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SUMMARY 

As in several other AMS studies, the main direction of the magnetic lineation analysed in 

Part I of this work, as well as crystal elongation, have been found to be roughly aligned with the 

direction of the surrounding flow. In order to explain the mechanisms responsible for such crystal 

shape anisotropy in a hydrodynamic context, we derive a mathematical model based on Falkner-

Skan self-similar boundary layers at high Reynolds numbers. The model allows calculating local 

growth rates out of diffusion processes in the concentration boundary layer for crystal faces 

orientated arbitrarily in the range 90° to –18° with respect to the flow direction, and for any flow 

velocity. Hence, our work generalizes rationally previous attempts already done in the case of a 

flow parallel to the crystal face. This crystal growth model is applied to a natural case of calcite 

growth rate in 2D section perpendicular to the <c> axis. The reconstructed calcite growth 

reproduces the texture of a natural case observed in Part I, although the local Reynolds numbers 

are quite low. This approach may be applied for various geological settings, from deep 
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metasomatism to flowing on the earth surface. 

 

Key words: fluid dynamics, crystallography, petrography 

 

1 INTRODUCTION 

In order to understand the relationship between Anisotropy of Magnetic Susceptibility 

(AMS) and mineral texture in a hydrodynamic context, a multidisciplinary study was carried out 

(Sizaret et al., Part I, 2006) on a well-known pipe-formed calcite. The AMS measurement on the 

magnetite-bearing calcite shows a good coherence between the magnetic lineation and the flow 

direction. However, the texture analyses by optical and imaging observations reveal two 

statistically distinguished directions which are about 15° slightly and oppositely misaligned with 

the fluid circulation direction. This consequently leads us to find a theoretical explanation at the 

crystal scale, based on crystal growth processes. 

The idea that mineral shapes and textures are related to their intrinsic properties and to the 

influence of the external media is not new: Curie (1908) stated that “a crystal under an external 

influence will exhibit only those symmetry elements that are common to the crystal without the 

influence and to the influence without the crystal”. Hence, in the case of crystal genesis in a 

flowing solution, the texture should be related to the surrounding flow field. Models describing 

crystal growth have been developed in different ways, both from experimental observations and 

from hydrodynamic considerations (e.g. Lebedev 1967; Kostov & Kostov 1999; Sizaret et al. 

2006, Part I). 

Experiments considering the bulk crystal shape showed that in case of volume diffusion, the 

bulk crystal growth rate is proportional to the square root of the flow velocity (Garside et al. 

1975). Observations of growth bands in natural galena (Kessler et al. 1972) suggested that 
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upstream crystal faces possess a higher growth rate, which has been confirmed by experiments on 

ammonium-dihydrogen phosphate (ADP) (Prieto & Amoros 1981; Prieto et al. 1996). Chernov 

proposed a model to describe the processes of perturbation occurring on the crystal face at kink 

step scale by step bunching. In this model, the local flow is only considered in the vicinity of the 

mineral: it is parallel to the crystal face and increases exponentially from zero at the wall to a 

constant value at infinity, the variations of the velocity along the crystal face being neglected at 

this scale (Chernov 1992 and 2004). 

The first attempts to establish a quantitative link between the crystal growth rate and the 

fluid velocity were limited to the case of a crystal face parallel to the flow (Carlson 1958; Gilmer 

et al. 1971; Rosenberger 1979). Gilmer et al. developed a unified formulation describing crystal 

growth rates by considering two kinds of processes: diffusion of solute through a volume of 

liquid (nearly) at rest relatively to the crystal surface, and reactions at the surface leading to the 

incorporation of molecules in the lattice. More recently, Prieto et al. (1996) considered three 

orientations: normal facing to the flow, parallel to the flow and in downstream position or ‘in the 

shade’. In the two previous cases, the authors invoked the classical hydrodynamic boundary layer 

theory to account for mass transfer through the ‘concentration boundary layer’, although eq. (3)-

(6) in Prieto et al. (1996, p. 991) are questionable. In the “shade” position, experiments show 

lower growth rate: the crystal growth is perturbed, and step bunching process dominate in an 

eddy zone whose features depend on the flow velocity. In this latter case, the crystal face is in a 

wake flow, difficult to model from the hydrodynamic point of view, but in which the fluid may 

be considered nearly at rest, and for which the boundary layer theory is no longer valid. 

Following these ideas, the aim of this paper is to develop a general model, based on 

rigorous self-similarity boundary layer analysis, to predict quantitatively crystal growth rates for 

arbitrary orientations of the faces, hence accounting for the observed asymmetry. The paper is 
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organized as follows: Section 2 recalls how crystal growth is related to diffusion processes, 

mainly to a concentration thickness Δc - the crux of the model- which has to be properly defined. 

Since readers of GJI are not familiar with the concept of boundary layers, the main elements of 

the theory are explained in section 3. The full model for Δc is given in section 4, and the major 

parameters controling the crystal growth are discussed in section 5. Results of the model are 

shown in section 6 in comparison with previous experimental work (Garside et al. 1975; Hilgers 

& Urai 2002) and are applied to reconstruct natural textures observed in Part I of this study 

(Sizaret et al. 2006, Part I). 

 

2 CRYSTAL GROWTH EQUATION 

Crystal growth modelled by Gilmer et al. (1971) is based on three differential equations 

describing mass balance at the three stages of crystal growth: (i) volume diffusion through the 

surrounding fluid towards the crystal surface, (ii) passage from volume to surface, (iii) diffusion 

along the surface and incorporation of adsorbed elements in kink sites (Fig. 1). 

 

Figure 1 

 

Assuming that xs<<Λ (see below for definition), Gilmer et al. (1971) deduced the 

mathematical expression for the growth rate: 
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where R (m/s) is the growth rate, D (m2/s) is the diffusion coefficient of ions in the solution, Λ is 

the distance defining the kinetics of adsorption of solute (i.e. drift velocity = D/Λ), Λs is the 
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distance defining the kinetics of incorporation of adsorbed solute in the step site (i.e. Ds /Λs , Ds 

being the diffusion coefficient along the crystal surface), xs is the mean diffusion distance for 

adsorbed solute along the crystal surface, y0 the average distance between two steps: in the 

Burton-Cambrera-Frank theory, this length is inversely proportional to the super-saturation 

(Burton et al. 1951). N0 is the concentration of constitutive units in the solution, Ω the volume of 

a constitutive unit in the crystal, σ  the relative super-saturation. The previous condition: xs<<Λ is 

justified as the catchments length of constitutive units should be lower than the distance to enter 

the adsorption layer on crystal surface. The concentration boundary layer thickness δ  that 

appears at the denominator of (1) is, however, not clearly defined, and attempt is done in this 

paper to fix this point. 

Equation (1) can be simplified in the case where external conditions dominate the crystal 

growth, i.e. when the surface processes of incorporation of elements in the lattice are much faster 

than the feeding in elements by the solution. Consequently, internal parameters of the model 

should be negligible: 

(i) Λ<<δ : the drift velocity Λ/D  of solute molecules entering the adsorbed layer and 

(ii) Λs<<xs : the drift velocity ssD Λ/  of constitutive units passing from surface to steps  

are both higher than the volume diffusion velocity δ/D  

(iii) δ/Λ>>y0 /2xs : the mean distance of superficial diffusion xs is more than half of the 

distance y0 between two steps i.e. the crystal face is not rough (there is a small number of 

steps on the face). 

Therefore, under these conditions, and introducing the diffusion thickness cΔ  of our model, the 

general growth rate expression (1) can be reduced to: 
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However, due to the uncertainty in the estimation of the parameters Λ, Λs, xs and y0, the 

balance between diffusion and surface processes cannot be known a priori. Hence, only an a 

posteriori analysis of the final crystal shape can indicate the prevailing process during the crystal 

growth. Again, from the Curie principle, asymmetric effects result from asymmetry in their 

cause. Thus, in each case where a uniform flow solution having a conical symmetry with infinite 

rotation axis (∞m) is the dominant driving force, the shape of a single crystal will show a 

symmetry breakdown: the shape formed under the influence of the flow has no centre of 

symmetry anymore. Upstream and downstream faces are not equivalent and should display 

different shapes, as observed on the natural calcite of the Chaudes-Aigues pipe shown in Part I. 

This remark could be helpful to distinguish hydrothermal texture from purely tectonic ones: the 

pure shear and simple shear deformations exhibit a centre of symmetry that flow processes do not 

reveal. Furthermore, the analysis of geological settings can give insight on possible occurrence of 

flowing solutions. 

 

3 NEAR-WALL CRYSTAL HYDRODYNAMICS  

Let us consider a crystal immersed in a flowing solution with (constant) velocity ∞U  and 

concentration ∞c . At the crystal surface, the fluid velocity is zero due to viscosity, and rapid 

incorporation of solute in the crystal maintains the wall concentration wc  constant, close to the 

saturation level and depending on the crystal solubility. This hypothesis supposes that no 

perturbation occur on the crystal face (Chernov, 1992). The crystal geometry is simplified in a 2D 

description within a horizontal plane perpendicular to two faces. The effects of gravity are 
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neglected. In that plane the crystal is assimilated to a 2D wedge (Fig. 2) to which a Cartesian 

coordinate system ),( yx  is attached. The x-coordinate is measured along the crystal face from the 

leading edge (or the apex of the face), and the y- coordinate is normal to the wall. The angle 

between the flow direction and the x axis is 2
πβ  : cases 0=β  (resp. 1=β ) correspond to a 

flow parallel (resp. perpendicular) to the crystal face, reported in (Prieto et al. 1996). We deal 

here with an arbitrary orientation of the flow. At a given location x, leaving the surface along the 

y-coordinate, one observe a velocity profile ),( yxu  and a concentration profile ),( yxc  (Fig. 2). 

The velocity component u parallel to the face (v is the component perpendicular to the face, 

uv << ) increases from zero at the wall to an outer velocity ∞≠ UxU e )(  if 0≠β  depending on 

the orientation of the face in the flow and on the distance x measured from the leading edge along 

the crystal face. The concentration profile varies sharply from wc  to ∞c  as growth units are 

quickly incorporated in the crystal. Obviously, the concentration thickness cΔ  in (2) must be 

defined from the concentration profile ),( yxc  as a local value, i.e. )(xcc Δ=Δ , and the 

concentration profile itself depends on the velocity profile. Hence, hydrodynamics and crystal 

growth rate are closely related in a way detailed hereafter, which falls into the very classical 

theory of hydrodynamic boundary layer (e.g. Schlichting 1968).  

 

Figure 2 

 

First, let define the local hydrodynamic boundary layer thickness )(xHδ  as the height where 

the u-velocity reaches, say, 99% of eU : eUuH yx
99.0

)(
=

=δ . In the same way, one can define a 

concentration boundary layer thickness (not to be confused with cΔ !) 
∞== ccc yx 99.0)(δ (Fig.2). It 
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is easy to show by dimensional analysis that )(/)(2 xUxx e
H νδ ≈  and that )(/)(2 xUxDx e

c ≈δ , 

where ρμν /=  and D are the momentum and mass diffusivities (m2/s) in the flow. Thus, 

2/1Re)( xH xx ≈δ  where ν/)(Re xxU e
x =  is the local Reynolds number, and 2/1/ SccH ≈δδ  

where DSc /ν=  is the Schmidt number of the solute in the flowing fluid (e.g. Evans 1961). If 

the Schmidt number is much higher than unity, it is expected that the concentration boundary 

layer will be thinner than the hydrodynamic boundary layer. These considerations are valid if the 

boundary layer is laminar (by opposition to turbulent), which is most probable since the local 

Reynolds number is unlikely to reach 104, the currently accepted value for laminar/turbulent 

transition. The set of PDEs describing the flow with high Reynolds number (i.e. xRe1 << ) in 

the wall-fitted coordinate system ),( yx  is Prandtl equations together with the transport equation 

for the concentration: 
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with boundary conditions at the wall and outside the boundary layer: 

wccvuy ==== ;0:0  and ∞→→∞→ ccUuy e ;:  

In equation (3c), the mass flux is given by Fick’s law: y
cDyxJ ∂

∂−=),( . It has been assumed that 

the concentration is small enough for the density ρ of the solution to be constant, so that eq. (3ab) 

and (3c) are uncoupled. This allows to solve the flow equations (3ab) for the velocity distribution 

),( yxu  and ),( yxv , and to plug the result into (3c) which becomes linear with respect to the 
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unknown concentration distribution ),( yxc . 

Let focus on the hydrodynamic problem. It appears that the kind of wedge flow we are 

interested in falls into a class of so-called self-similar flows, analysed by Falkner and Skan (see 

Schlichting 1968). This means that any velocity profile ),( yxu  has the same shape when 

described in terms of the single similarity variable )(/ xy Δ=η  where )(xΔ  is some suitable 

thickness-scale to be defined (Fig. 3). 

 

Figure 3 

It is not useful to enter into the details here, but just give the result: the change in variable 

)(')(),( ηfxUyxu e= , ( ) fxUxffxxUyxv ee )(')(')(')(),( Δ−−Δ= η  transforms the second-order 

system of PDEs (3ab) into the single third-order Falkner-Skan ODE 

( ) 0'1''''' 2 =−++ ffff β  (4) 

with boundary conditions 1)(';0)0(')0( =∞== fff , provided that the outer velocity )(xU e  is a 

suitable power law of the x-coordinate. The corresponding thickness scale is 

)(
)2()(

xU
xx e

νβ−=Δ  (5) 

Equation (4) is much simpler to solve that (3ab), using a Runge-Kutta method for instance. 

Moreover, the similarity solution )(ηf  is entirely driven by the geometrical parameter β  and is 

independent of the Reynolds number: it can be solved once for all, and the physical solution 

comes through the change in variables. Now, the question is to find the power law for )(xU e  

(needed for boundary layer self-similarity) associated to a given angle 2
πβ  of the wedge. 

Classically, this is obtained by inviscid potential flow theory and conformal mapping: the slip 
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velocity at the wall of the potential flow serves as outer velocity (Ue) for the boundary layer. 

Let kZZ =Φ )(  be the complex potential of a uniform flow of arbitrary velocity k on the 

upper-half complex plane 0)Im( >Z , Z being the complex coordinate (Fig. 4). The open 

Schwartz-Christoffel transformation nZZHz /1)( ==  makes a conformal mapping onto the z 

physical plane in which the potential is nkzZz =Φ= )()(φ . The complex velocity 

1)( −=−== nnkzivudz
dzw φ  gives the slip velocity on the wall { } 1)(:0Re −=>= ne nkxxUxz . 

Now we have the simple geometrical relation n
πππβ −=2  from which the final expression for 

the searched velocity distribution comes out: 

β
β

β
−

−= 2

2
2)( xkxU e  (6)  

Figure 4 

 

Equation (6) appeals some comments: the case 0=β  reproduces the standard Blasius flat-

plate problem cstUkxU e === ∞)(  for which the thickness-scale )(xΔ  is a square-root function 

of x. The case 1=β  corresponds to the stagnation point flow described on Fig 3A of Prieto & al. 

(1996), with constant thickness-scale kx ν=Δ )(  depending on the arbitrary value of k. For 

] ]1,0∈β , the potential flow, hence the outer velocity )(xU e  takes infinite values as ∞→x  

and vanishes at the apex of the crystal face. This is physically irrelevant: the physical condition at 

infinity (far from the crystal) is cstU =∞ . For negative values of β (the limiting case 

199.0−=β  (angle –18°) corresponds to a vanishing wall shear stress 0)0('' =f  hence to flow 

separation), the flow is at rest at infinity, accelerates to reach infinite values at the apex and then 
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decelerates again along the crystal face. Does it mean that the theory is useless? No, simply the 

potential law (6) is only valid in the neighbourhood of the apex. Hence, in the general case of 

figure 4, one has to find the range of x for which (6) applies and to derive the corresponding 

value ),( β∞Uk . This can be done using the FLUENT V6.2 computational fluid dynamics 

software to solve the Navier-Stokes equations under the assumption of inviscid fluid (but not 

potential flow), i.e. incompressible Euler equations. The computed slipping velocities at the 

crystal surface are compared to (6), and ),( β∞Uk  is estimated (Fig. 5 and, Table 1). The 

parametric study has been performed for β variable from 1 to -0.199 and U∞ from 0.001 ms-1 to 5 

ms-1 (Table 1). Results show that k(U∞,β) increases linearly with U∞  and exponentially with β : 

8.2)17.1(4.1),( −
∞∞ −≈ ββ UUk  (7) 

Figure 5 

Table 1 

Now, the solution )(ηf  of (4), together with (5), (6) and (7) solves completely the flow problem 

(3ab) which is at disposal for the concentration equation (3c). 

 

4 DEFINITION OF THE LOCAL DIFFUSION THICKNESS Δc(x) 

First, we are looking for the concentration profile ),( yxc  which varies from ∞c  in the free 

stream down to wc  at the crystal wall. Since the hydrodynamic boundary layer is self-similar and 

eq. (3c) is linear, it appears that the concentration boundary layer is also self-similar: the change 

in variable ( ) )(),( ηχβww cccyxc −+= ∞  transforms the PDE (3c) into the following ODE 

equipped with simple boundary conditions, and easy to solve, given any )(ηf  associated to a 

value β in (4) 
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1)(;0)0(0''' =∞==+ ββββ χχχχ fSc  (8) 

In βχ , the underscore β  emphasizes on the dependence of the concentration profile on the 

geometrical parameter β. From (4) and (8), self similar velocity and concentration profiles can be 

calculated for various β (Figs 6a and 6b). The concentration profile varies sharply with increasing 

the Schmidt number (Fig. 6c).  

 

Figure 6 

 

In order to define a diffusion thickness suitable for the growth rate calculation, it is 

necessary to link cΔ  to the mass flux at the crystal wall (i.e. y=0; Fig.7)  

)(
)0('

)()(
0 xccDy

cDxJ w
y

w Δ−−=∂
∂−= ∞

=

βχ
       (9) 

which may be non-dimensionalized as a local Nusselt number 
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Now, we introduce the diffusion thickness, defined geometrically as (Fig. 7) 
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Figure 7 
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5 DISCUSSION ON THE PARAMETERS GOVERNING THE GROWTH RATE 

Equation (2) shows that the surrounding flow influences the crystal growth rate through the 

diffusion thickness. Using the model proposed to estimate Δc(x), the local growth rate reads: 

β
β

βχ
β

β
ν

σ −
−−

∞

−
Ω

= 2
1

.0

)0('
2

),(2

x

Uk

DN
R difv

x  (13)  

Garside et al. (1975) observed that bulk growth is proportional to square root of the flow 

velocity and Hilgers & Urai (2002) suggested a formulation proportional to U∞
0.3. As the 

parameter k(U∞,β) is a linear function of flow kinetics, the expression of the local growth rate 

(13) is in good agreement with the observation of Garside et al. (1975) on bulk crystal shape. 

This local growth rate depends on geometrical parameters: β and x. A particular value is 

β=1, for which the growth rate doesn’t depend on x, and the diffusion thickness depends only on 

the fluid velocity. In any other case β<1, the value )(xcΔ  increases with x. The constant diffusion 

thickness Δ⊥ for faces normal to the flow will be used to normalize relative growth rates (§ 6, eq. 

(16)) and is given by: 

)0('
1

)1,(2 ⊥∞
⊥ =Δ

χ
ν
Uk

  (14)  

Near the apex, the present model is questionable because 1Re ≈x  and Prandtl equations 

(3ab) are no more valid. At the limit 0→x , the model is singular. It is then possible to define 

roughly a critical value xc such that for cxx <<0  wall fluxes are very high and surface processes 

dominate in (1), and for xxc < , the growth is driven by volume diffusion (to which the present 

model applies).  
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Figure 8 

 

Now, depending on the value of cx , three types of bulk growth can be considered (Fig. 8): 

• First, when xc is small, very high growth rates localized on the edges in the apex 

area suggest that crystal should develop dendritic shapes. 

• Second, for intermediate values of xc, the growth rate decreases with x, the trend in 

β is not obvious due to the combination of (6) in the hydrodynamic model and the 

empirical power law in (7). 

• Finally, for higher values of xc, the growth rate increases with β and still decreases 

with x, i.e. growth is higher in the upstream direction and decreases downstream.  

This discussion states that when the crystals are small, the faces exposed at high angle with 

respect to the flow direction are not necessarily those with the highest growth rate. Moreover, the 

always decreasing growth rate with x explains the occurrence of concave curved shape faces as 

observed in the Chaudes-Aigues pipe (e.g. Sizaret et al. 2006 Fig. 1e in Part I). 

 

6 TEXTURE RECONSTRUCTION 

In this part, the model is applied to the reconstruction of the texture observed on the calcites 

formed in a pipe at Chaudes-Aigues. Calcite crystallises in a flow of constant direction (the pipe) 

and constant temperature of about 70°C (Sizaret et al. 2006, Part I). The following discussion 

assumes that crystals behave independently, i.e. concentration boundary layers occurring on a 

crystal do not influence each others. This assumption is well verified for high Schmidt numbers 

(Fig. 6c) or for high flow velocity, when the boundary layer is thin and do not separate.  

The textural study in Part I (Sizaret et al. 2006, Fig. 1d in Part I) suggests that the calcite 
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crystal has its <c> axis in vertical position rising in the flowing solution. Therefore, 

reconstruction focuses on a horizontal plane, i.e. the section normal to <c> with trigonal 

symmetry. Absolute reconstruction with (13) is not obvious since parameters 0N  and Ω of eq. (1) 

are not well known. So, in this part, we reconstruct the shape using the relative growth of 

different faces. From (2), when diffusion dominates, it is easy to show that the local ratio of 

growth band thicknesses L1(x)/L2(x) of two faces 1 and 2 is equal to the inverse of the local 

diffusion thicknesses ratio:  
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As mentioned above, the diffusion thickness (14) is constant for normal faces (β=1). It is 

then obvious to normalise all the growth bands thicknesses with L⊥. With (12) and (14), eq. (15) 

reads: 
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This latter expression is independent of U∞ because equation (7) for k(U∞,β) is a linear function 

of U∞. Diffusion coefficients of Ca2+ and CO3
2- are about 1.5 10-9 m2s-1 (Vanysek 2001), and 

dynamic viscosity at 70°C is close to 0.4 10-6 m2s-1 (Haar et al. 1984). The Schmidt number in (8) 

is then estimated at about 260. From the numerical solution of (8), the )0(''βχ  function has been 

approximated by: 

260Sc;)1995.0(1.4)0(' 61 =+≈ βχ β  (17) 

The flow velocity within the pipe is estimated at about 0.01 ms-1 and the length of crystals faces 

range between 100 (Rex=3.4) and 200 µm (Rex=6.6), thus the assumption 1Re >>x  is not well 
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verified and the model is not accurate, but still provides a framework to interpret the observed 

anisotropy in mineral textures. 

Successive bands are reconstructed in three steps, on an initially isotropic shape with 

faces about 100 µm long (Fig. 9). In order to obtain a ≈200 µm shape, L⊥ has been taken quite 

arbitrarily to be 37.5 µm.  

The reconstruction of growth bands needs flat edges, but the growth rate formulation (13) 

produces curved shapes. In order to make the reconstruction possible at each step, we 

approximate the curve resulting from (16) by its tangent at the end of the edge where x and Rex 

have maximum values (Fig. 9). A consequence for this approximation is to lower the degree of 

anisotropy of the final shape. The growth rate of the downstream face has also to be estimated 

because no mathematical expression can be found for β <-0.199. Low chemical fluxes in shade 

area may be due to the influence of upstream faces that consume the elements in the solution, 

hence lower the concentration in the hydrodynamic wake of the crystal. Low growth rates in this 

area have been confirmed by experiments on ADP (Prieto et al. 1996) and observations in 

calcites (e.g. Sizaret et al. 2006, Fig. 4b in Part I). Therefore, in our reconstruction, growth bands 

on faces in downstream position have thicknesses (noted Ls on Fig.9) equal to the lower 

calculated value along upstream faces. 

 

Figure 9 

 

Figure 10 presents the three steps of crystal growth in the (0001) plan. In this example the 

crystal faces having the lower angle with respect to the flow direction have the higher growth rate 

and vice-versa (Fig. 10e). This is in good agreement with observed growth bands on small 
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crystals (Fig. 4b in Part I). The initial shape has a trigonal symmetry. The model that predicts 

higher upstream local growth rates produces elongated shapes. Initial crystals with a plane of 

symmetry parallel to the flow direction will develop elongated shapes that preserve the initial 

plane of symmetry, as predicted by the Curie principle (Fig. 10b). When crystals are randomly 

oriented, the long axis rotates towards the flow direction (Figs 10c-10f). This is in good 

agreement with the two sub populations observed in the Chaudes-Aigues calcite (Figs 1f and 1i in 

Part I). 

 

Figure 10 

 

7 CONCLUSIONS 

In this paper, an original model is proposed to predict crystal growth rates when volume 

diffusion dominates. This hydrodynamic model of diffusion through boundary layers allows to 

derive an analytically equation for the local growth rate along a crystal face. The main parameter 

controlling the final crystal shape is the angle between the face and flow direction. The growth 

rate decreases downstream along the faces and modifies the crystal wall orientation. This 

behaviour explains the formation of elongated shapes with slight deviation with respect to the 

flow direction.  

The reconstructions performed on randomly oriented initially trigonal shapes are in a good 

agreement with observations and measurements performed on natural calcite crystallization 

presented in Part I of this study. The predictability of the model is limited by the assumption that 

other crystals have negligible influence and by low local Reynolds numbers, which falls beyond 

the classical boundary layer theory. More precise predictions could be obtained from Navier-

Stokes simulations, feasible with nowadays computers. Nevertheless, this work has enlighten the 
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main physical parameters that drive crystal growth rates in flowing solutions, and is useful to 

interpret observed natural mineral textures. 
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FIGURE AND TABLE CAPTIONS 

Figure 1. The three stages of crystal growth related to the quantitative parameters defined by 

Gilmer et al. (1971). See text for details: (i) volume diffusion, (ii) incorporation in the adsorbed 

layer (Vads: velocity of adsorption on crystal surface), (iii) surface diffusion and incorporation in 

the crystal (Vkink: velocity of incorporation of adsorbed molecules in kink sites).  

 

Figure 2. Velocity and concentration profiles used to define hydrodynamic and concentration 

boundary layers; A: apex, see text for parameters definitions. 

 

Figure 3. Self-similar flow velocity profiles along a crystal wall (wedge); see text for parameters 

definitions. 

 

Figure 4. Schwartz-Christoffel transformation making a conformal mapping of the upper half 

complex plane; see text for parameters definitions. 

 

Figure 5. Diagram comparing the velocity profile along the wedge wall calculated with 

FluentV6.2 code (grey line) and the curve given by the potential law (black line). This 

comparison shows a good agreement for length less than 0.0015 m (dotted line). Moreover these 

curves allow to estimate k at different β and U∞, the presented case is for β = 45° and U∞ = 0.02 

ms-1. In the box it is presented the geometry of the simulation.  

 

Figure 6. Self-similar profiles. (a) Velocity profiles as functions of the geometrical parameter β 

corresponding to wedge angles of -18° (flow separation), 0°, 45° and 90° (stagnation point). 
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Concentration profiles: (b) corresponding to velocity profiles for unit Schmidt number (Sc=1) 

and (c) for flat plate (β=0) as a function of Schmidt number Sc= 1, 10, 102, 103 and 104. 

 

Figure 7. The concentration profile defines the local diffusion thickness )(xcΔ  along crystal wall. 

Dotted lines represent the limit of the boundary layer, see text for parameters definitions. 

 

Figure 8. Growth rate for faces with different orientations with respect to the flow (0.01 ms-1). xc 

is the critical length where the crystal growth changes from surface to volume diffusion 

processes. When surface processes dominate, the growth rate does not depend on x and can be 

assumed constant.  

 

Figure 9. First step of the crystal growth reconstruction (see text for details). 

 

Figure 10. Schematic reconstruction of 3 stages of calcite growth in a flowing solution, the view 

is given in the (0001) plane that is perpendicular to the <c> axis. (a) Isotropic initial shape; (b) 

the flow is parallel to the symmetry plane of the crystal; (c) to (f) reconstruction of crystal growth 

for faces making angles with flow varying from 30° to –10° (associate faces has angles from 30 

to 70). The long axis of the elongated shape (grey line) is modelled with the SPO program and 

statistics shows an average angle of 19° with the flow direction. By symmetry, it is obvious that 

the texture presents two sub populations slightly deviated with respect to flow direction (19° and 

–19°) as observed in Chaudes-Aigues pipe (Sizaret et al. 2006, Part I). 

 

Table 1. Dependence of k(U∞ , β ) on U∞ and β. 
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Figure 1. The three stages of crystal growth related to the quantitative parameters defined by 

Gilmer et al. (1971) see text for details: (i) volume diffusion, (ii) incorporation in the adsorbed 

layer (Vads: velocity of adsorption on crystal surface), (iii) surface diffusion and incorporation in 

the crystal (Vkink: velocity of incorporation of adsorbed molecules in kink sites).  
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Figure 2. Velocity and concentration profiles used to define hydrodynamic and concentration 

boundary layers; A: apex, see text for parameters definitions. 
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Figure 3. Self-similar flow velocity profiles along a crystal wall (wedge); see text for parameters 

definitions. 
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Figure 4. Schwartz-Christoffel transformation making a conformal mapping of the upper half 

complex plane; see text for parameters definitions. 
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Figure 5. Diagram comparing the velocity profile along the wedge wall calculated with 

FluentV6.2 code (grey line) and the curve given by the potential law (black line). This 

comparison shows a good agreement for length less than 0.0015 m (dotted line). Moreover these 

curves allow to estimate k at different β and U∞, the presented case is for β = 45° and U∞ = 0.02 

ms-1. In the box it is presented the geometry of the simulation. 
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Figure 6. Self-similar profiles. (a) Velocity profiles as functions of the geometrical parameter β 

corresponding to wedge angles of -18° (flow separation), 0°, 45° and 90° (stagnation point). 

Concentration profiles: (b) corresponding to velocity profiles for unit Schmidt number (Sc=1) 

and (c) for flat plate (β=0) as a function of Schmidt number Sc= 1, 10, 102, 103 and 104. 
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Figure 7. The concentration profile defines the local diffusion thickness )(xcΔ  along crystal wall. 

Dotted lines represent the limit of the boundary layer, see text for parameters definitions. 
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Figure 8. Growth rate for faces with different orientations with respect to the flow (0.01 ms-1). xc 

is the critical length where the crystal growth changes from surface to volume diffusion 

processes. When surface processes dominate, the growth rate does not depend on x and can be 

assumed constant.  
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Figure 9. First step of the crystal growth reconstruction (see text for details). 
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Figure 10. Schematic reconstruction of 3 stages of calcite growth in a flowing solution, the view 

is given in the (0001) plane that is perpendicular to the <c> axis. (a) Isotropic initial shape; (b) 

the flow is parallel to the symmetry plane of the crystal; (c) to (f) reconstruction of crystal growth 

for faces making angles with flow varying from 30° to –10° (associate faces has angles from 30 

to 70). The long axis of the elongated shape (grey line) is modelled with the SPO program and 

statistics shows an average angle of 19° with the flow direction. By symmetry, it is obvious that 

the texture presents two sub populations slightly deviated with respect to flow direction (19° and 

–19°) as observed in Chaudes-Aigues pipe (Sizaret et al. 2006, Part I). 
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Table 1. Dependence of k(U∞ , β ) on U∞ and β. 

βπ/2 (°) k(U∞,β)  
-18 -10 0 10 20 30 40 50 60 70 80 90 

0 0 0 0 0 0 0 0 0 0 0 0 0 
0.005 0.0031 0.0038 0.005 0.0068 0.01 0.014 0.0222 0.04 0.07 0.15 0.379 1.054
0.01 0.0062 0.0076 0.01 0.0135 0.019 0.028 0.0439 0.07 0.14 0.3 0.75 2.104
0.05 0.0310 0.0379 0.05 0.0675 0.095 0.14 0.2190 0.35 0.7 1.5 3.77 10.376
0.1 0.0621 0.0759 0.1 0.135 0.19 0.28 0.441 0.75 1.4 3 7.6 20.748
0.5 0.3105 0.3790 0.5 0.675 0.98 1.41 2.210 3.7 7 15 37.5 103.76
1 0.6200 0.7600 1 1.35 1.9 2.8 4.415 7.2 14 30 74.8 207.52

U∞ 

 
(ms

-1
) 

5 3.1100 3.8000 5 6.75 9.5 14 21.950 36 69 150 379 1037.6
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∗∗∗∗∗ 

 Appendix: Figures 1 and 4,  in Part I. 

 

Figure 1. Precipitates in the Chaudes-Aigues horizontal pipe. (a) Pipe section showing calcite 

bands; (b) Radiating sheaf texture vertical and parallel to the pipe axis. Vac = vacuole; (c) Sheaf 

textures observed in the vertical section of the pipe; (d) Crystal of the last calcite band rising in 

the flowing solution (Cathodoluminescense); (e) Calcite textures in the plane horizontal with 

elongated shapes; (f) Electron back-scattering image of a vertical section (SEM) showing 

aragonite (Arg) and dendrites of magnetite (Mgt); 

 



 35

 

Figure 4. Analysis of the calcite texture. (a) Lattice preferred orientation of the (0001) pole plane 

i.e. the calcite <c> axis, the grey levels indicate the diffracted X-ray intensities; (b) Growth bands 

in calcite section cut in the horizontal plane (Cathodoluminescense); (c) Distribution of the 

calcite long axes in the plane normal to the <c> axis. These statistics have been performed on a 

thin section of 3.5 x 2.5 mm2. 

 

 


