comparison with Prrenjas bentonite (d001 = 13.59 

Å). 

 

3.3. TEM observations 

For both materials, the TEM examination was carried out for Pb-exchanged samples 

corresponding to lead solution concentrations of 0.8 mmol L-1 and 10 mmol L-1. TEM 

observations of Wyoming samples do not show important structural modifications, at 

the investigated level, even by interaction with 10 mmol L-1 solution (Figure 5a). 

However, a face-to-face re-association of particles seems to occur to form thicker units. 

In contrast, TEM investigations of the Pb-exchanged Prrenjas bentonite sample, related 

to the 10 mmol L-1 solution, reveal an important size decrease of the microstructural 

units with respect to the initial structure (Figure 5b). The mean size of microaggregates 

is about 0.2 µm while the lateral extension of the associated particles is not significantly 

modified (predominantly lower than 0.1 µm). Moreover, a number of single particles 

are formed evenly throughout the area as can be seen in Figure 5b. At this concentration 

of 10 mmol L-1, a lead-rich zone, probably made of lead precipitates (carbonates ?), was 

locally observed. These structural modifications are far less important at the 

concentration of 0.8 mmol L-1; only a limited size decrease of microstructural units 

being noticed. Moreover, at this lower concentration, the precipitation of lead 

compounds has never been observed.  

 

3.4. XPS analysis 

The binding energy of the Pb4f7/2 photoelectrons is 139.4 ± 0.2 eV for Prrenjas sample 

and 139.8 ± 0.2 eV for Wyoming Mg-montmorillonite. Due to the charge of layers these 

values are largely higher than that of the reference lead nitrate compound (138.5 eV). 

Moreover, the lower binding energy for Prrenjas sample can be attributed to the higher 

d001 spacing when compared to Wyoming Mg-montmorillonite (Dutta et al., 1999). 
Based on XPS data, Figure 6 indicates the variation of the Pb/Si atomic ratio as a 

function of lead concentration of initial solution in mmol L-1. The Pb/Si atomic ratio 

increases with the initial Pb content of the solution until it reaches, at 6 mmol L-1, a 

plateau value of about 0.11. Furthermore, a slight inflexion of the curve is suspected at 1 

mmol L-1. The XPS data for the Wyoming Mg-montmorillonite are also reported in this 

Figure. Initial Pb/Si values are mixed up with those of Prrenjas sample. The plateau 



value close to 0.065, significantly lower than for Prrenjas bentonite, is reached at about 

2 mmol L-1. 

 

4. Discussion and conclusion 
 

The main characteristics of Prrenjas smectite, as determined by different methods of 

investigation, can be summarised as follows: i) significant magnesium is present in the 

octahedral layer in association with aluminium and iron; ii) magnesium and secondarily 

calcium are the main cations exchanged during CEC determinations and Pb uptake 

experiments; iii) 10% of illite is interlayered with the smectite phase; iv) microstructural units 

are composed of closely packed clay particles made of 10 to 15 stacked platelets. Concerning 

the magnesium content, Touret et al., (1990) and Churchman et al., (2002) have shown that 

magnesium-rich smectites are different from ordinary bentonites with, in particular, very 

small particles. 

In smectites, sorbed metals (Fletcher and Sposito, 1989) form complexes either in the 

interlayer space to counterbalance the permanent negative charge of the layer (outer-sphere 

adsorption) or on the hydroxyl edge sites where the crystal structure is interrupted (inner-

sphere adsorption). X-ray absorption spectroscopy permits to distinguish between the two 

sites from their different local atomic structures (LAS) when heavy metals such as lead 

(Strawn and Sparks, 1999), cobalt (Schlegel et al., 1999) or copper (Morton et al., 2001) are 

sorbed by smectites. With respect to lead, XAFS results (Strawn and Sparks, 1999) indicate at 

low ionic strength and variable acid pH an outer sphere complexation with the LAS 

surrounding the adsorbed Pb similar to the LAS surrounding aqueous Pb2+. At elevated ionic 

strength and slightly acidic pH, the LAS is characteristic of inner-sphere complexation. By 

varying the pH solution and the concentration of electrolyte, samples with heavy metal 

dominantly located at interlayer or edge sites may be prepared (Morton et al. 2001). Both 

adsorption complexes may be present in the same sample, depending on pH and ionic strength 

(Strawn and Sparks, 1999). In addition to chemical parameters, the size and morphology of 

smectite particles clearly plays a role with respect to the relative importance of edge sites. An 

elevated ratio (basal area)/(thickness), typical of Wyoming montmorillonite, will favour the 

relative importance of interlayer sites. A third type of sorption, the replacement of edge-

exposed octahedral Mg is possible. It has been proposed to partly explain the fixation of 

copper and zinc on the surface of sepiolite (Vico, 2003). It has been documented during 



uptake experiments of cobalt by hectorite, a magnesian smectite (Schlegel et al., 1999). This 

process results in equimolar metal sorption and Mg release. If it is relevant in the case of the 

magnesium-rich Prrenjas bentonite, edge-exposed Mg is included in the CEC and lead may be 

fixed at these sites after ionic exchange. An indirect consequence of the exchange of 

interlayer hydrated cations (alkaline or alkaline earth elements) with aqueous lead at an 

elevated concentration is a decrease of the basal spacing of a smectite related to a decrease of 

the number of water layers. This fact underlines the role of lead on the swelling properties of 

bentonites (Brigatti et al., 1995;  Auboiroux et al,. 1996). More generally it is admitted 

(Siantar and Fripiat, 1995; Brindley and Brown, 1980) that when d001 is about 15.5 Å, one has 

a two-water-layer hydrate, when it is about d001 = 12.5 Å there is only one water layer. When 

it scatters in the range 12.5 to 15.5 Å one has an interstratification of one and two-water-layer 

hydrates. Considering Prrenjas and Wyoming clay materials, interstratification is the general 

case. At the higher lead concentrations, the two different clays display distinct hydration 

states. With a maximal Pb uptake the Wyoming sample presents only one water layer, while 

the Prrenjas bentonite remains in an interlayering one/two-water-layer. This result suggests 

that, in the Prrenjas clay, at concentrations higher than 1 mmol L-1, less lead has been trapped 

in an interlayer site with respect to the Wyoming Mg-montmorillonite. On the contrary, in the 

1 to 10 mmol L-1 range, Figure 2 indicates similar amounts of total lead fixed by both 

materials. Accordingly, a non interlayer sorption site has to be involved, at elevated 

concentrations and ionic strengths, in the Prrenjas bentonite. 

Clay minerals, as a result of their planar layered structure, are easily studied by XPS before 

and after metal uptake (Adams and Evans, 1979; Davidson and McWhinnie, 1991; Auboiroux 

et al., 1998; Gier and Johns, 2000). XPS data are useful to put in evidence the lack or 

existence of ionic exchanges. The Al/Si and Fe/Si atomic ratios measured on Prrenjas 

bentonite do not vary significantly whatever the initial Pb concentration in the solution. They 

are respectively 0.35 ± 0.04 and 0.28 ± 0.03 for the ten Pb-exchanged samples in comparison 

with 0.38 and 0.29 for the initial sample. Accordingly, the possibility of an exchange of Pb 

with Al or Fe may be discarded. Due to the chemical composition of Prrenjas sample the 

decrease of the Mg/Si atomic ratio during the exchange is relatively low from about 0.19 to 

0.14. In Figure 7, the sum of Pb/Si, Mg/Si and Ca/Si atomic ratios is plotted versus the 

amount of sorbed Pb, determined from solutions analysis. The constancy of this sum is 

consistent with ionic exchange of Pb with Mg and Ca. It is the case for Wyoming Mg-

montmorillonite and, at low concentrations, for Prrenjas bentonite. But, for the latter, at the 

highest Pb concentrations, a slight but significant discrepancy is noticed in agreement with the 



existence of an additional sorption process. Figure 8 plots, for Wyoming Mg-montmorillonite 

and Prrenjas bentonite, the Pb/Si atomic ratio of the solid, obtained by XPS, as a function of 

the amount of lead fixed by the material. The results for a Wyoming Ca-montmorillonite 

(Auboiroux, 1998) are also reported. A linear trend can be noticed at the lowest 

concentrations. When lead uptake results from an exchange with interlayer cations, the Pb/Si 

atomic ratio determined by XPS increases with the concentration of sorbed lead. This relation 

is linear if the atomic lead concentration by volume is identical within the four or five surface 

layers (corresponding to an analysed depth of about three mean free paths of Pb4f7/2 and Si2p 

photoelectrons) and in the bulk sample. Indeed, on the one hand, this volume concentration, 

which is a function of the basal spacing, is obviously proportional to the molar concentration 

of sorbed lead. On the other hand, the atomic concentration of silicon by volume monitors the 

basal spacing variation effect. Consequently, the Pb/Si atomic ratio is independent of the 

degree of swelling and proportional to the molar concentration of sorbed lead. As indicated in 

Figure 8, a good linear trend is observed with Wyoming montmorillonite at any lead 

concentration. For the lowest lead concentrations (up to about 1 mmol L-1), a linear 

relationship is also noticed for Prrenjas bentonite. Silicon distribution being nearly the same 

within tetrahedral layers of different smectites, the two trends are nearly superimposed. At 

higher concentrations the elevated values of Pb/Si ratios, well above the linear trend, suggest 

an excess Pb sorption on the Prrenjas clay somewhere else than in the interlayer space (“non 

interlayer lead”). 

Two hypotheses may be formulated to explain this result. The first one is the fixation of lead 

by surface complexation at edge sites and (or) by ionic exchange with edge-exposed 

magnesium. The second hypothesis is the presence of a Pb-rich precipitated phase (Siantar 

and Fripiat, 1995). Although samples studied by TEM are not statistically representative of 

the bulk, the rare appearance of Pb-rich precipitates can be noticed. Thus, after Pb exchange 

the pH is increasing due to Mg (and Ca) concentration in the solution. However, for the 

highest initial lead concentration the pH remains under 5. In these conditions, calculations 

using solubility products of lead hydroxide [log(Ksp) = -19.5] and lead carbonate [log(Ksp) = -

13.1] indicate that only (ageing) 10-2 M experiments could lead to carbonate precipitation. On 

the other hand, if the sample is not well rinsed, lead-compound precipitates can be observed 

on dried samples in relation to increase ionic concentrations. They would hardly be detected 

by XPS, because their apparent area, as “seen” by impinging X rays, would be small. 

In contrast, one may consider small size particles made of 10-15 stacked platelets with a 

lateral extension of 50 to 150 nm (Figure 5, b). Lead atoms located at edge surface, as well as 



in substitution to edge-exposed Mg will be easily detected by XPS (Figure 9) mostly because 

the corresponding photoelectrons are directly emitted from the surface without absorption. 

TEM investigations show the importance of the effect on the size reduction (Figure 10) of 

microstructural units of the Prrenjas bentonite after interaction with 10 mmol L-1 solution. The 

process is only incipient with 0.8 mmol L-1 solution. Moreover from Figure 8 ”non interlayer 

lead” is detected when total fixed lead is higher than about 0.3 mmol g-1, corresponding to an 

initial concentration higher than about 0.2 mmol L-1 (Figure 6). Accordingly, at a 10 mmol L-1 

concentration, the size reduction of microstructural units may be correlated with lead uptake 

in a non interlayer site. Presumably, lead uptake results either from surface complexation at 

an edge site or from ionic exchange with edge-exposed octahedral magnesium. Both 

mechanisms probably initiate at edge-to-face contacts, which are especially numerous in 

Prrenjas bentonite, leading to the disassociation of the particles forming the microstructural 

units.  

This conclusion has been established with clay suspensions but probably the breaking process 

of clay aggregates in smaller units also occurs when clay is compacted. The texture 

modification of the clay material, resulting from the disassociation process, could favour the 

percolation of water by pore enlargement and creation of new percolation paths. Thus, this 

process, at the scale of microaggregates, is probably the cause of the enhancing permeability 

of compacted Prrenjas bentonite (Jozja et al., 2003) observed, with a high lead concentration 

solutions, at lead saturation. 

 



References 
 

Adams, J.M. & Evans, S. (1979) - Exchange and selective surface uptake of cations by 

layered silicates using X-ray photoelectron spectroscopy (XPS). Clays and Clay Minerals, 27, 

248-252. 

Auboiroux, M., Baillif, P., Touray, J.C. & Bergaya, F. (1998) - XPS analysis at constant ionic 

strength of Ca-Cd and Ca-Pb exchanges on a Ca-montmorillonite. Comptes Rendus de 

l'Académie des Sciences - Series IIA - Earth and Planetary Science, 327, 727-730. 

Auboiroux, M. (1998) - Affinité de différents cations métalliques (Co2+, Ni2+, Cu2+, Zn2+, 

Cd2+, Pb2+) pour une montmorillonite calcique. Expérimentation et applications. Ph.D. Thesis, 

Univ. Orléans, France, 304 pp. 

Auboiroux, M., Baillif, P., Touray, J.C. & Bergaya, F. (1996) - Fixation of Zn2+ and Pb2+ by a 

Ca-montmorillonite in brines and dilute solutions: Preliminary results. Applied Clay Science, 

11, 117-126.  

Bouazza, A. (2002) - Geosynthetic clay liners. Geotextiles and Geomembranes, 20, 3-17. 

Brigatti, M. F., Corradini, F, Franchini, G. C., Mazzoni, S., Medici, L. & Poppi L. (1995) -  

Interaction between montmorillonite and pollutants from industrial waste-waters: exchange of 

Zn2+ and Pb2+ from aqueous solutions. Applied Clay Science, 9, 383-395. 

Brindley, G. W. & G. Brown (1980) Crystal structures of Clay Minerals and Their 

Identification. Mineralogical Society, London, 495 pp. 

Churchman, G. J., Askary, M., Peter, P., Wright, M., Raven, M. D.& Self, P. G. (2002) - 

Geotechnical properties indicating environmental uses for an unusual Australian bentonite. 

Applied Clay Science, 20, 199-209. 

Davison, N. & McWhinnie, W.R. (1991) - X-Ray Photoelectron Spectroscopic Study of 

Cobalt (II) and Nickel(II) Sorbed on Hectorite and montmorillonite. Clays and Clay Minerals, 

39, 22-27. 

Dutta, N.C., Iwasaki, T., Ebina, T. & Hayashi, H. (1999) - A Combined X-Ray Photoelectron 

and Auger Electron Spectroscopic Study of Cesium in Variable-Charge montmorillonites. 

Journal of Colloid and Interface Science, 216, 161-166. 

Eltantawy, I.M. & Arnold, P.M. (1974) - Ethyleneglycol sorption by monoionic  

montmorillonites. J. of Soil Science, 25, 99-110. 

Fletcher, P. & Sposito, G. (1989) - The chemical modelling of clay-electrolyte interactions for 

montmorillonite. Clay Minerals, 24, 375-391. 



Gier, S. & Johns, W.D. (2000) - Heavy metal-adsorption on micas and clay minerals studied 

by X-ray photoelectron spectroscopy. Applied Clay Science, 16, 289-299. 

Hofmann, U. & Klemen, R. (1950) - Verlust der Austauschkapacität vor Lithiumionen an 

Bentonit durch Erhitzung. Z. Anorg. Chem., 262, 95-99. 

Jozja, N. (2003) - Etude de matériaux argileux albanais. Caractérisation « multiéchelle » 

d’une bentonite magnésienne. Impact de l’interaction avec le nitrate de plomb sur la 

perméabilité. Ph.D. Thesis, Univ. Orléans, France, 245 pp. : 

http://tel.ccsd.cnrs.fr/documents/archives0/00/00/37/40/index_fr.html 

Jozja, N., Baillif, P., Touray, J.C., Pons, C.H., Muller, F. & Burgevin, C. (2003) - Impacts « 

multi-échelle » d'un échange (Mg,Ca)-Pb et ses conséquences sur l'augmentation de la 

perméabilité d'une bentonite: Multiscale impacts of a (Mg,Ca)-Pb exchange on the 

permeability increase of a bentonite. Comptes Rendus Geosciences, 33, 729-736. : 

http://hal.ccsd.cnrs.fr/ccsd-00069451 

Jung, R., Lee, J. C, Orosz, G. T., Sulyok, A., Zsolt, G. & Menyhard, M. (2003) - 

Determination of effective electron inelastic mean free paths in SiO2 and Si3N4 using a Si 

reference. Surface Science, 543, 153-161. 

Kuhr, J.C. & Fitting, H.J. (1999) - Monte Carlo simulation of electron emission from solids, 

Journal of Electron Spectroscopy and Related Phenomena. 105, 257-273. 

Morel, M. (1957) Observations sur la capacité d’échange et les phénomènes d’échange dans 

les argiles. Bull. Gr. Fr. Argiles, 12, 3-8. 

Morton, J.D., Semrau, J.D. & Hayes, K.F. (2001) - An X-ray absorption spectroscopy study 

of the structure and reversibility of copper adsorbed to montmorillonite clay. Geochimica et 

Cosmochimica Acta, 65, 2709-2722. 

Paterson, E. & Swaffield, R. (1994) - X-ray photoelectron spectroscopy. In : Spectroscopic 

and chemical determination methods. Chapman & Hill, London, 226-259. 

Petrov, R.J., Rowe, R.K. & Quigley, R.M. (1997) - Selected factors influencing GCL 

hydraulic conductivity. Journal of Geotechnical and Geoenvironmental Engineering, 123, 

683-695. 

Schlegel, M.L., Charlet, L. & Manceau, A. (1999) - Sorption of Metal Ions on Clay Minerals: 

II. Mechanism of Co Sorption on Hectorite at High and Low Ionic Strength and Impact on the 

Sorbent Stability. Journal of Colloid and Interface Science, 220, 392-405. 

Siantar, D.P. & Fripiat, J.J. (1995) - Lead Retention and Complexation in a Magnesium 

Smectite (Hectorite). Journal of Colloid and Interface Science, 169, 400-407. 



Sposito, G. (1984) - The Surface Chemistry of Soils, Oxford University Press, New York, 234 

pp. 

Strawn, D.G. & Sparks, D.L. (1999) - The Use of XAFS to Distinguish between Inner- and 

Outer-Sphere Lead Adsorption Complexes on montmorillonite. Journal of Colloid and 

Interface Science, 216, 257-269. 

Tessier, D. (1984) - Etude expérimentale de l’organisation des matériaux argileux. 

Hydratation, gonflement et structure au cours de la dessiccation et de la réhumectation. Ph.D. 

Thesis, Univ. Paris VII, France, 361 pp. 

Touret, O., Pons, C.-H., Tessier, D.& Tardy, Y. (1990) - Etude de la répartition de l’eau dans 

les argiles saturées Mg2+ aux fortes teneurs en eau. Clay Minerals, 25, 217-233. 

Tuller, M. & Or, D. (2003) - Hydraulic functions for swelling soils: pore scale considerations. 

Journal of Hydrology, 272, 50-71. 

Vico, L.I. (2003) - Acid-base behaviour and Cu2+ and Zn2+ complexation properties of the 

sepiolite/water interface. Chemical Geology. 198, 213-222. 

Wagner, C.D., Riggs, W.M., Davis, L.E., & Moulder, J.F. (1978) - Handbook of X-ray 

photoelectron spectroscopy. Perking-Elmer Corporation, Physical Electronics Division, Eden 

Prairie, 190 pp. 



Table captions 

 

Table1. Chemical composition (in %) of Wyoming montmorillonite (Ca-exchanged form) and 

purified Prrenjas bentonite. 

 

Table 2. Physicochemical properties of Wyoming Mg-montmorillonite and Prrenjas bentonite 

after separation of the coarsest impurities. 
 

 SiO2 Al2O3 Fe2O3 FeO MgO TiO2 MnO CaO Na2O K2O P2O5 L.O.I.

Wyoming 54.23 19.37 3.25*  2.27 0.13 0.01 2.41 0.02 0.02 0.05 18.20

Prrenjas 46.33 9.95 14.23 0.43 9.08 0.43 0.19 0.5 0.18 0.83 0.03 17.77

* as total Fe2O3 

Table1. Chemical composition (in weight %) of Wyoming montmorillonite (Ca-exchanged 

form) and purified Prrenjas bentonite. 

 
 
Prrenjas Bentonite 

Total Specific Surface (ST) 600 m2 g-1 

External Surface Area (B.E.T) 95.4 m2 g-1 

Cation Exchange Capacity (CEC) 82 meq per 100g of calcinated clay 

Tetrahedral substitutions 45 %  

 Mg2+ Ca2+ K+ Na+  

Exchangeable Cations  % 78 18 3 1 

Wyoming Mg-Montmorillonite 

Total Specific Surface (ST) 766 m2 g-1 

External Surface Area (B.E.T) 46 m2 g-1 

Cation Exchange Capacity (CEC) 96 meq per 100g of calcinated clay 

Tetrahedral substitutions 24 %  

Table 2. Physicochemical properties of Wyoming Mg-montmorillonite and Prrenjas bentonite 

after separation of the coarsest impurities. 



Figure captions 

 

Figure 1: a) TEM image of initial Prrenjas bentonite showing a microaggregate (M) between 

two arrows; b) TEM image of initial Wyoming Mg-montmorillonite showing two particles 

(P). 

 

Figure 2. Amounts of Pb fixed and cations released as function of Pb concentration in 

equilibrium solution: a) Prrenjas bentonite; b) Wyoming Mg-Montmorillonite. 

 

Figure 3. X ray Diffraction patterns of initial and lead exchanged clay samples: a) Prrenjas 

Bentonite; b) Wyoming Mg-sample. 

 

Figure 4. Variation of basal spacing d001 versus initial lead concentration for Wyoming Mg-

montmorillonite and Prrenjas bentonite. 

 

Figure 5: a) TEM image of Wyoming Mg-montmorillonite treated with 0.01M Pb(NO3)2 

solution. b) TEM image of Prrenjas bentonite treated with 0.01M Pb(NO3)2.solution with 

numerous little particles. 

 
Figure 6. Variation of Pb/Si atomic ratio, determined by XPS, as function of lead 

concentration in the initial solution for: Wyoming Mg-montmorillonite (Wy-Mg) and Prrenjas 

bentonite (Prr). 

 

Figure 7. Sum of Pb/Si, Mg/Si and Ca/Si atomic ratios, determined by XPS, versus to the 

amount of Pb fixed in the clay for: Wyoming Mg-montmorillonite (Wy-Mg) and Prrenjas 

bentonite (Prr). 

 

Figure 8. Variation of Pb/Si atomic ratio, determined by XPS, as function of the amount of Pb 

fixed in the clay for: Wyoming Mg-montmorillonite (Wy-Mg), Wyoming Ca-montmorillonite 

(Wy-Ca) and Prrenjas bentonite (Prr). 

 

Figure 9. Schematic representation of the microstructural units of Prrenjas bentonite, with 

numerous edge-face associations of particles, showing the significance of edge surfaces for 

XPS analysis. 



 

Figure 10. Size classes (in %) of microstructural units of Prrenjas bentonite before and after 

interaction with 10 mmol L-1 lead solution. 



 
Figure 1. a) TEM image of initial Prrenjas bentonite showing a microaggregate (M) between 

two arrows;  

 
Figure 1. b) TEM image of initial Wyoming Mg-montmorillonite showing two particles (P). 
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Figure 2. Amounts of Pb fixed and cations released as function of Pb concentration in 

equilibrium solution: a) Prrenjas bentonite; b) Wyoming Mg-Montmorillonite. 

 



 

    
Figure 3. X ray Diffraction patterns of initial and lead exchanged clay samples: a) Prrenjas 

Bentonite; b) Wyoming Mg-sample. 

 



 

Figure 4. Variation of basal spacing d001 versus initial lead concentration for Wyoming Mg-

montmorillonite and Prrenjas bentonite. 

 

 
Figure 5. a) TEM image of Wyoming Mg-montmorillonite treated with 0.01M 

Pb(NO3)2.solution.  



 
Figure 5. b) TEM image of Prrenjas bentonite treated with 0.01M Pb(NO3)2.solution with 

numerous little particles. 

 

 
Figure 6. Variation of Pb/Si atomic ratio, determined by XPS, as function of lead 

concentration in the initial solution for: Wyoming Mg-montmorillonite and Prrenjas 

bentonite. 



 
Figure 7. Sum of Pb/Si, Mg/Si and Ca/Si atomic ratios, determined by XPS, versus to the 

amount of Pb fixed in the clay for: Wyoming Mg-montmorillonite and Prrenjas bentonite. 

 

 
Figure 8. Variation of Pb/Si atomic ratio, determined by XPS, as function of the amount of Pb 

fixed in the clay for: Wyoming Mg-montmorillonite, Wyoming Ca-montmorillonite and 

Prrenjas bentonite. 
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Figure 9. Schematic representation of the microstructural units of Prrenjas bentonite, with 

numerous edge-face associations of particles, showing the significance of edge surfaces for 

XPS analysis. 

 
Figure 10. Size classes (in %) of microstructural units of Prrenjas bentonite before and after 

interaction with 10 mmol L-1 lead solution. 

 

 


