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Abstract 

Recent evidence for a Late Carboniferous hydrothermal event responsible for Au–As 

mineralization within the Variscan belt of the French Massif Central adds a supplementary 

episode to the already rather complex thermal history of this area. To better understand this 

history, 45 coal samples from various sites in the Massif Central were studied 

petrographically (reflectance analysis) and geochemically (Rock-Eval pyrolysis). The results 

of this study suggest that the studied coal was buried to 1500 m and that the coalification took 

place within 25 Ma, probably ending at the boundary between the Early and Late Permian 

(marked by the Saalic orogeny). Two thermal end-members basins were identified: (i) the 

Carboniferous of Bosmoreau-les-Mines (Limousin) and West Graissessac (Montagne Noire) 

showing geothermal paleoflow values between 150 and 180 mW m
−2

, and (ii) the Stephanian 

of Argentat and Détroit de Rodez (SW Massif Central) with values estimated at between 100 

and 120 mW m
−2

. By plotting the Tmax and Ro values on a diagram, the samples were grouped 

into two populations, the first showing a positive correlation between Ro and Tmax and the 

second with higher Tmax values than expected after Ro values. Selected samples of the second 

group are also characterized by a high Oxygen Index (OI) that increases with Tmax. These 

divergence between Ro and Tmax associated with a high OI may be the result of the circulation 

of slightly oxidizing hot fluids subsequent to coalification. The other kind of Ro–Tmax 

divergence seems to be linked to local, particularly high thermal activity, especially in 

Graissessac and Bosmoreau basins. It is interpreted as being due to a difference in response of 

these two maturity indicators, respectively to the intensity and duration of the thermal events 

(e.g., short-lived hydrothermal circulation and thermal domes of regional extent). 
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1. Introduction 

After the Devonian–Visean, the Variscan belt of the French Massif Central was successively 

subjected to crustal thickening then thinning (Faure and Becq-Giraudon, 1993; Faure, 1995; 

Faure et al., 1997). Crustal instability following thickening was first marked by a Late 

Variscan (350 Ma) strike–slip event, and then by a Middle–Late Carboniferous extensional 

episode (Leloix, 1998). Sedimentary basins then developed along major faults such as the 

Sillon Houiller Fault and the Argentat Fault (Letourneur, 1953; Marest, 1985; Gelard et al., 



1986; Faure and Becq-Giraudon, 1993; Genna et al., 1998). The basement lineaments 

commonly controlling the distribution and paleogeography of these basins (Faure, 1995) were 

preferentially adopted as pathways by high-temperature hydrothermal fluids, particularly 

those responsible for Au–As mineralization within the French Massif Central (Bouchot et al., 

1997; Roig et al., 1997). These same fluids probably also affected sediments in basins such as 

Blanzy–Montceau (Berquer-Gaboreau, 1986) and Meisseix–Singles (Robert et al., 1988). For 

example, at Blanzy–Montceau, Golitsyn et al. (1997)noted an increase in the coal rank along a 

single layer towards an active fault that would have controlled heat flow by draining heat-

bearing fluids. 

One the initial aims of the present study was to determine whether the hydrothermal fluids 

which circulated during the Middle–Late Carboniferous (Roig et al., 1997) could have 

affected the coals in the French Massif Central. Accordingly, in this paper, we discuss the 

thermal activity of the basins analysed (Fig. 1), beginning with the maximum depth of burial 

of the Carboniferous succession and the duration of coal maturation in the Carboniferous and 

Permian by the use of two parameters of OM rank, i.e., vitrinite reflectance Ro (%) and Tmax 

(°C). Then, we estimated the maximum paleotemperatures experienced by the coal during 

burial and examined the nature and origin OM maturity anomalies to determine whether they 

could have been caused by hydrothermal circulations. 

 

Fig. 1. General map of the Massif Central showing the location of the Carboniferous basins from 

which the analysed coal samples were collected (adapted from Becq-Giraudon, 1984). 1: Bosmoreau-

les-Mines, 2: Lapleau-Maussac, 3: Argentat, 4: Détroit de Rodez, 5: Graissessac, 6: Roujan-Neffiès. 



2. Samples and methods 

2.1. Samples 

The study was based on the analysis of 45 grab coal samples collected from outcrop in six 

Carboniferous intramontane basins, namely: (1) Bosmoreau-les-Mines at the northern end of 

the Argentat Fault, (2) Lapleau–Maussac, (3) the Carboniferous of Argentat in Bas-Limousin, 

(4) Détroit de Rodez, (5) Graissessac, the western continuation of the Permian Lodève basin, 

and (6) Roujan-Neffiès to the south of the metamorphic domain of the Montagne Noire (Fig. 

1). 

2.2. Methods 

Two rank parameters were recorded for all the samples, Ro (%) and Tmax (°C) of Rock-Eval 

pyrolysis. The reflectance was measured using grain polished sections according to the 

standard method developed by the International Committee of Coal Petrology (ICCP) using a 

reflected light microscope (LEITZ MPV II) equipped with a monochromator and a 

photometer. Qualitative petrographic examinations, such as microfracture and oxidation 

studies, were carried out on whole-rock polished sections. 

Some samples (A1, A3 from Argentat and Sé1, Sé2 from Graissessac) were analysed under a 

scanning electron microscope in backscattered electron mode (SEM/BE) to test for the 

presence of chemical elements or minerals characteristic of hydrothermal circulation (EDS 

point analysis) and to examine the fractures within the vitrinite particles. 

Rock-Eval pyrolysis was carried out using the Rock-Eval® 6 device of Vinci Technologies 

according to the conditions given in Table 1. Tmax corresponds to the temperature recorded for 

the S2 pyrolysis peak, i.e., when the emission of hydrocarbon-bearing compounds is at its 

maximum during thermal cracking of kerogen under inert atmosphere, in linear programming 

of temperature ( Espitalié et al., 1985a, Espitalié et al., 1985b and Espitalié et al., 1985c). In 

addition to Tmax, pyrolysis provides values of Total Organic Carbon (TOC) (%), Oxygen 

Index (OI expressed in mg CO2/g TOC) and Hydrogen Index (HI expressed in mg HC/g 

TOC). HI and OI, corresponding respectively to the quantities of hydrocarbons and CO2 

released during pyrolysis, in relation to TOC, are proportional to the hydrogen and oxygen 

contents of the OM ( Espitalié et al., 1985a, Espitalié et al., 1985b and Espitalié et al., 1985c; 

Lafargue et al., 1996). 

 

Table 1. Experimental conditions for Rock-Eval® 6 pyrolysis 

 

Initial temperature 

(°C) 

Final temperature 

(°C) 

Temperature 

programming 

pyrolysis 300 800 25°C/min 

oxidation 400 850 25°C/min 

 

 

 



3. Results 

The Ro measurements and pyrolysis results are given in Table 2. We will not discuss here the 

TOC values which, for the disseminated samples collected at outcrop, simply confirm 

whether we are dealing with coal sample from a seam or dispersed OM. 

Table 2. Rock-Eval pyrolysis and Ro results 

Basin Sample 
Ro 

(%) 

Standard 

deviation 

Tmax 

(°C) 

HI 

(mgHC/gTOC) 

TOC 

(%) 

OI 

(mgCO2/gTOC) 

Argentat A.1 0.64 0.084 446 25 25 70.35 

 
A.2 0.65 0.102 447 73 73 44.13 

 
A.3 0.69 0.069 560 9 19 96.23 

 
A.3′ 0.60 0.083 506 9 20 62.3 

Bosmoreau-

les-Mines 
B.1 1.37 0.094 564 25 70.74 2.42 

 
B.3 1.43 0.081 562 36 38.77 2.22 

Lapleau-

Maussac 
LM1 1.06 0.100 486 84 73.8 5.19 

 
LM2 1.03 0.088 470 121 52.65 4.69 

 
LM3 1.20 0.087 494 94 46.67 10.89 

 
LM4 0.83 0.056 500 14 7.52 81.13 

Détroit de 

Rodez, North 

border 

E1 0.61 0.065 437 189 62.16 6.52 

 
E3 0.68 0.090 437 62 15.02 53.36 

 
E4 0.67 0.080 434 126 43.95 37.90 

 
Pou1 0.66 0.075 430 186 28.02 31.1 

 
Pou2 0.61 0.063 444 207 37.64 7.70 

Détroit de 

Rodez, South 

border 

Ber1 0.71 0.059 437 175 52.02 7.19 

 
Ber2 0.80 0.115 441 49 20.55 57.56 

 
Ber3 0.92 0.181 444 57 51.92 33.26 

 
Ber4 0.77 0.075 485 60 63.59 15.18 

 
Ber4′ 0.77 0.74 449 31 4.17 49.18 

 
Ga1 0.73 0.084 438 217 46.1 8.94 

 
Ay1 0.63 0.074 447 18 36.72 67.66 

 
Mé1 1.05 0.078 442 213 40.38 7.38 

Roujan-

Neffiès 
Ro-Né1 1.42 0.099 475 63 23.03 10.86 

 
Ro-Né2 1.45 0.079 489 68 8.01 12.45 

 
Ro-Né3 1.35 0.044 533 18 6.17 61.42 

East Sé1 1.41 0.108 477 150 44.59 2.91 



Basin Sample 
Ro 

(%) 

Standard 

deviation 

Tmax 

(°C) 

HI 

(mgHC/gTOC) 

TOC 

(%) 

OI 

(mgCO2/gTOC) 

Graissessac 

 
Sé2 1.31 0.087 536 20 46.73 55.58 

 
Sé3 1.36 0.079 477 101 13.15 4.17 

 
Sé4.1 1.40 0.067 473 118 17.53 4.40 

 
Sé4;2 1.40 0.056 472 141 25.73 2.29 

 
Sé4.3 1.46 0.073 492 67 48.38 6.99 

 
Sé5 1.46 0.065 481 128 47.71 4.44 

 
Sé6 1.45 0.068 514 36 47.55 41.53 

 
Ray1 1.46 0.111 490 63 50.01 9.9 

 
Mou1 1.39 0.094 513 33 54.67 57.9 

 
RG1 1.25 0.085 477 128 52.34 5.29 

 
RG2 1.20 0.102 560 11 26.4 75.34 

 
Sa1 1.49 0.095 605 5 32.92 67.09 

 
Sa1′ 1.45 0.064 515 10 3.55 60.68 

 

Roc-

Camp1 
1.48 0.086 553 29 48.85 50.11 

West 

Graissessac 
Pa1 2.05 0.071 610 10 51.77 44.59 

 
Cad1 2.05 0.064 604 19 50.96 40.84 

 
Cad2 2.15 0.104 600 15 38.93 37.54 

 

3.1. Vitrinite reflectance 

The vitrinite reflectance was systematically measured on telocollinite, a submaceral of 

collinite (Fig. 2a). The coal from the Argentat and Détroit de Rodez basins (Fig. 1) shows Ro 

values between 0.6 and 1.05% (Table 2) which, according to the North-American 

classification (ASTM standard), coincides with a rank of high volatile B to A bituminous. 

Apart from samples Ber3 (Ro 0.92%) and Mé1 (Ro 1.05%) that are characterized by a 

relatively high Ro attributed to recent meteoric weathering, the Détroit de Rodez coal shows a 

relatively homogeneous degree of maturity with, however, a slightly higher rank near the 

southern border. The maturity of these samples is very similar to that of coal from the 

Decazeville mine (Détroit de Rodez; 0.6 to 0.8%, Ligouis, 1988). With reflectance values 

between 0.6 and 0.69%, the Argentat coal is given the rank of high volatile B bituminous. 

Samples LM1, LM2 and LM3 from the base of the Carboniferous of Lapleau–Maussac have 

reflectance values greater than 1%, with LM3 being slightly more mature than the other two 

(1.2% compared to 1.03–1.06% for LM1 and LM2). LM4, taken from a younger coal layer, 

has a lower vitrinite reflectance (0.83%; Table 2). The three samples from the Carboniferous 

of Roujan-Neffiès show similar vitrinite reflectance values between 1.35% and 1.42% 

(medium volatile bituminous). Similar values were recorded for the Bosmoreau-les-Mines 

samples (1.37 and 1.43%), which is in agreement with previous data of Becq-Giraudon and 

Mazeaud (1981). The coal from the Carboniferous of East Graissessac shows reflectance 

values between 1.2 and 1.48%, which is in agreement with values recorded by Becq-Giraudon 

and Gonzalez (1986). These values indicate a coal rank between medium volatile bituminous 



and low volatile bituminous (Table 2). The coal from West Graissessac, is of a semi-

anthracite rank as indicated by reflectance values of the order of 2%. 

 

Fig. 2. (a) Telocollinite on which the Ro measurements were carried out (sample Mou1 from East 

Graissessac and Ro-Né2 from Roujan-Neffiès). (b) I-type microfracturing (sample Ro-Né1 from 

Roujan-Neffiès and Ber2 from Détroit de Rodez, southern boundary). (c) II-type microfracturing 

(sample Sé4.3 from East Graissessac). (d) III-type anastomosed microfracturing (sample RG2 from 

East Graissessac and A3 from Argentat). (e) b-type fringes with a lower reflectance (0.4%) than the 

core (0.6%) (sample A3′ from Argentat). (f) b-type fringes (0.95% against 1.32% in the core) 

associated with anastomosed microfracturing (sample Sé2 from East Graissessac). (g) comparison of 



an oxidized particles, from Argentat (sample A3; (g)) with another one more oxidized, from East 

Graissessac (sample Sé1; (h)); OM: Organic Matter, l: limestone; (SEM/BE photographs). 

 

3.2. Geochemistry 

The pyrolysis data presented in Table 2 highlight the marked diversity of the Tmax values, as 

well as HI and OI. Only the Tmax values will be considered in this section, and the reader is 

referred to the general discussion for the HI and OI values. Apart from a few abnormally high 

values (A3, A3′ and Ber4: 560, 506 and 485°C), the samples from the Argentat and Détroit de 

Rodez basins show Tmax values between 435 and 450°C, thus placing them in the first part of 

the oil window ( Espitalié et al., 1985a, Espitalié et al., 1985b and Espitalié et al., 1985c). It is 

noted, particularly for samples A3 and A3′ from the Carboniferous of Argentat, that the high 

Tmax values are associated with low HI and high OI values. The coal from the Lapleau–

Maussac basin has Tmax values between 470°C and 500°C, which corresponds to the 

beginning of the gas window, i.e., during early metagenesis. The samples from East 

Graissessac can be divided into two sub-groups based on Tmax values: (i) a first group with 

Tmax values similar to those of Lapleau–Maussac (480°C), (ii) a second group characterized 

by higher Tmax values between 515 and 605°C which, as a first approximation, seems to 

suggest fairly varied maturity stages. In addition to their high Tmax values, these samples also 

show relatively high OI values. The three samples from West Graissessac show homogeneous 

Tmax values between 600 and 610°C, suggesting a degree of maturity corresponding to the end 

of metagenesis. The Tmax value of 533°C measured on coal sample Ro-Né3 from the 

Carboniferous of Roujan-Neffiès contrasts with the less mature samples Ro-Né1 and 2 from 

the same basin which have Tmax values of about 482°C, indicating the onset of metagenesis. 

3.3. Petrographic observations (optical microscope and SEM/BE) 

During the petrographic observations we particularly concentrated on characterizing the 

microfractures and studying the reflectance variations of the vitrinite particles. The following 

microfracture types were identified (Copard, 1998): (a) type I, mainly affecting vitrinite 

particles (Fig. 2b), (b) type II, larger than type I, affecting all samples studied, and commonly 

filled with clay, inertodetrinite, vitrodetrinite, and, in places, liptinite (Fig. 2c), and (c) type 

III, characterized by their specific anastomosed morphology, mainly affecting vitrinite 

particles (Fig. 2d). This type, which is only observed in samples with high OI values, 

represents microfracturing where high-temperature oxidation is likely to occur (Alpern and 

Maume, 1969). The first two microfracture types were observed in all the studied samples, 

whereas type III was only observed in samples A3 and A3′ from Argentat, and Sé2, Sa1 and 

RG2 from East Graissessac. Certain vitrinite particles are characterized by fringes that are 

variably lighter than their cores. These fringes, following Copard (1998), are labelled a where 

they have higher reflectance than the core of the vitrinite particle and b where their reflectance 

is lower. A-type fringes may result from recent meteoric oxidation, whereas b-type fringes can 

be related to early oxidation during coal evolution as testified by Alpern and Maume (1969). 

B-type fringes (Fig. 2e) were identified in samples A1 and A3′ (0.4% in the fringes against 

0.6% in the cores), LM1 and LM3 of Lapleau–Maussac (respectively 0.5% and 1% in the 

fringes against 1% and 1.3% in the cores), Ber1, Ber2 and Ber4′ (0.5% against 0.8%), Ay1 

(0.4% against 0.6%) and Sé2 and Sé4.3 (0.95–1% against 1.32–1.46%). Furthermore, the b-

type fringes observed in sample Sé2 were associated with III-type microfractures (Fig. 2f). 



4. Discussion 

4.1. Thermal activity 

As particularly demonstrated by the differences in paleo-heat flow evaluated in the Brive (100 

and 120 mW m
−2

) and Bosmoreau-les-Mines (150 and 180 mW m
−2

) basins (Mascle, 

1990 and Mascle, 1998), the Massif Central was subjected to a hyperthermal regime that 

varied in intensity from site to site. Such variations in the regional thermal field are closely 

linked to crustal thinning following thickening of the Variscan crust during the Devonian–

Carboniferous collisional episodes (Becq-Giraudon and Van Den Driessche, 1993; Faure, 

1995). During thinning, the ductile–brittle limit in the crust must have been relatively close to 

the surface (10 km or less), as demonstrated by microthermometric studies carried out on 

fluid-inclusion planes in granites of the Haut Limousin (André, 1997). In addition to a 

decrease in the fluid-trapping depth, these analyses also suggest a drop in the homogenization 

pressure/temperature pair from Late Stephanian times, which continued through the Autunian. 

These results seem compatible with the marked decrease in temperature of the circulating 

hydrothermal fluids (from 350°C to 80–130°C) recorded throughout the Massif Central 

between Stephanian–Autunian and Saxonian–Thuringian times (Jebrak, 1989). Modelling of 

the heat-flow evolution at the base of the sediments in the Brive basin indicates a marked 

decrease in the intensity of this flow from the Late Stephanian (100–120 mW m
−2

) to present 

day (30 mW m
−2

) (Mascle, 1998). According to this model, the immaturity of Lias organic 

matter in this basin can be explained not only by burial of the Mesozoic sediments to less than 

1000 m, but also by the low intensity of heat flow compared to that recorded during the Late 

Paleozoic. All these considerations are consistent with high geothermal paleogradient during 

the Late Carboniferous (Latouche, 1969; Becq-Giraudon and Gonzalez, 1986; Berquer-

Gaboreau, 1986; Robert et al., 1988). 

Recent studies (Ligouis, 1988; Wang, 1991; Disnar et al., 1995; Mascle, 1998) proposed an 

average paleoburial depth for the Stephanian successions of the order of 1500 m, a depth 

which seems particularly applicable to the basins of Argentat, Bosmoreau-les-Mines, and 

Détroit de Rodez (Ligouis, 1988). We adopted this average paleoburial depth of 1500 m for 

the Stephanian successions of all the basins studied. On the base of previous results obtained 

on different basins such as Blanzy–Montceau (Golitsyn et al., 1997), Alès (Wang and Courel, 

1993) and Graissessac (Becq-Giraudon and Gonzalez, 1986), the duration of coalification 

must have been rather short. It is difficult to give a precise figure but there are two 

geodynamic events which could have ended this evolution: (1) the Saalic orogenic phase 

(−270 Ma) which marks the Early/Late Permian boundary (Feys, 1989); in this case, the 

maximum coalification duration would have been 20–25 Ma. (2) The Palatine orogenic phase 

at the end of the Permian (−245 Ma) which would give a maximum coalification duration of 

35–40 Ma. 

Because, with the exception of samples A3 and A3′ (Table 2), the Tmax values recorded in the 

Détroit de Rodez and Argentat are very similar to those from the Brive basin, we adopted the 

thermal evolution model applied to the latter basin to the other two. The more mature 

Bosmoreau-les-Mines samples also seem to agree with the Brive basin model, although with 

higher heat flows (i.e., 150–180 mW m
−2

 at the base of the sediments, Mascle, 1998) during 

Stephanian–Autunian times. 

The Tmax values for the Lapleau–Maussac basin are relatively heterogeneous, varying from 

470°C to 500°C. Considering the intermediate maturity of those samples, located between that 



of Argentat, Détroit de Rodez and Bosmoreau-les-Mines, it is possible to envisage heat flows 

of between 120 and 140 mW m
−2

, with the 300 m difference in burial depth between LM4 and 

the surrounding lithostratigraphically deeper samples being sufficient to explain the difference 

in vitrinite reflectance (0.83% vs. 1.05% — see Table 2). 

The Upper Paleozoic of Roujan-Neffiès was probably subjected, along with the basins of the 

Cévennes and Ardéche border (Wang and Courel, 1993; Disnar et al., 1995), to a 

hyperthermal regime. Estimation of the paleo-heat flow is nevertheless difficult due to the 

prevailing uncertainties concerning the history and burial of this basin. However, as the 

vitrinite reflectance values are identical to those of Bosmoreau-les-Mines (Table 2), we 

assume that the Roujan-Neffiès basin was probably subjected to a paleo-heat flow of the same 

order as that of Bosmoreau. 

In the Graissessac basin, if we adopt a burial depth and coalification duration similar to those 

assumed previously, the degree of coal maturity depends essentially on the structural 

framework of the basin within which thermal domes developed and on the intensity of the 

heat flow associated with those domes. Their intensity seems directly linked to the end-

Variscan metamorphic cycle that affected the axial zone of the Montagne Noire to the 

southwest of the basin (Latouche, 1969; Becq-Giraudon and Gonzalez, 1986). Consequently, 

the thermal domes show increasing intensity the nearer they are to the axial zone. An increase 

in the coal rank from east to west (Table 3) confirms the spatial distribution and evolution of 

the intensity of these domes. The paleo-heat flows for West Graissessac are thus estimated at 

more than 180 mW m
−2

 by comparison with the situation in Bosmoreau-les-Mines. Adopting 

the same conditions, East Graissessac would have been subjected to flows corresponding to 

those of Lapleau–Maussac if based on Tmax, and those of Bosmoreau-les-Mines, if one 

considers vitrinite reflectance. 



Table 3. Coal ranks (ASTM standard) based on Ro and Tmax; anomalous samples are in 

bold 

Basin and samples Coal rank (based on Ro) 
Coal rank (based on 

Tmax) 

Argentat (A1 and A2) High Volatile B Bituminous 
High Volatile C 

Bituminous 

A3 
High Volatile B 

Bituminous 
semi-anthracite 

A3′ 
High Volatile B 

Bituminous 

Low Volatile 

Bituminous 

Bosmoreau-les-Mines B1, B3 
Medium Volatile 

Bituminous 
semi-anthracite 

Lapleau-Maussac LM1, LM2 
High Volatile A 

Bituminous 

Medium Volatile 

Bituminous 

LM3 
Medium-Volatile-

Bituminous 

Medium Volatile 

Bituminous 

LM4 
High Volatile A 

Bituminous 

Low Volatile 

Bituminous 

Détroit de Rodez (North) High Volatile B Bituminous 
High Volatile C 

Bituminous 

Détroit de Rodez (South) 
High Volatile B/A 

Bituminous 

High Volatile B/C 

Bituminous 

Ber4 
High Volatile A 

Bituminous 

Medium Volatile 

Bituminous 

Ber3 and Mé1 
High Volatile A 

Bituminous 

High Volatile B 

Bituminous 

Roujan-Neffiès (Ro-Né1 and 2) 
Medium-Volatile-

Bituminous 

Medium-Volatile-

Bituminous 

Ro-Né3 
Medium Volatile 

Bituminous 

Low-Volatile-

Bituminous 

East Graissessac Sé1, 3, 4.1, 4.2, 

4.3, 5, RG1 

Medium-Volatile-

Bituminous 

Medium-Volatile-

Bituminous 

RG2 
Medium Volatile 

Bituminous 
anthracite 

Sé6, Mou1, Sa1′ 
Medium/Low Volatile 

Bituminous 

Low Volatile 

Bituminous 

Sé2, Roc-Camp1 
Medium/Low Volatile 

Bituminous 
semi-anthracite 

Sa1 
Medium/Low Volatile 

Bituminous 
anthracite 

West Graissessac semi-anthracite anthracite 

 

Despite the various uncertainties concerning the results and/or their interpretation, there is no 

doubt that all the studied basins were subjected to a hyperthermal regime, probably controlled 



by basement faults dividing them into blocks. Knowledge of the hyperthermal activity thus 

mainly provides data concerning the tectonic regime at a given time. The Middle Permian 

Saalic orogeny is the most likely event responsible for interruption of the thermal maturation 

of the Stephanian coal studied. Local tectonic and erosion data make it possible to deduce a 

short lived coalification period, of 25 Ma or less. 

4.2. Estimation of paleotemperatures recorded by organic matter 

Based on heat flow values and the assumed burial depth, the maximum paleotemperatures to 

which the coal was subjected can be estimated using the three methods described below and 

their results are presented and compared in Table 4. 

 

Table 4. Comparison between results of the three methods used to characterize the 

maximum coal paleotemperatures 

Basin 
Average 

Ro (%) 
Orogeny 

Method 1: 

estimated 

geothermal 

gradient 

Method 2: based 

on Ro (Karweil's 

chart modified by 

Bostick, 1971) 

Method 3: 

based on Tmin 

(Disnar, 

1994) 

Argentat 0.65 Saalic 100±10°C 110±10°C 117±10°C 

Détroit de 

Rodez 
0.70 Palatinian 100±10°C 90±10°C 110±5°C 

Lapleau-

Maussac 
1.05 Saalic 115±10°C 140±10°C 135±5°C 

  
Palatinian 115±10°C 115±10°C 125±5°C 

Bosmoreau 

Neffiès 
1.40 Saalic 150±15°C 155±10°C 168±10°C 

East 

Graissessac  
Palatinian 150±15°C 125±10°C 155±10°C 

West 

Graissessac 
2.00 Saalic 170±10°C 180±10°C 145±10°C 

  
Palatinian 170±10°C 150±10°C 135±10°C 

 

 

(1) The geothermal paleogradients prevailing during coalification was estimated, based on the 

heat flow values given previously and assuming an average thermal conductivity of 4×10
−3

 

cal cm
−1

 s
−1

 C
−1

 for the sediments underlying the coal layers. The restrictions of this method 

are mainly related to the uncertainties concerning the paleo-heat flow extrapolated to the 

Lapleau–Maussac, Roujan-Neffiès and Graissessac basins. This flow is assumed to have been 

constant throughout coalification. Maximum burial, which was reached during the Late 

Paleozoic (Mascle, 1998), is assumed to be of the order of 1500 m for all the basins. 

(2) This method is based on vitrinite reflectance values and on Karweil's time/temperature 

charts (modified by Bostick, 1971and in Robert, 1985) where the coalification period is 



assumed to be the same as the age of the coal. As the samples from any one basin were 

collected from lithostratigraphically well-defined horizons, it was possible to calculate 

average reflectance values for each basin (Table 4). Although we have reason to refute this 

model on the basis that it is too simple, since it obeys a single kinetic (Disnar, 1994), the 

model nevertheless can be used for comparative purposes as it is based on two samples from 

Ruhr (Germany) and an exponential law that is compatible with the normal evolution of 

vitrinite reflectance with depth (e.g., Bostick, 1971). 

(3) The third method adopted for this study is based on determining the maximum 

paleotemperatures of burial (MPTB, Disnar, 1994) calculated from a kinetic parameter known 

as Tmin, that is graphically determined from the Rock-Eval S2 pyrolysis peak of OM (Disnar, 

1994). An estimated value of a geological thermal gradient, expressed in °C Ma
−1

. This 

geological gradient value is equal to the product of the classic geothermal gradient (in °C 

km
−1

) by the subsidence rate (in km Ma
−1

). 

The first two methods provided similar paleotemperatures for all the basins except the 

Lapleau–Maussac basin, which yields a lower paleotemperature using the first method (Table 

4). The third method does not seem consistent with the other two, and only the MPTB values 

for Argentat and Détroit de Rodez seem comparable to the results of Karweil's method and 

the paleo-heat flow estimations. The high MPTB values for Bosmoreau-les-Mines are 

associated with samples showing a positive Tmax anomaly and, consequently, Tmin. West 

Graissessac, however, has lower calculated MPTB values than those obtained with the other 

two methods, despite a positive Tmax anomaly. In this case, the S2 pyrolysis peaks, which 

show marked asymmetry, cause the low Tmin values and consequently the low MPTB values. 

The dissimilarity of the results obtained with three methods for the Lapleau–Maussac Basin 

can be explained by the scattered values of the maturity parameters, uncertainties concerning 

burial depth, the duration of coalification, and heat flow constant values. 

4.3. Relationship between the Au–As fluids and the heat flow affecting the Stephanian coal 

One of the initial aims of the present study was to determine whether the Au–As fluids 

circulating during the Middle–Late Carboniferous (Roig et al., 1997) could have affected the 

Late Stephanian coals in the French Massif Central. At regional scale, a hydrothermal event is 

contemporaneous with an increased heat flow leading to the production of granite (Bouchot et 

al., 1997). Consequently, the Au–As bearing fluids would, a priori, have been associated with 

episodes of magmatism and remobilization of the crust which occurred from 340 to 290 Ma 

(Costa, 1990) and therefore could have influenced the Stephanian coals. 

The heat flows, notably the most intense one, have two possible origins: (i) an extremely high 

geothermal paleogradient associated with a shallow ductile–brittle limit in the crust, and (ii) 

thermal metamorphism induced by basement metamorphic cycles which, through the creation 

of thermal domes of varying intensity, are likely to have had a direct effect on the sediments, 

as observed at Graissessac for example (Becq-Giraudon and Gonzalez, 1986); either origin 

not excluding the other. 

According to the data provided herewith (Table 2 and Table 4) and the Tmax values for coal 

determined by Mascle (1998); sites labelled 7–12 in Fig. 3), three basins, namely Bosmoreau–

Ahun, Meisseix and Graissessac (Fig. 3), show heat flows of above 160 mW m
−2

 for the 

Stephanian–Autunian. These areas are thus more likely to have been affected by the 

circulation of hydrothermal fluids. More specifically, it would seem that the high heat flow 



envisaged for Bosmoreau–Ahun is genetically related to the production of Variscan (340–290 

Ma) granites in the Limousin (western part of Massif Central) and, more particularly, the 

Millevaches plateau (Ledru et al., 1994). This region would thus have had a shallow ductile–

brittle limit in a hot crust, interpreted as a thermal dome of limited extent in the Limousin. By 

comparing the lowest ranks of Stephanian–Autunian coal in the northeast (Fig. 3. no. 8–9–10) 

and southwest (Brive–Argentat, Fig. 3. no. 12) of the Limousin with those of Bosmoreau–

Ahun, it is suggested that the peak of the hyperthermal event was confined to the Millevaches 

plateau. However, superposition of the As–Au anomalies and the heat flows onto the same 

map (Fig. 3) reveals no direct relationship between the emplacement of these two events. This 

is particularly true for the ―hot zone‖ of the Limousin; the hydrothermal paleofields, 

responsible for As–Au mineralizations (Bouchot et al., 1997), appear to have developed along 

the edge of the Millevaches plateau, the hottest area of the Limousin dome. The discovery of 

gold-bearing pebbles in the Late Stephanian at Alès (Charrier, 1992) and in the Carboniferous 

at Argentat (Becq-Giraudon et al., 1999; Bouchot et al., 1999) confirms that these 

hydrothermal paleofields were active before the opening of the Stephanian–Autunian basins 

and, therefore, that these two events are not contemporaneous. 



 

 

Fig. 3. General map of the Massif Central showing the location of the Carboniferous basins from 

which the analysed coal samples were collected (adapted from Becq-Giraudon, 1984). 1: Bosmoreau-

les-Mines, 2: Lapleau-Maussac, 3: Argentat, 4: Détroit de Rodez, 5: Graissessac, 6: Roujan-Neffiès, 7: 

Ahun, Saint-Michel-de-Veisse, 8 and 9: Noyant, 10: Saint-Eloy-les-Mines, 11: Meisseix, 12: Brives. 

Location of the hydrothermal paleofields (As anomaly >80 ppm, Bouchot et al., 1997); the stars 

correspond to the heat-flow intensities estimated during the present study — from the smallest to 

largest star: 100–120 mW m
−2

, 120–140 mW m
−2

, 160–180 mW m
−2

, 200 mW m
−2

 (the heat flow rates 

for basins labelled 7 to 12 are derived from the Tmax values adopted by Mascle, 1998). 

 

4.4. Anomalies typology 

Plotting of the results on HI/OI diagrams for each basin reveals OM evolution paths that differ 

from the standard evolution of a transformation under the influence of temperature (Fig. 4). 

The increase in the OI, accompanied by a decrease in the HI, suggests oxidation of the OM. 

 



 

Fig. 4. Relationship between Hydrogen Index and Oxygen for samples from Graissessac and 

Roujan-Neffiès. 

 

By plotting the results on a Ro/Tmax reference diagram (Fig. 5, adapted from Teichmüller and 

Durand, 1983), two groups of samples can be identified 

 

 

Fig. 5. Ro/Tmax diagram, the grey area corresponds to the Ro/Tmax correlation of Teichmüller 

and Durand (1983). 

 

– A group near the Ro–Tmax correlation curve (Fig. 5) comprising the Détroit de Rodez 

samples (except Ber4), A1 and A2 from Argentat, the East Graissessac samples (with a 

Tmax<490°C), and Ro-Né1 and 2 from Roujan-Neffiès. 



– A group characterized by abnormally high Tmax values with respect to Ro; these two 

parameters thus provide divergent information concerning the rank of a coal (Table 3). Based 

on the OI/Tmax diagram (Fig. 6), this group can be further subdivided into two sub-groups. 

 

 

Fig. 6. OI/Tmax diagram including the values of Landais et al. (1984). Group 1: samples 

showing no significant Tmax anomaly, Group 2: samples showing a positive Tmax/OI 

correlation, Group 3: samples showing a simple positive Tmax anomaly with respect to the 

reference envelope of Teichmüller and Durand (1983), these samples belong to basins with a 

more intense hyperthermicity. 

 

⋅ Samples with diverging Ro and Tmax accompanied by a positive Tmax/OI correlation (group 2, 

Fig. 6), particularly well represented by the East Graissessac samples (with a Tmax>500°C), 

and also by A3 and A3′ of Argentat and Ro-Né3 of Roujan-Neffiès. This atypical anomaly 

can be attributed to the circulation of hot oxidizing fluids likely to cause a simultaneous 

increase in Tmax and OI. Furthermore, the data suggest that the evolution of these two 

parameters can be associated with a slight decrease in Ro. 

⋅ Samples with a Ro/Tmax divergence but no notable increase in OI (group 3, Fig. 6), 

represented by the Bosmoreau-les-Mines and West Graissessac samples. This Ro/Tmax 



divergence, without any sign of oxidation, probably has a purely thermal origin and 

consequently, the Tmax anomaly probably becomes more marked with increasing intensity of 

the local heat flow. 

These two types of anomalies (Ro/Tmax alone and Ro/Tmax/OI) seem to be superimposed onto 

the classic thermal maturation process of coal, a priori similar to burial diagenesis, which 

distorts the interpretation of the parameters considered independently. 

A synthesis of the results acquired for the Lapleau–Maussac basin (Table 2) seems difficult to 

interpret because of a large scatter in Ro, Tmax and OI values. However, samples LM1 and 

LM2 are similar to those of Bosmoreau-les-Mines, inasmuch as they have a high Tmax 

(compared to Ro), but not necessarily a high OI. Sample LM3, from the same stratigraphic 

layer as LM1 and LM2, but with a higher Ro, nevertheless poses a problem. The presence of 

b-type fringes suggests that this sample underwent early oxidation (Alpern and Maume, 

1969), which had the effect of modifying the reflectance and, to a lesser degree, Tmax, but not 

the OI (Copard, 1998). 

4.5. Origin of the Tmax/OI and Ro/Tmax anomalies 

The textural and Ro observations make it possible to exclude alteration related to plutonic 

intrusion, which would have considerably increased Ro (Goodarzi and Cameron, 1990; 

Bertrand and Pradier, 1993). Similarly, late meteoric oxidation, as observed in certain 

samples, is likely to cause an increase in the OI, but not Tmax (Deroo, 1986). 

4.5.1. Tmax/OI anomaly 

Fluid circulation can cause variably complex modifications of OM, with the nature and 

intensity being governed by fluid temperature and composition, and by the rank of the coal at 

the onset of the hydrothermal event. Harouna et al. (1993) attributed a marked increase in 

reflectance, a classic evolution of Tmax with burial and a decrease in the H/C ratio without 

variation of the O/C ratio, to the influence of early diagenetic hydrothermal flows of moderate 

temperature, i.e., too low for the cracking of OM, thus a variation in Tmax. We can exclude 

such syn-coalification hydrothermal circulation because the Tmax of our samples collected 

from a single lithostratigraphic unit from the same basin should be constant. Furthermore, the 

high paleo-heat flow that is assumed to have affected the entire Massif Central during the 

Stephanian–Autunian is not consistent with the circulation of early hydrothermal fluids of 

moderate-temperature. 

We thus envisage late hydrothermal flows probably during and due to the tectonic event 

affecting the French Massif Central during Upper Carboniferous and Lower Permian. We 

assume that the fluids were of a higher temperature than that reached during coalification. An 

increase in Tmax is only possible if the coal receives sufficient heat to break the molecular 

bonds that show increased stability with increasing OM maturity (Disnar, 1994). However, 

the increase in Tmax that the hot fluids would have caused should be accompanied by a 

decrease in the OI, as with a classic maturation process, which is not observed here. We can 

rule out coal alteration by low-temperature fluids, a process essentially reflected by an 

increase in the OI (Fig. 6; Landais et al., 1984) which is similar comparable to simple 

oxidation of meteoric type. However, if the fluids involved had been of a moderate oxidizing 

nature in addition to having a high temperature, they would have probably caused coal 

transformations identical to those observed. The reasons why this moderately oxidizing 



thermal event was not recorded by Ro remain to be determined. Two hypotheses can be 

proposed based on the constancy of the Ro values for the same basin: 

(1) According to the Fresnel-Beer formula, the loss of aliphatic chains, which could lead to a 

thermal maturation process, tends to decrease the refraction index n and thus increase Ro. 

Conversely, coal oxidation causes the formation of ether, carbonyl and hydroxyl groups 

(Berkowitz, 1979, van Krevelen, 1981) that have higher molecular refraction indices than the 

aromatic bonds. We can thus assume that the influence of temperature and oxidation can 

contradict each other and cause no notable Ro variation. 

(2) If we consider the artificial maturation experiments of Monthioux (1986) and Saxby et al. 

(1986), Ro seems to evolve very slowly under the influence of temperature. Furthermore, 

George (1992)observed a delay in Ro evolution with respect to that of Tmax as one approaches 

a volcanic dyke; the Ro evolution kinetics thus seem slower than those of Tmax where the OM 

is subjected to intense thermal events such as dyke intrusion. In our case, the anomalous coal 

may not have recorded notable Ro variations during a hyperthermal event, providing that it 

was of fairly short duration. This process would have occurred after coalification, which 

agrees fairly well with a reflectance of the altered coal identical to those of the surrounding 

coal. 

The most feasible hypothesis to explain most of the anomalies observed is one involving the 

circulation of hot, moderately oxidizing fluids after coalification. The presence of b-type 

fringes, marking an alteration of vitrinite particles, does not seem to indicate widespread 

oxidation of this maceral. Conversely, the III-type microfractures that affect the samples with 

highly anomalous Tmax and OI (A3, RG2, Sé2 and Sa1) seem to constitute a criterion of high-

temperature OM oxidation. In addition, the SEM results confirm that the more oxidized the 

sample, the denser the fracture system is (Fig. 2g). The hydrothermal circulation hypothesis, 

although probable, was not confirmed by the presence of typical minerals. 

4.5.2. Ro/Tmax anomaly 

The abnormally high Tmax values compared to Ro, without an increase in the OI, were 

particularly well represented in the Bosmoreau-les-Mines and West Graissessac basins. Both 

these sites show extremely high heat flows between 150 mW m
−2

 and 200 mW m
−2

. The 

results of the artificial maturation experiments mentioned above suggest a difference in the 

evolution rate of Ro and Tmax. In addition, in the Rhine Graben, Doebl et al. (1974)noted 

abnormally low vitrinite reflectance values considering the current regional thermal activity. 

Along the Ardéche margin, carbonaceous debris in a Rhaetian layer affected by hydrothermal 

circulation gave a Ro of 1.57% and an abnormally high Tmax value of 539°C against the 

expected 480°C (Disnar et al., 1997). All these examples point towards the hypothesis that the 

identified anomalies may result from the reflectance evolution kinetics being slower than 

those of Tmax. 

5. Conclusions 

– All the studied basins record a hyperthermal event of variable intensity related to the 

geodynamic conditions prevailing in the Variscan belt during the Stephanian–Autunian. The 

most intense paleo-heat flows, such as those of the Millevaches plateau (Bosmoreau–Ahun), 

are probably related to a very hot crust with a shallow ductile–brittle limit and the 

development of thermal domes of varying extent. The local tectonic and erosion data suggest 



that the Saalic orogeny (Early/Late Permian boundary) is the most likely event responsible for 

interruption of coalification of the analysed coal. 

– The absence of superposition of the hydrothermal paleofields and the heat flows estimated 

from the maturity of the Stephanian coal reveals that no direct relationship exists between 

these two events. The discovery of gold-bearing pebbles at Argentat and Alès confirms that 

gold mineralization occurred before opening of the basins, and the −300 Ma age (Bouchot et 

al., 1997) proposed for gold emplacement in the Massif Central thus corresponds to the 

youngest age for this event. 

– The petrographic (Ro) and geochemical (pyrolysis: Tmax, OI, HI) analyses have made it 

possible to identify two types of anomalies that seem to be superimposed on coal maturation 

and are characterized by either a divergence in the evolution of Ro and Tmax associated with a 

high OI, or by a simple divergence between Ro and Tmax for the same sample. The first type 

indicates a local thermal and oxidizing character at sample scale, whereas the second reflects 

a hyperthermal event at regional scale. 

We propose two hypotheses for the origin of these anomalies: 

(a) Ro/Tmax divergence associated with a positive OI anomaly, based on the assumption 

that hot, slightly oxidizing fluids circulated after coalification. 

(b) Ro/Tmax divergence associated with very high hyperthermal activity at basin scale, 

or better still, tectonic-block scale, interpreted as a first-order chemical reaction 

velocity differential between Ro and Tmax. 

– Type III anastomosed microfractures, notably observed at Graissessac and Argentat, 

optically characterize the positive OI anomaly in association with a high Tmax. 

– In summary, this study demonstrates a difference in reaction kinetics for Ro and Tmax that is 

related, to varying degrees, to hyperthermal activity affecting a lithologic column under given 

geodynamic conditions. Interpretation of the observations is thus faced with the problem of 

oxidation of the coal at different temperatures and the consequences concerning the rank 

parameters and the reliability for their combined use as maturity indicators. In this respect, if 

the increase in reflectance is very slow compared to that of Tmax, it is the latter that more 

accurately reflects the true rank of the sample. 
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