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Abstract 

Peat samples from a one metre core and living Cyperaceae, collected in Tritrivakely marsh in 

Madagascar, were studied to determine the organic matter (OM) composition and extent of 

OM degradation in this core. The study was carried out combining light microscopy 

observations, bulk analyses, infra-red spectroscopy, hydrolyses of sugars, oxidation of lignin 

and pyrolyses. In the surface peat, organic matter derived from Cyperaceae undergoes 

extensive degradation of its basic cell wall components, morphologically revealed by 

destructuration of plant tissues and their transformation into reddish amorphous organic 

matter occurring in large amounts all along the core. Two ratios (cinnamic units/lignin and 

xylose+arabinose/total sugars) were determined as markers of Cyperaceae. It appeared that 

the vegetation of the marsh remained probably unchanged during the considered accumulation 

period, i.e. the last 2300 years B.P. Rhamnose, mannose and non-cellulosic glucose probably 

have a common origin and are mostly derived from bacteria. In contrast, galactose is likely to 

be a marker of algal source, especially of the diatoms that occur only in the upper part of the 

core (0–ca. 50 cm). Acid/aldehyde ratios of syringic and vanillic monomers (index of lignin 

oxidative depolymerisation) and mannose+rhamnose+non-cellulosic glucose/total sugars 

ratios (reflecting bacterial degradation of hemicelluloses) are positively correlated, and can 

thus be considered as markers of microbial degradation of the Cyperaceae tissues. The n-

alkane/n-alk-1-ene doublets that dominate the pyrolysates of hydrolysed peat samples reflect 

the contribution of B. braunii algaenan and higher plant suberans, and of condensed lipids 

mostly derived from higher plants and microalgae. The upper part of the core is characterised 

by a greater dilution of Cyperaceae-derived compounds by organic matter from microalgae 

when compared with deeper samples, as recorded by peat bulk features, hydrolysable sugars, 

lignin oxidation products and pyrolysis products. Two accumulation periods can thus be 

distinguished in the core: a peaty phase between 2300 years B.P. and ca. 1500 years B.P. (low 

watertable and strongly limited microalgal growth); a waterlogged marsh, from ca. 1500 years 

B.P. to the present time, in which a higher water table was longer lasting with a substantial 

algal production. The environmental variation thus recorded could correspond to a regional 

climatic change occurring around 1500 years B.P. 
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1. Introduction 

Various components of organic matter (OM) in sediments and soils can be used as 

phytoecological indicators for the reconstruction of palaeoenvironments and palaeoclimates 

(e.g. Hedges & Mann, 1979, Pelet & Deroo, 1983 and Huc, 1988). Interpretation of OM 

records for such a purpose requires the identification of OM sources, information on their 

diagenetic alteration and estimation of their contribution to total OM. In peats and lacustrine 

sediments, the main primary sources of OM are (1) planktonic and benthic algae, (2) 

terrestrial plant remains and soil OM reworked from the catchment area and (3) submerged 

and/or emergent vascular plants which may colonise lake margins or the whole water-body in 

the case of mires and marshes. During transport to the lake or to the marsh as well as during 

deposition and early diagenesis, many processes may alter the original characters of organic 

sources. In peatlands, OM preservation is favoured by an anoxic environment and rapid burial 

(Clymo, 1983). However, anaerobic bacterial processes (i.e. fermentation, sulphate reduction 

and/or methanogenesis) may significantly modify elemental, molecular and isotopic 

composition of residual OM ( Colberg, Young, 1982 and Benner, MacCubbin & Hodson, 

1984). Studies of lipid biomarkers in peat were recently performed to reconstruct higher plant 

inputs so as to derive new climatic change proxies ( Farrimond & Flanagan, 1995 and Ficken, 

Barber 7 Eglinton, 1998). 

Peat precursors are mainly terrestrial higher plants, except for Sphagnum peat. OM in peat is 

therefore, mostly composed of products derived from lignin, hemicelluloses and cellulose. It 

may also comprise plankton-derived OM which contains a significant fraction of 

carbohydrates, even if their amount is lower when compared with vascular plants (Hamilton 

and Hedges, 1988). Depending on OM sources (terrestrial or planktonic) and types of vascular 

plant tissues, monomer components of these polysaccharides exhibit distinctive compositional 

patterns ( Moers, Baas, Boon & De Leeuw, 1990a and Moers, Baas, de Leeuw, Boon & 

Schenck, 1990). 

Lignin which is a major component of vascular plant tissues, is a highly-branched phenol 

polymer that is present in diverse molecular associations. Variations are due to different 

proportions of coniferyl, sinapyl and p-coumaryl alcohol-derived compounds in gymnosperm, 

di- and monocotyledon angiosperm lignins. The distribution of lignin-derived monomeric 

phenolic compounds can be determined through oxidative hydrolysis of the lignin polymer, 

generally performed by CuO in alkaline medium. Monomer distributions have been used for 

the characterisation of different vascular plants and tissue types (Hedges and Mann, 1979) and 

for the determination of the sources and degradation intensity of OM in soils and sediments 

(Ertel and Hedges, 1984). To date, only a few attemps have been made to use lignin-derived 

compounds to examine changes in terrestrial vegetation type resulting from variations of 

palaeoenvironmental conditions ( Hedges, Ertel & Leopold, 1982, Ishiwatari &, Uzaki, 1987, 

Oades, 1984 and Maman, Guillet, Dismar, Marseille & Mariotti, 1998), especially in 

hydromorphic environments such as peatlands. 

This study aims to characterise the nature and early degradation processes of OM from a 

continental peaty marsh (Tritrivakely lake, Madagascar) in order to determine OM sources 

and to emphasise changes in depositionnal conditions that occurred during the past two 

millenia. At the present time, this marsh is colonised by Cyperaceae. Peat samples from the 

upper metre of the deposit were compared with material isolated from fresh Cyperaceae 

(Cyperus madagariensis, Cyperus papyrus and Heliocharis equisetina) now growing at the 

site, and changes in peat characteristics with depth were also examined in this section. Bulk 



characterisation, in terms of C/N ratio, hydrogen index and micromorphological features, of 

peats and fresh material were carried out first. Secondly, specific signatures of carbohydrates 

as well as lignin-derived phenolic compounds were used to provide indications as to sources 

and preservation state of peat OM through comparison with fresh material. Finally, the 

chemical composition of ―hydrolysed peat‖ (insoluble material obtained after extraction by 

organic solvents and hydrolysis by dilute acid) isolated from two selected levels was 

examined by analysis of ―off-line‖ pyrolysates via combined gas chromatography/mass 

spectrometry (GC-MS) in order to complete the information given by the products released 

upon hydrolysis. 

2. Experimental 

2.1. Modern setting and sampling 

Tritrivakely lake (19 47′S, 46° 55′E, 1778 m) is located in the central part of the Ankaratra 

Plateau (Madagascar). This plateau consists of trachyte and rhyolite domes of Pliocene age 

and Quaternary basaltic flows covering a metamorphic basement (Besairie, 1946). The lake is 

a maar about 600 m wide and 50 m deep. As revealed by piston-core examination, 

sedimentary infill represents a more than 40 m thick accumulation of lacustrine and paludal 

sediments that have probably recorded the last climatic cycle (Gasse et al. 1994, Sifeddine et 

al. 1995 and Gasse & Van Campo, 1998). The uppermost 3 m of sediment consist of peat 

accumulated during the late Holocene (Burney, 1987 and Gasse et al. 1994). 

The regional climate, controlled by latitude and topography (Donque, 1975), is of the 

mountain tropical type (mean annual precipitation about 1600 mm/year; mean annual 

temperature about 16°C) with a warm and wet summer and a dry and cool winter (Chaperon 

et al., 1993). The lake has no surface outlet. Changes in water-level are, therefore, directly 

controlled by the precipitation/evaporation ratio. As a consequence, the watertable varies 

considerably; the lake was almost dry in November 1992, while the maximum watertable 

reached 0.6 m in January 1992, and up to 2 m after an extremely rainy season in May 1994. 

Water is fresh, oligotrophic (electric conductivity about 20.6 μS cm
−1

), slightly acidic (pH 

from 5.5 to 6.3), and has a 
14

C activity of 98.14% corresponding to an apparent age of about 

1000 years (Gasse et al., 1994). The waterbody is presently colonised by aquatic and 

emergent plants. The flora mainly consists of Cyperaceae (Cyperus madagariensis dominant, 

and Cyperus papyrus andHeliocharis equisetina) with some Poaceae species like Leersia 

hexandra. Rice and corn are cropped on the slopes of the crater. 

The present study is concerned with the uppermost metre of peat which has accumulated for 

2300 years B.P. in the maar (Bourdon et al., 1997). The studied core was taken in 1994 near 

the center of the marsh. Samples were taken with a spacing of 5 cm for Rock-Eval pyrolyses 

and LECO analyses; the other studies were performed on core sections (1–4 cm thick). 

Cyperaceae living in the marsh were also examined. They consisted of Cyperus 

madagariensis, Cyperus papyrus and Heliocharis equisetina stems. All samples were kept at 

4°C until they were prepared for microscopy and geochemical analyses. 

2.2. Bulk analyses 

Total organic carbon (TOC) contents and hydrogen index (HI) values were obtained by Rock-

Eval pyrolysis and C/N ratios with LECO CNS. Elemental analysis (C, H, O, N and ash) was 

carried out on two samples selected for detailed analysis, including pyrolysis of the insoluble 



residue from acid hydrolysis. Morphological identification and quantification of peat 

constituents were carried out by transmitted light microscopy. 

2.3. Sugar analysis 

The labile sugars, including hemicellulosic glucose, were released by hydrolysis at 100°C 

during 3 h with 0.5 N HCl (hydrolysis I). The insoluble solid residues thus obtained were 

further hydrolysed with 12 N HCl at room temperature during 12 h then, after dilution of the 

acid to 0.5 N, hydrolysed again under the same conditions as above (hydrolysis II). This 

second treatment was carried out to remove resistant sugars, beginning with cellulosic glucose 

(e.g. Sigléo, 1996). After each hydrolysis, a known quantity of inositol, used as an internal 

standard, was added to the supernatant. Thereafter, water and HCl were eliminated under 

vaccuum in a rotary evaporator. After drying 24 to 48 h in a desiccator, in the presence of 

KOH, the dried sugars were dissolved in pyridine containing 0.2 % (w:v) lithium perchlorate. 

The mixture was kept at 40°C during 2 h in order to reach the anomeric equilibrium (Bethge 

et al., 1966). Then, sugars were silylated at 60°C (1 h) with Tri-sil® Fluka (1:2 ; v:v). The 

silylated sugars were analysed by means of a DI 700 Delsi® gas chromatograph equipped 

with a CP sil 5 CB column (0.32 mm i.d. × 30 m) (film thickness 0.25 μm), a flame ionisation 

detector (300°C), and a split/splitless capillary injector maintained at 300°C and used in the 

splitless mode (valve reopened 1 min after injection). After being held 1 min at 60°C, the 

oven temperature was increased from 60 to 120°C at 30°C/min, and then from 120 to 300°C 

at 3°C/min. The efficiency of sugar release by hydrolyses I and II was tested, on material 

from living Cyperaceae and on two peat samples (0–1 cm and 50–54 cm) by infra-red 

spectroscopy of solid residues. 

2.4. Lignin analysis 

The release of lignin-derived phenols was achieved via CuO oxidation (Hedges and Ertel, 

1982). Vanillic and syringic compounds are derived from the oxidation of the coniferyl and 

sinapyl moieties of lignin, respectively, and they consist of ketones, aldehydes and acids. The 

vanillic (V) and syringic (S) units correspond to the sum of such products. The ferulic and p-

coumaric acids linked to cellulose by ester-bonds and composing the cinnamic unit (C) were 

generated from the cinnamyl alcohol-derived moieties. p-Hydroxybenzoic compounds were 

also identified but this unit (H) can be partly derived from other sources than lignin. Total 

lignin is calculated as the sum of vanillic, syringic, cinnamic and p-hydroxybenzoic units. 

About 50 mg of bulk peat, in duplicate, were hydrolysed with NaOH (8%) at 170°C during 4 

h, in the presence of CuO and Mohr salt (Hedges and Ertel, 1982). After cooling, a known 

quantity of 2, 4, 5-trimethoxybenzoic acid was added as internal standard. After acidification 

at pH =1 with HCl (6 N) and centrifugation, lignin phenols were extracted with peroxide free 

diethylether. After ether evaporation in rotary evaporator, lignin phenols were redissolved in 

methanol and kept under N2 in a tightly closed vessel until analysis. The separation of lignin 

monomers, i.e. 11 phenolic aldehydes, ketones and acids, was performed by capillary zone 

electrophoresis according to Maman et al. (1996) with a P/ACE 5510 system (Beckman) 

equipped with a silica capillary (57 cm×50 mm). After a 1 s injection and separation, phenols 

were determined by UV detection at 214 nm through the capillary, at 50 cm from the injection 

point. 



2.5. Pyrolyses 

―Off-line‖ pyrolyses were performed on the insoluble residues of two selected peat samples 

(30–34 and 79–80 cm). Residues were obtained after three successive treatments. First, bulk 

peat was extracted with CH2Cl2 / methanol (2:1; v:v) at room temperature to remove free 

lipids. Then the solvent-extracted material was hydrolysed during 3 h at 100°C with 0.5 N 

HCl to remove the most labile polysaccharides. Finally, a second extraction was performed 

with CH2Cl2:methanol (2:1; v:v) to remove bound lipids released after hydrolysis. The solid 

residues thus obtained were submitted to ―off-line‖ pyrolyses (Largeau et al., 1986) via 

successive heating at 300°C for 20 min and at 400°C for 1 h under a helium flow. After each 

pyrolysis, the residue was extracted with CH2Cl2/methanol (2:1; v:v). The pyrolysis products 

formed at 400°C and trapped in cold chloroform at −5°C were analysed by GC/MS. GC/MS 

was carried out on a Hewlett–Packard 5890 gas chromatograph interfaced to a 5989A 

Hewlett–Packard mass spectrometer operated at 70 eV with a mass range m/z 40–600. The 

gas chromatograph was equipped with a 25 m CPSil 5 CB column (film thickness: 0.4 μm). 

Helium was the carrier gas. The oven was heated from 100 to 300°C at 4°C min
−1

. 

2.6. Infra-red spectroscopy 

Fourier transform infra-red (FTIR) analysis was carried out with Perkin–Elmer 16 PC 

apparatus. Untreated materials and insoluble residues from hydrolyses and pyrolyses were 

examined in order to characterise the loss of labile compounds and the chemical changes 

occurring upon acid treatment and thermal stress. 

3. Results and discussion 

3.1. Bulk characterisation 

Light microscopy enabled two main organic fractions to be distinguished in the peat : (1) a 

major fraction (80–90%) composed of reddish amorphous OM flakes [Plate 1(a)] that is 

present throughout the series and (2) a minor fraction (5–10 %) formed by algal OM, namely 

from Botryococcus [Plate 1(b)] and diatoms [Plate 1(c)]. Unlike Botryococcus, diatoms are 

only present in the upper part of the profile (⩽55 cm depth). In addition, the samples of 

―surface peat‖ (⩽10 cm) contain substantial proportions (5 to 15 %) of well-preserved plant 

tissues, especially from Cyperaceae [Plate 1(d)]. The large predominance of amorphous OM 

flakes from the first centimetre and throughout the series, indicates that extensive 

destructuration and alteration of plant tissues occur immediately after the incorporation of 

senescent plant remains into the peat (Bourdon et al., 1997). Nevertheless, transmission 

electron microscopy (TEM) observations showed that such flakes contain, in addition to a 

fraction which appears amorphous even at a nanoscopic scale, preserved biological structures 

(laminae) probably inherited from plant tissues (Laggoun-Défarge et al., 1999). TEM 

observations also showed bacterial and/or fungal bodies associated with degraded plant 

tissues. 



 

Plate. 1. Micrographs of peat samples from Tritrivakely marsh, Madagascar, obtained by transmitted 

light microscopy. (a): Amorphous organic matter flakes derived from destructuration and alteration of 

higher plant tissues and occurring in large amount throughout the peat profile. (b) and (c): Algal 

organic matter composed of Botryococcus (b) (arrow) and diatoms (c) (arrow) which occurs as a 

minor fraction in the half upper part of the peat profile. (d): Well-preserved plant tissues of 

Cyperaceae occurring in substantial proportions in the surface peat (⩽10 cm depth). Scale bar=15 μm. 



Total organic carbon (TOC) content remains high throughout the series, i.e. between 45 and 50% (Fig. 

1), as usually observed for the accumulation of OM of terrestrial origin, in the absence of notable 

inorganic inputs. However, hydrogen index (HI) values, which range between 460 and 580 mg HC/g 

TOC, are higher than expected for a material believed to be mainly from ligno-cellulosic tissues 

(Espitalié et al., 1985). In fact, fresh cyperaceae tissues yield a HI value of 360 mg HC/g TOC. These 

high HI values in peat can partly be explained by a substantial contribution of hydrogen-rich algal OM 

that is consistent with the above microscopic observations. The relatively high C/N ratio of 23 

observed in the upper 1 cm of the peat suggests incomplete degradation of Cyperaceae tissues (C/N 

ratio of 41). Below, complete Cyperaceae degradation and algal OM contribution probably explain the 

observed C/N ratios of 14–18. 

 

 

Fig. 1. Comparison of TOC concentrations, Rock Eval hydrogen index (HI) values and organic matter 

atomic C/N ratios in fresh Cyperaceae stems (•) and peat samples from Tritrivakely marsh, 

Madagascar. 

 

The downward evolution of the above mentioned parameters allows two parts, 0–50 cm and 

50–100 cm, to be distinguished in the series (Fig. 1). The samples from the 0–50 cm zone, 

when compared with deeper samples, exhibit higher HI values and lower C/N ratios, thus 

suggesting a higher algal contribution in the upper part of the profile. This evolution should 

reflect changes in accumulation conditions of the peat, probably related, as discussed later on, 

to a regional climatic change. 

3.2. Hydrolysable organic matter 

3.2.1. Sugars 

The efficiency of sugar hydrolysis was examined by Fourier transform infra-red (FTIR) 

spectroscopy on three samples : stems of living Cyperaceae, 0–1 cm and 50–54 cm depth 



peats. The FTIR spectra of the starting materials [1(A), 2(A), 3(A); Fig. 2] are compared with 

those of the corresponding insoluble residues isolated after the two successive hydrolyses 

[1(B), 2(B), 3(B); Fig. 2]. All these spectra exhibit intense absorptions around 1040 cm
−1

 (υ 

C-O) which are assigned to cellulosic sugars (Given et al., 1984). When compared with the 

untreated materials, some decrease in the relative intensity of these bands is observed in the 

corresponding solid residues. However, this relative decrease is less pronounced in living 

Cyperaceae [1(A) and 1(B), Fig. 2] suggesting that cellulosic sugars occur in more resistant 

polymers in living Cyperaceae than in the peat samples. Such a difference may reflect the 

extensive destructuration and alteration of plant tissues observed, as discussed above, from 

the surface of the peat by light microscopy. 



 

Fig. 2. FTIR spectra of (1) fresh Cyperaceae stems, (2) surface peat (0–1 cm depth) and (3) deep peat 

(50–54 cm depth) from Tritrivakely marsh, Madagascar. (A) indicates untreated material and (B), 

insoluble residues from successive hydrolyses with 0.5 N HCl and 12 N HCl. 



As expected, the labile sugars appear to be almost entirely released by hydrolysis I, since the sugars 

obtained via hydrolysis II are much less abundant and mostly correspond to cellulosic glucose (Table 

1). In the material from the living Cyperaceae and in the surface horizon of the peat (0–1 cm), about 

50% of the organic carbon corresponds to polysaccharides. The larger amounts of labile glucose 

(glucose I) in the surface horizon than in the Cyperaceae sample (71.5 mg/g vs. 52.8 mg/g) suggests a 

contribution from another source to the peat, e.g. from microbiota. The rather low amounts of 

cellulosic glucose (glucose II) released by the material from the living Cyperaceae (Table 1), can be 

explained by incomplete hydrolysis. This is supported by the above mentioned strong relative intensity 

of cellulose bands in the FTIR spectra of the hydrolysis residue of Cyperaceae material (Fig. 2). 

Nevertheless, the amount of cellulosic glucose recovered upon hydrolysis II sharply decreases between 

the latter material and the 0–1 cm horizon (Table 1), although more efficient hydrolysis is achieved 

from peat samples as shown by FTIR observations. Accordingly, it appears that cellulose is rapidly 

and extensively altered upon deposition and the bulk is degraded as early as the surface horizon of the 

peat. 

Table 1. Total sugar yields (mg of C. sugars/g Org. C.) from the two successive 

hydrolyses: hydrolysis I carried out with 0.5 N HCl, and hydrolysis II carried out with 

12 N HCl; and total glucose yields (mg of C. glucose/g Org. C.) from these two 

hydrolyses. Hydrolysis II was carried out to remove especially cellulosic glucose 

(glucose II) 

 
C-sugars I C-sugars II C-glucose I C-glucose II 

Cyperaceae 449.0 50.5 52.8 43.6 

0–1 cm 496.4 10.6 71.5 7.6 

2–5 cm 95.1 7.9 24.2 6.7 

9–12 cm 79.3 5.2 18.9 4.7 

13–15 cm 75.9 1.8 15.3 1.1 

19–21 cm 68.0 – 14.7 0.0 

30–34 cm 78.4 2.3 17.1 1.7 

50–54 cm 56.8 2.5 11.0 1.6 

59–60 cm 48.4 1.2 11.7 0.8 

79–80 cm 55.2 3.5 12.5 1.8 

96–99 cm 74.9 4.2 13.5 2.8 

 

In the peat, the total sugar content roughly decreases from ca. 510 mg/g at 0–1 cm to ca. 100 

mg/g at 2–5 cm depth (Table 1). Below, the amount of sugars remains roughly constant all 

along the series. These results, which reflect strong microbial degradation in the surface 

horizon of the peat, are consistent with previous results obtained on a red mangrove swamp 

(Moers et al., 1990b). 

The relative abundances of the monosaccharides released following the two hydrolyses are 

listed in Table 2. The living Cyperaceae are characterised by high amounts of hemicellulosic 

sugars (xylose ≫ arabinose > glucose I) compared with cellulosic glucose released by 

hydrolysis II. An abundant presence of xylose is common for macrophytes since Wicks and 

his collaborators (1991) found about 50% of xylose in the total sugars of Juncus effusus, 

Carex walteriana and Spartina alterniflora. 



Table 2. Monosaccharide concentrations (w% of total sugars) of fresh Cyperaceae 

stems compared to those of peat samples from Tritrivakely marsh, Madagascar 

 

Xylos

e 

Arabino

se 

Manno

se 

Galacto

se 

Glucos

e I 

Glucos

e II 

Fucos

e 

Rhamno

se 

Ribos

e 

Cyperace

ae 
56 17 1 4 11 9 1 1 0 

0–1 cm 35 20 4 18 14 1 5 2 0 

2–5 cm 22 12 8 18 24 7 5 6 0 

9–12 cm 17 9 8 15 22 6 11 5 6 

13–15 cm 25 9 7 13 20 1 16 6 3 

19–21 cm 14 7 6 27 22 0 14 5 5 

30–34 cm 15 7 7 26 21 2 14 5 2 

50–54 cm 13 7 7 23 19 3 15 5 7 

59–60 cm 19 10 8 11 24 2 17 7 2 

79–80 cm 17 8 9 14 21 3 14 8 6 

96–99 cm 31 14 6 12 17 3 9 5 2 

 

In the ―surface peat‖ (⩽ 10 cm), xylose and arabinose inherited mainly from the Cyperaceae 

are still abundant. In addition, large amounts of galactose and non-cellulosic glucose are 

observed (Table 2). 

With increasing depth, while the amounts of arabinose and cellulosic glucose (glucose II) 

decrease, those of galactose and non-cellulosic glucose (glucose I) increase slightly (Table 2). 

These latter sugars might indicate a contribution of other sources, corresponding to 

microalgae and/or microbiota. A microbial contribution might also account for the relatively 

high proportions of mannose, fucose and rhamnose. Non-cellulosic glucose is a very common 

constituent in many organisms, e.g. vascular plants, phytoplankton and bacteria. On the other 

hand, galactose and mannose are frequently related to bacterial or algal sources in soils 

(Trouvé et al., 1996), mangrove peat (Moers et al., 1990b) and lake sediments (Boschker et 

al., 1995), while a bacterial source is also commonly considered for the deoxihexoses fucose 

and rhamnose as it was observed in trap sediments by Hicks et al. (1994). 

The close correlation between arabinose and xylose [Fig. 3(A)] confirms that both these 

compounds are derived from hemicellulosic tissues of Cyperaceae. In the same way, the 

correlations between rhamnose and mannose [Fig. 3(B)], and between glucose (I) and 

mannose [Fig. 3(C)] suggest that these monosaccharides probably have a common origin and 

are chiefly derived from bacteria. The excess of non-cellulosic glucose (ca. 8%) observed in 

[Fig. 3(C] probably reflects a vascular plant source. 



 

Fig. 3. Relationships between (A) xylose and arabinose, (B) mannose and rhamnose, and (C) 

mannose and non-cellulosic glucose (glucose I) in peat samples from Tritrivakely marsh, 

Madagascar. The excess of non-cellulosic glucose content probably originates from a vascular 

plant source. 

The evolution of total sugar content along the profile indicates that extensive degradation of 

polysaccharides only occurs in the surface peat (the first cm depth; Table 1). Below, no clear 

downward evolution is detected for sugars. This might indicate a low in situ microbial activity 

for sugar degradation, as previously observed in a mangrove swamp (Moers et al., 1990b). 

The outcome is a remarkable biological stability of the polysaccharidic associations along the 

profile which is the specificity of hydromorphic environments such as peatlands, compared 

with aerobic soil environments. 



3.2.2. Lignin-derived phenols 

The material from the living Cyperaceae shows an unusually high lignin content (ca. 140 

mg/g C; Table 3), higher than the value (ca. 95 mg/g C) previously obtained by Maman 

(1997) with two tropical Poaceae: Hyparhenia sp. and Imperata cylindrica. As usual, for 

monocotyledons, Cyperaceae lignin is dominated by cinnamic units (56% of total lignin) 

composed of both p-coumaric and ferulic acids (Table 3), and the other most abundant lignin 

degradation products are syringic and vanillic aldehydes (25% of total lignin; Table 3). 

Table 3. Total yield of lignin (mg/g Org. C.) and relative concentrations of lignin CuO 

oxidation products (% of lignin total weight) in fresh Cyperaceae stems and peat 

samples from Tritrivakely marsh, Madagascar
a
 

 
Total lignin 

Aldehydes 

 

Acids 

 

Ketones 

 

Cinnamicunits 

 

  
S V P S V P S V P C F 

Cyperaceae 139.2 14 11 3 3 1 2 5 1 3 38 18 

0–1 cm 78.54 22 16 6 5 4 2 6 3 1 22 11 

2–5 cm 61.05 19 15 7 7 5 4 9 3 2 19 9 

13–15 cm 53.12 19 15 7 8 7 6 9 5 2 17 5 

31–34 cm 31.59 18 15 9 9 11 5 9 2 2 12 9 

50–54 cm 50.91 19 14 8 8 8 7 9 5 5 12 7 

59–60 cm 41.65 16 11 8 9 8 7 9 4 2 14 10 

79–80 cm 35.68 16 13 8 9 7 6 11 4 3 14 9 

96–99 cm 64.00 17 14 7 8 6 5 9 3 3 18 10 

a 

S: syringic phenols, V: vanillic phenols, P: p-hydroxybenzoic phenols, C: coumaric 

acids, F: ferulic acids. 

By comparison with the fresh plants, the amount of lignin substantially decreases in the upper 

centimeter of the peat (78.5 mg/g vs 139.2 mg/g in the material from the living Cyperaceae; 

Table 3). This decrease continues downward and a value of ca. 30 mg/g is noted at 31–34 cm 

(Table 3). Below, the amount of lignin increases, especially in the deepest sample (64 mg/g at 

96–99 cm). The decrease observed in the upper part of the studied section should chiefly 

originate from the progress of lignin alteration and also from increasing dilution by algal 

material. The trend observed in the lower part probably reflects increasing relative inputs of 

lignin due to lower dilution by non-ligneous material like phytoplankton, in agreement with 

HI and C/N values discussed above. 

All along the section, the abundances of vanillic, syringic and cinnamic units are well-

correlated with the total amount of lignin [Fig. 4(a), (b), (c)]. Such a lack of significant 

changes in lignin composition indicates that no substantial changes in higher plant sources 

took place during the deposition of the studied peat section. In contrast, there is no tight 

correlation between p-hydroxybenzoic units and total lignin [Fig. 4(d)]. Some of the p-

hydroxybenzoic compounds are thus probably derived from additional source(s) such as 

phytoplankton, as demonstrated by Hedges et al. (1988b) for samples collected in sediment 

traps in a marine bay. The latter authors demonstrated that the p-hydroxybenzoic acid and the 



p-hydroxybenzaldehyde in these samples chiefly originated from sources other than lignin, 

such as plankton, whereas the p-hydroxyacetophenone was mainly derived from lignin. Our 

data (Table 3) can be interpreted in the same way. 

 

Fig. 4. Relationships between total lignin content and vanillic (A), syringic (B), cinnamic (C) 

and p-hydroxybenzoic (D) monomers of lignin in peat samples from Tritrivakely marsh, 

Madagascar. 

 

In addition, the acid/aldehyde ratio of vanillic and syringic units is inversely correlated with 

the amount of total lignin (Fig. 5). The latter feature suggests that the depolymerisation of 

lignin is initiated by the oxidation of aldehydes which leads to the production of benzoic acids 

such as vanillic and syringic acids which are rapidly mineralised. In subaerial terrestrial 

environment, such degradation is generally mediated by white-rot fungi (Hedges, Blanchette, 

Weliky & Devol, 1998a and Higuchi, 1990). At present, in Tritrivakely marsh, important 

seasonal variations of the watertable occur and drying of the surface peat was observed, for 

example in November 1992. During such dry periods an efficient degradation of lignin by 

white-rot fungi may have occurred, essentially at the top of the profile. Then, translocation of 

the resulting soluble acid monomers or oligomers of lignin down to deeper horizons of the 

peat may have occurred, followed by mineralisation by anaerobic bacteria (Young and Frazer, 

1987). 



 

Fig. 5. Relationship between total lignin content and the acid / aldehyde ratio of syringic and 

vanillic monomers of lignin in peat samples from Tritrivakely marsh, Madagascar. 

 

Acid/aldehyde ratio of syringic and vanillic monomers thus appears as an index of lignin 

oxidative depolymerisation, and hence as a criterion of alteration intensity of initial plant 

tissues. This alteration essentially results from microbial activity which can be fungal and 

bacterial for lignin, as discussed above, but which is mainly bacterial in the case of 

hemicelluloses. The bacterial degradation of hemicelluloses is reflected by the formation of 

sugars such as mannose, rhamnose and non-cellulosic glucose. Indeed, the 

(mannose+rhamnose+non cellulosic glucose/total sugars) ratio is positively correlated with 

the (acid/aldehyde)v;s ratio (Fig. 6). These two ratios can be, therefore, considered as markers 

of degradation of the tissues of the Cyperaceae by microbial activities. 



 

 

Fig. 6. Relationship between acid/aldehyde ratio of syringic and vanillic monomers (index of 

lignin oxidative depolymerisation) and (mannose+rhamnose+non-cellulosic glucose)/total 

sugar ratio (reflecting bacterial degradation of hemicelluloses) in peat samples from 

Tritrivakely marsh, Madagascar. 

3.3. Pyrolysis of hydrolysed peats (hp) 

The insoluble materials obtained after lipid extraction and acid hydrolysis of two peat samples 

from the upper part (30–34 cm section) and the lower part (79–80 cm section) of the profile, 

representing the intervals above and below the 1500 years timeline, termed hp-1 and hp-2, 

respectively, were submitted to ―off-line‖ pyrolyses. The trapped products, generated at 

400°C, were identified by GC/MS. This study was performed in order to compare the 

molecular information recorded by hp-1 and hp-2 and by the hydrolysable components 

examined above. In addition, the two peat samples were examined by elemental analysis and 

FTIR before any treatment. 

3.3.1. Elemental analysis 

The low amount of ash in both peat samples reflects the large predominance of OM over 

mineral matter in this material (Table 4). According to light microscopy observations the 

mineral matter mainly consists of biogenic silica (diatom tests and spicules of sponges). O/C 

and H/C atomic ratios show high oxygen and hydrogen contents for the two peat samples, 

consistent with the immaturity of this material. The values of the H/C ratio, which appear 

rather high for continental peats, could at least partly be explained by the admixture of 

aliphatic algal components. This interpretation is consistent with the presence of algae shown 

by microscopic observations. In agreement with HI and C/N values previously discussed, 

suggesting a larger contribution of aliphatic algal components in the upper part of the section, 

a higher H/C ratio is noted for sample-1. 

 



Table 4. Elemental composition (wt%) and atomic ratios of the two peat samples from 

Tritrivakely marsh, Madagascar, selected for pyrolytic studies 

 
Ash C H N O O/C H/C 

Sample 1 (30–34 cm) 10.5 46.7 6.1 4.1 32.6 0.52 1.56 

Sample 2 (79–80 cm) 9.3 48.9 6.2 3.6 31.9 0.49 1.51 

 

3.3.2. Infra-red spectroscopy 

The IR spectra of both peat samples (Fig. 7, sample-1-A and sample-2-A) display numerous 

absorption bands indicative of the presence of various functional groups as expected for 

immature OM. The two spectra show the same general pattern and main absorptions. 

 

Fig. 7. FTIR spectra of the two peat samples selected for pyrolytic studies (sample-1, 30–34 cm 

section; sample-2, 79–80 cm section). (A) bulk peats, (B) solid residues after lipid removal and acid 

hydrolysis, (C) solid residues after pyrolysis at 300°C, (D) solid residues after pyrolysis at 400°C. 



The strong bands at 1040 and 3400 cm
−1

 should at least partly be related to polysaccharides 

(υC-O and υO-H, respectively). The band at 1040 cm
−1

 also shows the characteristic 

shoulders of cellulose, the main polysaccharide of ligno-cellulosic cell walls of higher plants 

(Given et al., 1984). The relative intensity of the typical bands of aliphatic groups at 2850 and 

2920 cm
−1

 is unusually high for peat samples. This is most probably due to the presence of the 

hydrogen-rich algal material mentioned above. Based on the relative importance of these 

bands and of those characteristic of cellulose, sample-1 (30–34 cm) appears relatively 

enriched in aliphatic moieties compared with sample-2 (79–80 cm), which is in agreement 

with the above discussion on H/C ratios and HI values, whereas the relative abundance of 

cellulose is lower. 

Another difference between the two peat samples is concerned with the absorptions at 1635, 

1547 and 1226 cm
−1

 which can be ascribed to proteins (Disnar, Trichet, 

1980 and Gerasimowicz, Byler & Susi, 1986). The higher relative intensity of these bands in 

sample-1 than in sample-2 is consistent with a higher protein content in the former. Such a 

difference is also supported by N contents of 4.1 and 3.6 wt%, respectively, and by a lower 

C/N ratio for sample-1. 

The spectra of sample-1 and sample-2 obtained after free lipid extraction and acid hydrolysis 

[(Fig. 7, sample-1(B) and sample-2(B)] show that the removal of polysaccharides was more 

efficient in the former, as indicated by the greater decrease in the relative intensity of the 1040 

and 3400 cm
−1

 bands when compared with the absorptions of the aliphatic moieties at 2850 

and 2920 cm
−1

. Due to the relatively mild hydrolysis conditions used, the removed 

polysaccharides most probably corresponded to the easily hydrolysable hemicelluloses and to 

sugars from the cell wall of bacteria and microalgae. Indeed, the strong absorptions of 

cellulose still observed around 1040 cm
−1

 and the importance of the bands ascribed to proteins 

indicate that both types of moieties are resistant to the rather mild conditions used for the 

hydrolysis. In addition, the relative intensity of the 1040 cm
−1

 band in spectra 1-B and 2-B 

shows that cellulose content is higher in sample-2. This higher relative abundance, despite 

burial at a greater depth, can be explained by original sedimentary inputs richer in cellulose 

for sample-2, due to a lesser dilution of vascular plant components by aliphatic algal 

constituents in the deeper part of the peat profile. 

After pyrolysis at 300°C [Fig. 7, sample-1(C) and sample-2(C)], the strong absorptions 

corresponding to cellulose and proteins are no longer observed, as a result of the thermal 

cracking that occurs at such a temperature (Disnar and Trichet, 1984). The absorption of 

biogenic amorphous silica (∼1110 cm
−1

), so far hidden by the absorption of polysaccharides, 

now appears. The intensity of this band is more important in the case of sample-1, thus 

reflecting a higher quantity of silica. This is confirmed by mass calculations indicating that 

sample-1 and sample-2 contain ca. 36 and 20% of amorphous silica, respectively. Protein 

removal unmasks the bands due to aromatic components at ca. 1510 and 1620 cm
−1

. The latter 

bands and the intense absorption retained at 3400 cm
−1

 probably reflect the presence of 

phenolic groups from lignins. In fact, as shown by the analysis of the pyrolysates obtained at 

400°C, see below, such groups survived the treatment at 300°C along with aliphatic moieties. 

The spectra of the insoluble residues obtained after pyrolysis at 400°C [Fig. 7, sample-1(D) 

and sample-2(D)] are dominated by bands at ca. 1600 and 1100 cm
−1

 that correspond to 

aromatic groups and silica, respectively. Phenolic and aliphatic moieties have been eliminated 

during the second thermal treament. 



3.3.3. Analysis of pyrolysates 

GC–MS analysis of the trapped fraction obtained by pyrolysis at 400°C of sample-1 and 

sample-2 showed three major types of products : n-alkanes, n-alk-1-enes and phenols. In both 

cases, the total ion current (TIC) trace of the pyrolysate is dominated by n-alkane/n-alk-1-ene 

doublets up to C32, with no significant odd- or even-carbon-number predominance (Fig. 8). 

Such series of doublets with no predominance are commonly observed in pyrolysates of 

sedimentary OM (e.g. Largeau et al., 1986) and they are derived from the homolytic cleavage 

of unbranched alkyl chains. Two origins can be considered for these polymethylenic chains in 

sample-1 and sample-2 : 



 

Fig. 8. Total ion current (TIC) traces of pyrolysis products obtained at 400°C from insoluble residues 

after lipid removal and acid hydrolysis of the two selected peat samples (sample-1, 30–34 cm section; 

sample-2, 79–80 cm section). Structures of major phenolic compounds are indicated. Numbers 

indicate chain length of n-alkane/n-alk-1-ene doublets. 



Firstly, lipidic components that have been incorporated to the insoluble material as a result of 

condensation reactions. Such reactions are known to be important during early diagenesis 

(Tissot and Welte, 1984) and extensive condensation processes, resulting in the incorporation 

of various lipids into insoluble refractory structures, were observed, for example, upon 

diagenesis of microalgal biomass (Derenne et al., 1997). Based on the unbranched nature of 

their alkyl chains, these condensed lipids may originate from microalgae (Weete, 

1976 and Meyers, Ishiwatari, 1993) and/or from higher plants (Tulloch, 1976 and Meyers, 

Ishiwatari, 1993). In contrast, a bacterial origin is unlikely since a number of bacterial lipids 

are characterised by the presence of branched chains (Albro, 1976). 

Secondly, insoluble refractory macromolecular components of microalgae or higher plants 

based on a network of polymethylenic chains. The occurrence of highly aliphatic, non-

hydrolysable, biomacromolecules, termed algaenans (Tegelaar et al., 1989a), has been 

recognised in the cell walls of a number of microalgae (reviewed in Derenne et al. 

1992 and de Leeuw & Largeau, 1993). As already mentioned, light microscopy observations 

showed the presence of diatoms and of green microalgae (Botryococcus braunii) in the 

Tritrivakely section. Diatoms only occur in the upper part of the section, furthermore recent 

studies indicate that such microalgae are probably unable to produce algaenans (Gelin et al., 

1999). In contrast, B. braunii is well known for its conspicuous production of algaenan ( 

Berkaloff, Casadevall, Largeau, Metzger, Peracca & Virlet, 1983, Kadouri, Derenne, Largeau, 

Casadevall & Berkaloff, 1988 and Derenne, Largeau, Casadevall & Berkaloff, 1989) and a 

low but significant contribution of B. braunii was observed throughout the section. Highly 

aliphatic, refractory, macromolecular components have also been identified in the cuticles and 

periderm layers of a number of higher plants ( Nip, Tegelaar, Brinkhuis, Leeuw, Schenk & 

Holloway, 1986, Tegelaar et al. 1989b and Tegelaar, Hollman, Van Der Vegt, de Leeuw & 

Holloway, 1995). Such non-hydrolysable biomacromolecules were termed cutans and 

suberans, respectively (Tegelaar et al., 1989a). B. braunii algaenans, as well as cutans and 

suberans, produce large amounts of n-alkanes and n-alk-1-enes upon pyrolysis ( Largeau, 

Derenne, Casadevall, Kadouri & Sellier, 1986, Nip, Tegelaar, Brinkhuis, Leeuw, Schenk & 

Holloway, 1986, Kadouri, Derenne, Largeau, Casadevall & Berkaloff, 1988, Tegelaar, 

Matthezing, Jansen, Horsfield, de Leeuw, 1989 and Tegelaar, Hollman, Van Der Vegt, de 

Leeuw & Holloway, 1995). Furthermore, the doublets thus generated exhibit an extended 

carbon range and a large contribution of C20+ compounds. Cutans, suberans and algaenans are 

characterised by a very high resistance to diagenetic degradation and their chemical 

composition can remain almost unaltered following fossilisation, as demonstrated, for 

example, by comparison of algaenans isolated from extant B. braunii and of organic matter in 

Botryococcus-rich immature sedimentary rocks (e.g. Largeau, Derenne, Casadevall, Kadouri 

& Sellier, 1986 and Derenne et al. 1997). The presence of such refractory macromolecules is 

also associated with an excellent preservation of morphological features, as noted for cutan-

containing cuticles (e.g. Nip et al., 1987). Similarly, the morphological features of B. braunii 

colonies are also perfectly retained in the fossil record, in a number of deposits (e.g. Largeau, 

Derenne et al. 1990 and Derenne et al. 1997), since the algaenan-composed cell walls build up 

the matrix of these colonies and are responsible for their typical shape (Berkaloff et al., 1983). 

The occurrence of well-preserved colonies of B. braunii throughout the section indicates that 

such walls were not significantly affected under the diagenetic conditions encountered during 

deposition in the marsh. Furthermore, histochemical staining techniques in TEM revealed in 

the OM flakes bioresistant lipo-polysaccharidic laminae probably inherited from higher plants 

(Laggoun-Défarge et al., 1999), especially from periderm tissues. Accordingly, it appears that 

the n-alkane/n-alk-1-ene doublets in the pyrolysates of sample-1 and sample-2 originate from 

the cracking of not only B. braunii algaenan but also of higher plant suberans. 



Further information on the origin of these doublets and on the differences between the two 

peat samples was provided by their distributions. Substantial differences in n-alkane/n-alk-1-

ene distribution are noted in the two pyrolysates; long chain compounds are relatively more 

abundant in the case of sample-2 (Fig. 8). Indeed, the C23–C32 components account for ca. 

40% of the total doublets for the latter against ca. 28% in the trapped pyrolysate from sample-

1. Such a difference suggests, firstly, that B. braunii algaenan and higher plant suberans were 

not the major source of the doublets since, in that case, similar distributions should be 

observed. Accordingly, alkyl chains from condensed lipids are probably an important sources 

for both residues. Secondly, the above differences in doublet distribution probably reflect 

differences in the relative contribution of microalga and higher plant components to the 

condensed lipids. Indeed, the lipids of most microalgae (such as hydrocarbons, fatty acids and 

fatty alcohols) are characterised by shorter alkyl chains when compared to the corresponding 

lipids of higher plants ( Tulloch, 1976 and Weete, 1976). Thus, for example, C24+ fatty acids 

are commonly observed in vascular plants whereas such long chain compound are usually 

absent in microalgae. Accordingly, the doublet distributions observed in the two pyrolysates 

and their differences suggest that (i) the contribution of moieties derived from higher plants to 

the condensed lipids was relatively higher in sample-2 than in sample-1, as shown by the 

above mentioned higher relative abundance of C22+ compounds in n-alkane/n-alk-1-ene 

doublets and (ii) microalgae were, nevertheless, major contributors to the condensed lipids in 

both cases, as shown by the predominance of C23- compounds in these doublets. Some 

diatoms can accumulate especially large amounts of lipids, especially fatty acid derivatives 

(Aaronson et al., 1980). Therefore, a part of the condensed algal lipids probably originated 

from diatoms in the case of sample-1 which contains, as shown by light microscopy 

observations, a significant amount of diatoms. Other species of microalgae were also probably 

living in the lake at the time of deposition of both peat samples and their lipids were probably 

incorporated during the condensation processes. However, unlike diatoms and B. braunii, the 

latter species were devoid of mineral exoskeleton and of algaenan-composed cell walls and 

none of their morphological features were retained. 

The TIC trace of both pyrolysates also shows relatively intense peaks corresponding to phenol 

and substituted phenols (Fig. 8). The alkyl phenols, identified by mass fragmentogram m/z 

107, are dominated by a peak corresponding to the co-elution of meta- and para-cresol. In the 

trapped products from sample-2 pyrolysis, the latter peak is, in fact, the most intense one on 

the TIC trace (Fig. 8, sample 2). The abundance of the alkylphenols rapidly decreases with the 

number of alkyl carbons and the C3-homologues only occur in negligible amount. 

Methoxyphenols, catechols (dihydroxybenzenes) and vinylphenols were also identified in the 

two pyrolysates (Fig. 9). Alkylphenols, along with methoxyphenols and catechols, are typical 

pyrolysis products of lignin (e.g. Saiz-Jimenez, Boon, Hedges, Hessels & de Leeuw, 

1987 and Hatcher & Spiker, 1988). Furthermore, 4-vinylphenol and 4-vinylmethoxyphenol in 

pyrolysates are considered as markers of lignin from monocotyledon plants like Cyperaceae 

(Saiz-Jimenez and de Leeuw, 1986) since they are derived from cinnamic units. All the above 

phenolic compounds exhibit similar relative abundances in both pyrolysates. Such similarities 

confirm previously discussed results on lignin composition, derived from CuO oxidation; no 

significant changes in lignin composition and hence in higher plant sources took place during 

deposition of the studied section. It is well documented that methoxy groups tend to be 

eliminated during diagenetic alteration of lignin ( Saiz-Jimenez & de Leeuw, 1986, Nip, De 

Leeuw & Schenck, 1987, Saiz-Jimenez, Boon, Hedges, Hessels & de Leeuw, 1987, Hatcher 

& Spiker, 1988 and Hatcher & Clifford, 1997). Accordingly, the above observations, on the 

phenolic constituents of the two pyrolysates, indicate a substantial contribution of lignin with 

a low degree of alteration in sample-1 and sample-2. However, in agreement with previous 



indications on the relative contributions of Cyperaceae and microalgae, this lignin fraction 

appears relatively more abundant in the case of sample-2. This difference is illustrated by 

higher phenol/n-heptadecane and vinylphenol/n-heptadecane ratios in hp-2 pyrolysate (1.16 

instead of 0.6 and 0.49 instead of 0.26, respectively). 

 

Fig. 9. Partial TIC trace of pyrolysate of sample-2 (79–80 cm section) showing phenolic compounds. 

 

4. Conclusions 

The main results concerning OM sources and OM degradation in the one metre core from 

Tritivakely Marsh, obtained by a combination of light microscopy observations, bulk 

analyses, infra-red spectroscopy, hydrolysis of sugars, oxidation of lignin and pyrolyses, are 

as summarised below: 

• 

The lignin of the Cyperaceae that live in the marsh at present is characterised by high 

contents of cinnamic units. The saccharides in these plants reveal high amounts of 

xylose and arabinose which are the main components of hemicelluloses. Peat recorded 

these specific signatures since abundances of cinnamic units and of xylose+arabinose 

are tightly correlated (Fig. 10) (correlation coefficient=0.96). Such a correlation, 



added to the lack of significant changes in lignin composition indicated by CuO 

oxidation and pyrolyses, suggests that the floristic composition of the vegetation 

probably remained unchanged during the considered deposition period, i.e. from 2,300 

years B.P. Fig. 10 also illustrates pronounced changes that took place ca. 1500 years 

B.P. (i.e. around 50 cm depth) and which probably reflect, as described later on, a 

regional climatic change. 

 

Fig. 10. Correlations between cinnamic monomers of lignin and hemicellulosic sugars (xylose and 

arabinose) vs depth. The dashed line separates the two accumulation periods related to the 

environmental variation that occurred ca. 1500 year B.P. 



The lignin of the Cyperaceae that live in the marsh at present is characterised by high 

contents of cinnamic units. The saccharides in these plants reveal high amounts of 

xylose and arabinose which are the main components of hemicelluloses. Peat recorded 

these specific signatures since abundances of cinnamic units and of xylose+arabinose 

are tightly correlated (Fig. 10) (correlation coefficient=0.96). Such a correlation, 

added to the lack of significant changes in lignin composition indicated by CuO 

oxidation and pyrolyses, suggests that the floristic composition of the vegetation 

probably remained unchanged during the considered deposition period, i.e. from 2,300 

years B.P. Fig. 10 also illustrates pronounced changes that took place ca. 1500 years 

B.P. (i.e. around 50 cm depth) and which probably reflect, as described later on, a 

regional climatic change. 

 

Fig. 10. Correlations between cinnamic monomers of lignin and hemicellulosic sugars 

(xylose and arabinose) vs depth. The dashed line separates the two accumulation 

periods related to the environmental variation that occurred ca. 1500 year B.P. 

Figure options 

• 

The correlations observed between rhamnose and mannose and between mannose and 

non-cellulosic glucose indicate that these monosaccharides probably have a common 

origin and are mostly derived from bacteria. 

• 

Sugar analysis showed high proportions of galactose, especially in the upper part of 

the profile (⩽50 cm depth) where a substantial diatom content was observed by light 

microscopy. Moreover, galactose, whose presence is usually attributed to bacterial 

activity (Oades, 1984 and Guggenberger, christensen & Zech, 1994), is not correlated 

http://www.sciencedirect.com/science/article/pii/S0146638000000103


with mannose or rhamnose. Accordingly, galactose is likely to be a marker of algal 

source in the core, especially of diatoms. 

• 

The n-alkane/n-alk-1-ene doublets that dominate the trapped pyrolysates of hydrolysed 

peat samples reflect the contribution of (1) B. braunii algaenan and higher plant 

suberans (2) condensed lipids mostly derived from microalgae (probably including 

diatoms in the upper part of the profile), and to a lesser extent from higher plants. 

• 

Degradation mainly takes place at the top of the peat. As shown by microscopic 

observations, this extensive early diagenetic alteration leads to a complete 

destructuration of the ligno-cellulosic tissues of the Cyperaceae which are transformed 

into reddish amorphous aggregates that account for the bulk of total OM all along the 

core, including the 0–1 cm layer. 

• 

Cellulose and total polysaccharides are highly degraded as early as the first 

centimetres of the core but they do not undergo further extensive degradation in 

deeper samples. 

• 

Lignin is also strongly degraded, although to a lesser extent than polysaccharides, in 

the first centimetres of the core 

• 

Acid/aldehyde ratios of syringic and vanillic monomers (index of lignin oxidative 

depolymerisation) and mannose+rhamnose+non cellulosic glucose/total sugars ratios 

(reflecting bacterial degradation of hemicelluloses) are positively correlated. Both 

ratios can thus be considered as markers of degradation of the Cyperaceae tissues by 

microbial activities. 

• 

The upper part of the core (0–ca. 50 cm) is characterised by a more important dilution 

of Cyperaceae-derived compounds by OM from microalgae when compared with 

deeper samples. Such a difference was recorded in peat in several ways: bulk features, 

hydrolysable sugars, lignin oxidation products and pyrolysis products from hydrolysed 

samples. 

• 

The above difference probably reflects changes in environmental conditions and two 

accumulation periods can be distinguished in the core. The first one, between 2300 

years B.P. and ca. 1500 years B.P. (100–ca. 50 cm depth), was a peaty phase in which 



the mean watertable was low and microalgal growth strongly limited. The second 

period, from ca. 1500 years B.P. to the present time, corresponds rather to a 

waterlogged marsh, in which a higher watertable was, if not permanent, at least longer 

lasting and allowed for a substantial production of algal biomass. The environmental 

variation thus recorded could correspond to a regional climatic change occurring 

around 1500 years BP. 
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