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Abstract 

Three types of pathways (degradation–recondensation, natural sulphurization and selective 

preservation) are commonly considered for the formation of kerogen dispersed in sedimentary 

rocks. A fourth pathway has been recently put forward, however, from studies on Recent 

marine sediments, the so-called sorptive protection mechanism. This pathway is based on the 

adsorption of otherwise labile organic compounds onto minerals, thus preventing their 

diagenetic degradation and promoting their subsequent condensation into kerogen. The main 

results of the present study are derived from a combination of microscopic and pyrolytic 

methods applied on a Cenomanian kerogen. They provide (i) evidence, on an ancient material, 

for a crucial role of the mineral matrix both in organic matter (OM) preservation during 

kerogen formation and in kerogen stability once formed, (ii) indications that the dominant 

protective process likely involves physical protection by minerals, resulting from alternation 

of organic and clay nanolayers of approximately 100 nm in thickness, rather than OM 

adsorption as molecular monolayers and (iii) observations of the relatively poor stability of an 

isolated kerogen, contrary to the inertness commonly assumed for fossil macromolecular 

organic matter. 
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1. Introduction 

Several mechanisms are commonly considered to explain OM accumulation in sedimentary 

rocks. In addition to the first recognized process of OM preservation, the classical 

degradation–recondensation pathway as defined by Tissot and Welte (1984), two other 

mechanisms have been extensively studied and are now well understood, namely the selective 

preservation (e.g. Tegelaar et al., 1989) and the natural sulphurization (e.g. Sinninghe Damsté 

et al., 1989) pathways. Recently, a new mechanism has been proposed, involving a protective 

role by minerals: the so-called sorptive protection pathway. Indeed, a textural control of 
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organic matter concentration has been previously suggested by studies showing that total 

organic carbon (TOC) content increases when the mean particle size of the sediment 

decreases (Mayer et al, 1985, Suess 1973 and Tanoue & Handa 1979). This hypothesis was 

further supported by correlations between TOC and surface areas of mineral grains in various 

coastal sediments (Bergamashi et al., 1997, Keil et al., 1994a, Keil et al., 1994b, Mayer et al., 

1988, Mayer 1994a and Mayer 1994b). Such correlations were ascribed to a monolayer 

adsorption of organic compounds onto minerals. Considering that more than 80% of sediment 

surface area is accounted for by the interiors of 2 to 8 nm wide pores on mineral surfaces, it 

was concluded that most of the organic matter was concentrated in these pores (Mayer 

1994a and Mayer 1994b). In addition to a physical protection from biodegradation (e.g. the 

small size of the pores excludes hydrolytic enzymes), OM adsorption into pores should favour 

subsequent condensation reactions by concentrating the reactants (Collins et al., 1995). In 

addition, some minerals (i.e. clays) are known to have catalytic properties (Degens and 

Ittekkot, 1984). Recently Ransom 1997, Ransom et al, 1998a and Ransom 1998b have 

contested the sorptive hypothesis and many questions, such as the distribution of OM on 

mineral surfaces, remain unanswered. Moreover, as stressed by Collins et al. (1995), all the 

above studies dealt only with recent sediments. 

The aims of this work were to study the relationship between OM and the mineral matrix in a 

Cenomanian black shale and to study the role of this matrix in OM preservation. To this end, 

the black shale was examined at different scales (microscopic to nanoscopic) using natural 

light and UV fluorescence microscopy on thin sections, back-scattered scanning electron 

microscopy (SEM BSE) on polished sections, and transmission electron microscopy (TEM) 

on ultrathin sections. The stability upon storage of the organic matter, once isolated from its 

mineral matrix, was also investigated. 

The black shale sample was collected in the Umbria-Marche Basin, Central Italy. In this 

basin, the upper part of the Cenomanian is characterized by the cyclic deposition, lasting 

about 2.5 Myears, of black shales and cherts in carbonate sediments. This cyclicity has been 

related to the precessional motion of the Earth (Beaudoin et al., 1996). The well-known 

organic-rich ―Bonarelli horizon‖ that underlines the Cenomanian/Turonian boundary (∼93.3 

Ma) represents the final term of this series. This level corresponds to one of the most 

conspicuous oceanic anoxic events (OAE), as defined by Schlanger and Jenkyns (1976), that 

occurred on a global scale during this period. 

Our study is focused on an organic-rich (TOC=13.6 wt%, Hydrogen Index=454 mg HC/g 

TOC) sample taken from an immature black shale layer outcropping 12 m below the 

―Bonarelli horizon‖. A preliminary chemical study (Salmon et al., 1997) on this sample 

revealed: (i) OM of dominantly marine origin, (ii) a low organic sulphur content, showing that 

natural sulphurization was not largely implicated in the formation of this kerogen and (iii) a 

low level of degradation of incorporated lipids, indicating that the classical degradation-

recondensation pathway was unlikely to be important. Observations using light microscopy 

on the OM, isolated from the whole rock by acid attacks, showed a dominantly amorphous 

material along with few ligno-cellulosic debris (at most 5% of the total kerogen based on 

surface estimations) and morphologically preserved debris likely of marine origin (∼1%). 

Transmission electron microscopy studies of the isolated kerogen showed that the bulk of the 

OM did not retain any morphological features of the source organisms. This amorphous 

character, at a nanoscopic scale, pointed to a negligible role for the selective preservation 

pathway. Taken together, the above observations therefore suggested that among the four 

recognized pathways the fourth one, i.e. sorptive protection, could be the main process 



responsible for the formation of this organic-rich level. Further studies presented here were 

thus performed to test this hypothesis and to examine the role of the mineral matrix in OM 

preservation in this black shale. 

2. Experimental 

2.1. Samples 

The black shale sample, previously described in Salmon et al. (1997), was collected from a 

clay-rich layer. A small amount of this sample was directly used for petrographic observations 

and the remaining material was ground for further analyses. Rock-Eval pyrolysis was 

performed on the ground material. Thereafter, the ground rock was extracted with organic 

solvents (CHCl3/MeOH, 2/1, v/v) and a part was subjected to classical HF/HCl treatment for 

kerogen isolation (Durand and Nicaise, 1980). One fraction of this kerogen (ker-0) was 

immediately analysed by spectroscopic methods (FTIR and solid state 
13

C NMR) and 

submitted to molecular analysis via pyrolysis. A second and a third fraction of this kerogen 

were similarly analysed but after one (ker-1) and two (ker-2) years of storage in a closed 

vessel, in darkness, at room temperature. The remaining part of the ground bitumen-free rock 

was stored in a closed vessel for two years, also in darkness, and at room temperature before 

isolating the kerogen (ker-2bis). The flow chart summing up the preparation of these different 

kerogen fractions is shown in Fig. 1. 

 

Fig. 1. Flow chart illustrating the preparation of the different kerogen samples analysed, derived 

pyrolysates (pyr- and Fpyr- correspond to off-line and on-line experiments, respectively) and pyrolysis 

residues (res-). 

 

2.2. Petrographic studies 

Petrographic studies were performed on the total rock for all the observation modes. Thin 

sections of the black shale were examined using transmitted light (natural light and UV 

excitation) with a Leitz MPVII microscope. SEM BSE was carried out on polished sections, 

embedded in epoxy resin to ensure sample cohesion, with a JEOL JSM 6400 scanning 

electron microscope, coupled with a KEVEX probe allowing for elemental mapping and pin-

point analysis. Ultra-thin sections were prepared for TEM observation according to Boussafir 

et al, 1994 and Boussafir et al., 1995). TEM study for whole rock observations requires 

several preparation stages. First, selected small rock fragments perpendicular to the bedding 



plane were fixed with OsO4. Then these fragments were dipped in acetone-resin mixtures at 

progressively increasing resin concentration in order to allow for the penetration of the 

embedding resin. Once embedded, they were observed under natural light and UV excitation 

to select the zones to be studied (representative zones of the bulk organic material, i.e. with 

intimate associations between clays and organic matter). These zones were circled and then 

pyramids for ultra-thin sections were prepared from the circled zones. Then, ultra-thin 

sections were cut on pre-selected zones perpendicular to the bedding plane. Ultra-thin sections 

obtained with a diamond knife were observed using a JEOL 100CX TEM. Differentiation 

between organic matter, resin, membrane from the sample holder and void space has been 

performed by the recognition of zones where two or three of these features occur, enabling a 

grey level to be assigned describing the nature of the observed object. High resolution TEM 

studies (HRTEM), electron micro-diffraction and X-ray analysis (EDAX) were additionally 

performed on the clay minerals using a CM 20 Philips TEM. 

2.3. Bulk chemical measurements 

Rock-Eval analyses were performed on 30–50 mg of ground rock using a Rock-Eval 6 with a 

temperature program from 300°C (20 min) to 600°C at 25°C/min under an He flow. All the 

other analyses were performed on the isolated kerogen samples prepared as described in Fig. 

1. 

FTIR spectra were recorded with a Bruker IFS48 spectrometer as KBr pellets. The 
13

C NMR 

spectra of the isolated kerogen stored for two years (ker-2) and of the kerogen isolated from 

the ground rock stored for two years (ker-2bis) were recorded on a Bruker MSL 400 under the 

same conditions as described in Salmon et al. (1997). 

2.4. Off-line and flash pyrolysis 

Off-line pyrolysis under a helium flow was performed as described in Largeau et al. (1986). 

Briefly, it consists of the volatilization of the thermolabile compounds by heating at 300°C for 

20 min, followed by cracking at 400°C for 1 h. The pyrolysis products, thus generated, were 

trapped in chloroform at −5°C and the solvent evaporated to dryness under vacuum. The 

pyrolysate was then separated by column chromatography with three solvents of increasing 

polarity, n-heptane, toluene and methanol. The methanol-eluted fraction was then esterified in 

order to enhance fatty acid detection. Each fraction was finally analysed by combined gas 

chromatography/mass spectrometry (GC/MS). The GC/MS analyses were carried out on a 

Hewlett-Packard 5890 Serie II gas chromatograph — equipped with a 25 m CP Sil 5 CB 

capillary column (i.d. 0.25 mm, film thickness 0.4 μm) programmed from 100 to 300°C at 

4°C/min — coupled with a Hewlett-Packard 5989 A mass spectrometer operated at 70 eV. 

For flash pyrolysis, a Fischer 0316 Curie-point flash pyrolyser was used. Samples were 

pyrolysed for 10 s on a ferromagnetic wire with a Curie temperature of 610°C. The pyrolysis 

products were directly separated and analysed by GC/MS under the same conditions as 

described above. 

2.5. GC–C–IRMS 

Isotopic analyses of individual pyrolysis products using the GC–C–IRMS technique were 

performed using a HP 5890 gas chromatograph (50 m BPX 5 capillary column, i.d. 0.32 mm 

and film thickness of 0.25 μm; heating program 100 to 350°C at 3°C/min, splitless injector at 



320°C) coupled to a CuO furnace (850°C), a cryogenic water trap, and a VG Optima mass 

spectrometer. 

3. Results and discussion 

3.1. Morphological and ultrastructural observations 

3.1.1. Observation of thin sections by light microscopy 

When observed under transmitted natural light (microscopic scale), the black shale appears to 

be composed of stacked organic-rich clay and carbonate microlayers (ca.100 μm in thickness). 

UV fluorescence observations reveal that, in the carbonate microlayers, the OM is only 

present in the internal structure of a few tests of planktonic forams. As a result, the OM in this 

black shale sample is almost entirely located in the organic-rich clay microlayers. 

3.1.2. Scanning electron microscopy 

SEM BSE observations on the organic-rich clay microlayers, coupled with X-ray 

measurements (pin-point chemical analyses and elemental mapping) confirm an intimate 

association between clay minerals and OM. Indeed, chemical mapping shows the 

superposition, at the scale of several micrometers, of OM (carbon mapping) and clay minerals 

(aluminium mapping) (Fig. 2). It should be noted that the OM particle in the central part of 

the picture is shown to illustrate the aspect of pure OM, but is not quantitatively important in 

our sample. In sharp contrast to the clay-rich microlayers, almost no OM is observed in the 

carbonate microlayers. In fact, as shown by SEM BSE, except for the few foraminifera tests, 

the carbonate is microcrystalline, resulting from re-precipitation. The authigenic origin of the 

carbonates is fully consistent with the lack of OM in these microlayers. Such a tight and 

exclusive association between clays and OM, down to a microscopic scale, is consistent with 

a major role of protection by clay minerals in OM preservation and kerogen formation. 

Moreover, anoxic conditions may also have favoured, in addition to the preservation by 

minerals, the organic matter preservation. A similar, direct association between OM and clay 

mineral grains was observed by SEM BSE in a quaternary sediment from Peru upwelling 

(Bishop et al., 1992). 



 

Fig. 2. (a) SEM BSE showing an organic particle (P), in fact a minor constituent of the bulk OM, and a 

microlayer of organic-rich clays (OC) overlying a calcium carbonate microlayer (Ca). Calcium 

mapping showed that no Ca is present in (OC) and (P). The carbon observed in both areas therefore 

corresponds to organic carbon. Elemental mapping, where white indicates the presence of an element 

and black indicates its absence, of carbon (b) and aluminium (c) reveals the intimate association of 

OM and clay minerals in (OC). EDS spectrum of pin-point analysis of (OC) (d) shows that, at this 

scale, signals of OM and clay minerals cannot be separated. 

 

3.1.3. Transmission electron microscopy 

TEM observations performed on ultrathin sections, perpendicular to the bedding plane, of the 

raw rock reveal that organic-rich clay microlayers are comprised of a succession of lens-

shaped organic nanolayers (ca. 200 nm thick) parallel to the bedding. These layers are lined 

by lens-shaped clay mineral nanolayers of the same thickness. Some clay particles are 

dispersed in the organic nanolayers (Fig. 3). The latter probably correspond to the 

sedimentation of flocks comprising both OM and clay particles, as previously considered in 

recent sediments by Ransom 1997, Ransom et al, 1998a and Ransom 1998b) and by Boussafir 

et al. (1995) in ancient sediments from the Kimmeridge Clay Formation. The observed 

layering must be the consequence of compaction. HRTEM and electron micro-diffraction 

were performed on our sample in order to test the possible occurrence of OM within the clay 

mineral structure. Both micrographs and electron diffraction patterns (Fig. 4) show that the 

clay particles are very well crystallized with an interlayer spacing of 10 Å, which is a typical 

value for illites and other true micas. These HRTEM observations and electron micro-

diffraction patterns therefore demonstrate that no OM is present within the clay structure, 

since occurrence of OM within the structure would expand the interlayer spacing. 



 

Fig. 3. TEM micrograph showing clay nanolayers lining organic matter nanolayers. (OM) is for 

organic matter and (C) for clay particles. 

 

 

Fig. 4. HRTEM micrographs of clay particles showing interlayer distances (parallel lines inside of the 

particle). 

 

X-ray pin-point analyses performed on the clay particles embedded in, or lining the OM 

nanolayers indicate that they belong to the illite group. These clay particles correspond to 

25% of the total clay mineral content as revealed by bulk X-ray diffraction (J.F. Deconinck, 

pers. comm.). Ransom et al, 1998a and Ransom 1998b), in a study on Recent sediments from 

continental margins, observed a preferential association of the OM with clay minerals of the 

smectite group. If we consider the well-known diagenetic transformation of smectites into 

illites, the Ransom et al, 1998a and Ransom 1998b) observations and ours are consistent. 

In the case of OM adsorption onto clay particles, such particles are expected to be coated with 

a very thin layer of OM (only a few nm). The highest known adsorption capacity of clay 

minerals thus corresponds to TOC values at most of ca. 7% (Keil et al., 1994a). Indeed, the 



present observations at a nanoscopic scale indicate that the high amount of OM in the studied 

black shale (TOC=13.6%) cannot be merely explained by adsorption onto clay minerals. 

Rather, it appears that the role of clay particles in OM preservation is one of physical 

protection, resulting from the alternation of lens-shaped organic and clay nanolayers, rather 

than mere adsorption. We suggest that this form of association with clay particles resulted in 

OM being isolated in microenvironments where it could be protected against bacteria and 

their exoenzymes. In situ TEM observations of OM from continental margins led to similar 

conclusions. Ransom 1997, Ransom et al, 1998a and Ransom 1998b), who found that most 

organic matter appears to be associated with clay-rich domains with no uniform organic 

coating being observed on the grains, argued against the hypothesis of monolayer adsorption 

of OM onto mineral surfaces. 

3.2. Chemical stability of isolated kerogen 

Based on the intimate association between OM and clay minerals, we investigated the 

protective role of the associated minerals by removing the mineral matrix and monitoring the 

molecular-level composition of kerogen over rapid (1–2 years) time scales. To this end, the 

chemical structure of the isolated kerogen (via elimination of minerals by HF/HCl treatment) 

was examined just after isolation (ker-0) and after storage for one and two years (ker-1 and 

ker-2, respectively) (Fig. 1). The stability of the isolated kerogen was assessed from its bulk 

geochemical parameters and the composition of the corresponding pyrolysates (pyr-0, pyr-1 

and pyr-2, respectively) determined by GC/MS analysis. In the same way, the kerogen which 

was isolated after 2 years of storage of the ground rock (ker-2bis) was studied immediately 

after isolation via flash pyrolysis (Fpyr-2bis). 

3.2.1. Isolated kerogen 

The FTIR and 
13

C NMR spectra of ker-0 have been previously discussed (Salmon et al., 

1997). Spectra of ker-1 and ker-2 are similar to those of ker-0. However, the progressive 

appearance of two absorption bands at 1210 and 1150 cm
−1

, corresponding to C–O bonds, is 

apparent in the FTIR spectra upon storage (Fig. 5). In the 
13

C NMR spectra (not shown) only 

a slight decrease in the relative intensity of the peak centred at 110 ppm and assigned to 

unsaturated carbons is observed in ker-2 when compared to ker-0. Taken together, these 

variations in the FTIR and 
13

C NMR spectra with storage are consistent with some oxidative 

degradation of the kerogen. In agreement with NMR observations and with the well 

documented sensitivity of olefinic unsaturated bounds to oxygen incorporation, this 

degradation would especially affect C C bonds. However, the occurrence of such oxidation 

processes cannot be directly demonstrated via elemental analysis (i) due to substantial ash 

levels, significant measurements cannot be carried out for oxygen and (ii) since the 

elimination of residual ash would require drastic treatments (e.g. with HNO3) which would 

strongly alter the OM chemical structure. 



 

Fig.5. FTIR spectra of ker-0 (a), ker-1 (b) and ker-2 (c) showing the progressive increase of two bands 

at 1210 and 1150 cm
−1

 from ker-0 to ker-2. 

 

Comparison of the mass balances of the 400°C pyrolysis of ker-0, ker-1 and ker-2 (Table 1) reveals a 

gradual rise, with storage duration, in the amount of volatile products, along with a drastic lowering in 

the amount of trapped and extracted compounds. 



 

Table 1. Mass balances of the different fractions generated from ker-0, ker-1 and ker-2 

via 400°C off-line pyrolysis, as wt% of the initial material 

Sample Lost
a
 Trapped

b
 Volatiles

c
 Extracted

d
 Residue

e
 

ker-0 37.3 13.7 23.6 3.9 58.8 

ker-1 37.6 9.2 28.4 3.8 58.6 

ker-2 43.7 5.5 38.2 0.3 56.0 

a 

Total loss determined from the non-extracted pyrolysis residue; corresponds to trapped 

and volatile products. 

b 

Products dragged by the helium flow, with a molecular weight high enough to be 

trapped in chloroform at −5°C. 

c 

Products dragged by the helium flow, with a molecular weight too low to be trapped. 

This value was determined by difference between the total weight loss and the trapped 

products. 

d 

Cracking products with a low volatility, not dragged by the helium flow, extracted 

from the pyrolysis residue by organic solvents (CHCl3/MeOH; 1/1; v/v). 

e 

Insoluble residue. 

 

 

The composition of pyr-1 and pyr-2 as revealed by GC/MS was compared with that of pyr-0 (Fig. 

6 and Fig. 7). The pyrolytic study of ker-0 (Salmon et al., 1997) indicated that the macromolecular 

network of this kerogen is mainly based on long, normal hydrocarbon chains but also comprises C40 

isoprenoid chains with a lycopane skeleton. We therefore first investigated the influence of the storage 

of the isolated kerogen on these two types of chains. 



 

Fig. 6. GC traces and main components of the heptane-eluted fractions obtained via 400°C pyrolysis 

from the freshly isolated kerogen (a), kerogen after 1 year of storage (b) and 2 years of storage (c). o: 

n-alkane/n-alkene doublets (numbers refer to carbon chain length), P: prist-1-ene, H: hopanoids, 
*
: C40 

hydrocarbons derived from a lycopane skeleton. 



 

 

 

Fig. 7. Carbon number range and maximum (bold area) of the major series in the heptane-eluted 

fraction. Similar distributions were observed for n-alk-1-enes and n-alkanes. The absence of the line(s) 

corresponding to pyr-1 and/or pyr-2 indicates that the series was not detected in this(these) 

pyrolysate(s). 

 

3.2.1.1. n-Alkyl chains 

Pyrolysis of long n-alkyl chains is known to yield n-alkanes and n-alk-1-enes. These 

compounds are responsible for the predominant doublets in the GC traces of pyr-1 and pyr-2 

but a progressive shift in the average chain length of the n-alkanes and n-alk-1-enes towards 

shorter chains is observed with storage duration ( Fig. 6 and Fig. 7). For example, the 

maximum chain length of the n-alkanes shifts from C32 in pyr-0 to C26 in pyr-2 and a sharp 

decrease in the relative abundance of the C22+ chains for pyr-1 and of the C16+ chains for pyr-

2 is observed ( Fig. 6 and Fig. 7). A similar trend is observed via selective ion detection for 

less abundant series bearing n-alkyl chains such as n-alkadienes (m/z=67), n-

alkylcyclohexanes (m/z=83), n-alkylbenzenes (m/z=91), n-alkylnaphthalenes (m/z=141) (Fig. 

7) and also for n-alkan-2-ones (m/z=58), n-alkylphenols (m/z=107) and n-alkoxyphenols 

(m/z=109 and 124) (as illustrated for the ketones in Fig. 8a and b). This shortening of the n-

alkyl chains is consistent with the above mentioned increase in the abundance of volatile 

products and with the parallel decrease in the contribution of trapped and extracted 

compounds in 400°C pyrolysis products, along with storage duration. 



 

Fig. 8. Mass fragmentogram at m/z=58 for pyr-0 (a) and pyr-2 (b), showing the n-alkan-2-ones (•), the 

mid-chain ketones (♦) and a C18 isoprenoid ketone (  ), and Mass fragmentogram at m/z=74 for pyr-0 

(c) and pyr-2 (d) showing the esterified saturated (•) and unsaturated (★) n-fatty acids and the 

esterified branched fatty acids (▾). n.i. are non identified products. Unsaturated abundance is strongly 

underestimated by detection at m/z=74. 

3.2.1.2. Lycopane-related chains 

Several series of compounds comprising isoprenoid chains were identified in substantial 

amount in pyr-0: C15–C20 alkanes, C14, C16 and C18–C20 alkenes, C16–C25 alkylbenzenes, C18–

C22 ketones and C40 hydrocarbons and a ketone with a lycopane or lycopane-derived skeleton 

(Salmon et al., 1997). The occurrence of the latter C40 compounds reflects the contribution of 

lycopane-type chains to the macromolecular structure of the kerogen, and previous GC–C–

IRMS studies pointed to an algal origin for such moieties. The relatively short C15 to C25 

isoprenoid compounds identified in the pyrolysate of the black shale kerogen might also be 

derived from lycopane moieties. Indeed, all these C26- hydrocarbons and ketones could 

originate from secondary thermal cleavages and be derived from the same units as the C40 

hydrocarbons and ketone. This interpretation is in agreement with previous observations 

dealing with the pyrolysis products from resistant biomacromolecules and related kerogens 



(Behar et al., 1995 and Derenne 1994). However, sharply different trends are noted among the 

isoprenoid compounds. The relative abundances of the C15–C20 alkanes and alkenes only 

slightly decrease from pyr-0 to pyr-2, whereas the abundances of all the other above 

isoprenoid pyrolysis products are sharply lowered. In fact, apart from the C18 ketone, which 

was initially present in a very high relative abundance (Fig. 8a), these compounds are no 

longer detected in pyr-1 and pyr-2. Such contrasting behaviour suggests an origin from 

different types of moieties for both groups of isoprenoid products. This hypothesis was tested 

by GC–C–IRMS measurements performed on pyr-0. Since the pyrolysate corresponds to a 

highly complex mixture, these measurements were carried out on at least four compounds 

corresponding to each series in order to avoid possible errors related to co-elution. All the 

values obtained for a given series typically differ by <1‰. The shorter-chain isoprenoid 

alkanes and alkenes were shown to have a δ
13

C value of about −48‰, whereas a value of 

about −29‰ was obtained for the C40 compounds. The δ
13

C value of the former C15–C20 

products is close to the one obtained for hopanoids in ker-0 pyrolysate (ca. −42‰, Salmon et 

al., 1997), thus suggesting a chemoautotroph bacterial origin (Freeman et al., 1990). In 

contrast, the δ
13

C values and degradation rates suggest a common origin from algal-derived 

moieties with a lycopane skeleton, for the alkylbenzenes, the C18–C22 and C40 ketones, and the 

C40 hydrocarbons. These moieties, based on a lycopane skeleton and of algal origin, exhibit a 

high level of alteration with storage, as reflected by the almost complete disappearance of 

their pyrolysis products in pyr-1 and pyr-2. This result is in agreement with the previously 

demonstrated lability of such long isoprenoid chains (Behar et al., 1995 and Derenne 1994). 

In contrast, the C26- isoprenoid alkanes and alkenes of bacterial origin seem to derive from 

structures which are more resistant to oxidative degradation. 

3.2.1.3. Hopanoids 

Hopanoids are known to occur as bound units in kerogens (Innes et al., 1997 and Ourisson 

1979) and a relatively large amount of these polycyclic terpenic products is indeed observed 

in ker-0 pyrolysate (Fig. 6a). A marked decrease in the proportion of these compounds is 

noted with storage, as indicated by a decrease in the relative abundance of the hopanoids with 

respect to the n-alkanes (relative abundance is calculated as the ratio of the most abundant 

hopanoid over the most abundant n-alkane) from 0.27 in pyr-0, 0.18 in pyr-1 to undetectable 

in pyr-2. 

3.2.1.4. Fatty acids 

Fatty acids in pyrolysates result from the thermal cleavage of ester functions. Their nature and 

distribution are commonly used as indices of kerogen alteration. As previously discussed 

(Salmon et al., 1997), the fatty acid composition in pyr-0, is similar to that from living 

organisms, and reveals a low level of degradation (strong even-over-odd predominance, 

important contribution of unsaturated compounds). A sharp decrease in the unsaturated acids 

(31 to 1% of total acids in pyr-0 and pyr-2, respectively) is observed during storage. Although 

the corresponding acid moieties linked as esters exhibited a high stability on a geological time 

scale in the whole rock (as evidenced by their low level of alteration in pyr-0) they appear 

highly sensitive to degradation after elimination of the mineral matrix. In addition, the 

appearance of long chain fatty acids up to C24 was noted in pyr-2 (Fig. 8c and d). The 

formation of these acids may reflect the oxidation of some alkyl chains in the macromolecular 

structure of the kerogen upon storage. Production of carboxylic acids upon oxidation of n-

alkyl side chains was previously reported in high molecular weight constituents of crude oils 

(Duhaut et al., 1997). 



Taken together, all the above data point to a fast alteration of the chemical structure of this 

black shale kerogen after isolation from the mineral matrix. Such a fast degradation is most 

likely related to oxidation processes as suggested by changes in spectroscopic features and 

pyrolysate composition upon storage. Indeed, (i) the shortening of chain-length of the trapped 

products, along with the progressively rising amount of volatile products in pyr-1 and pyr-2, 

(ii) the appearance of C–O bonds during storage of the kerogen as observed by FTIR and (iii) 

the appearance of long chain fatty acids all strongly imply the occurrence of oxidative 

processes. These processes would result in an increase in the amount of cross-linkages within 

the macromolecular structure, thus shortening some of the alkyl chains. It therefore appears 

that potentially labile OM in this black shale was preserved on a geologic scale, due to 

association with minerals. This mechanism may exhibit similar results to those obtained with 

Recent sediments in which it was demonstrated that sedimentary OM was rapidly 

remineralized once desorbed (Keil et al., 1994b). It was concluded in this latter study that 

intrinsically labile biochemicals may be preserved by adsorption onto minerals. Although OM 

and clay minerals in the cenomanian black shale are intimately associated at a micrometric 

scale (BSEM observations), TEM observations show that OM is not adsorbed on clays, but 

predominantly occurs as lens-shaped discrete organic layers. We conclude that the efficient 

protective role of the minerals is probably via physical protection with the OM. 

3.2.2. Ground rock 

Rock-Eval pyrolysis carried out on ground rock sample after 2 years of storage showed that 

the amount (TOC) and hydrogen index of the OM in the ground rock was not altered during 

storage. However, a significant increase in the Oxygen Index was observed, from 9 mg 

CO2/mg TOC in the initial material to 30 mg CO2/g TOC after 2 years. FTIR and 
13

C NMR 

spectra of the kerogen isolated from the above sample (ker-2bis) are analogous to those of 

ker-0. 

Due to the low amount of ker-2bis available, this sample was analysed by Curie-point flash 

pyrolysis. So as to compare these results with those described above, which were obtained via 

off-line pyrolysis, ker-2 was also analysed by Curie-point Py/GC/MS. Comparison of the 

distributions of ker-2 pyrolysis products obtained by both pyrolytic methods indicates that the 

carbon number range of the different series (i) is wider for the on-line measurements, as 

expected, due to the loss of volatile products in the off-line pyrolysate but (ii) extends up to 

similar chain length (e.g. maximum carbon number of 26 for the n-alkanes in the flash 

pyrolysate versus 26 in off-line pyrolysis). It should be emphasized that, as indicated 

previously in the experimental section, the fatty acids in the off-line pyrolysate were 

derivatized into methyl esters in order to enhance their detection. Indeed, no C18+ fatty acid 

could be directly detected under our GC conditions. For the flash pyrolysate, however, the 

derivatization was not possible. Therefore, no comparison could be achieved for the fatty 

acids released upon the two types of pyrolysis. The relative abundances of all the other 

pyrolysis compounds with respect to the n-alkanes are similar in off-line and flash pyrolysates 

of ker-2. As a result, the maximum carbon number, as well as the relative abundances of these 

series, observed in the flash pyrolysate of ker-2bis (Fpyr-2bis), can be directly compared with 

those from the off-line pyr-0, -1 and -2. 

3.2.2.1. n-Alkyl chains 

In Fpyr-2bis, n-alkane/n-alk-1-ene doublets extend up to C29 (Fig. 9). This maximum chain 

length is longer than that observed in pyr-2 (C26) and substantially shorter than in pyr-0. The 



contribution of the C16+ chains in Fpyr-2bis is also intermediate between pyr-0 and pyr-2. The 

shortening of the alkyl chains in the pyrolysis products from pyr-0 to pyr-2 was discussed 

above and was shown to reflect the alteration of the corresponding kerogen. 

 

 

Fig. 9. Mass fragmentogram at m/z=57 of Fpyr-2bis, flash pyrolysate of the kerogen isolated 

from the ground rock stored for 2 years, showing the distributions of the n-alkanes (•), C18-C22 

isoprenoid alkanes and alkenes (i) (prist-1-ene is noted i*) and fatty acids (‰). P is for 

contaminants. 

3.2.2.2. Lycopane-related compounds 

No C40 compound could be detected in Fpyr-2bis, nor C18–C22 isoprenoid ketones or 

alkylbenzenes. Again, this illustrates the high lability of algal-derived moieties with a 

lycopane-type skeleton, from which these compounds are derived. In contrast, C15–C20 

isoprenoid alkanes and alkenes are present. As previously discussed, the latter isoprenoid 

compounds, probably of bacterial origin, are derived from moieties more resistant to oxidative 

degradation than lycopane-type ones. 

3.2.2.3. Hopanoids 

Hopanoids are detected in Fpyr-2bis by mass fragmentograms at m/z=191 and they exhibit 

the same distribution as in pyr-0. Whereas no hopanoids were detected in the off-line 



pyrolysate of ker-2, they could be detected in the corresponding flash pyrolysate, but only in 

very low relative abundance (less than 0.01). The relative abundance of the hopanoids 

(calculated as indicated in a previous section) in Fpyr-2bis (0.10) is significantly lower than in 

pyr-0 (0.27), and similar to pyr-1 (0.11). Such differences also indicate a degree of 

degradation for ker-2bis which is intermediate between those of ker-0 and ker-2. 

It thus appears that during 2 years of storage, the OM in the ground rock underwent some 

alteration, but the extent of the latter was not as important as for the isolated kerogen after the 

same storage duration. This observation is consistent with the physical protection model 

deduced from TEM observations since, after grinding, the OM was partly exposed to air but 

also still partly protected within the mineral matrix, hence it experienced an intermediate level 

of degradation when compared to the isolated kerogen. 

4. Conclusion 

This study, combining microscopic and pyrolytic methods on a Cenomanian black shale, to 

the best of our knowledge, provides the first direct indications for a major role of minerals in 

OM protection in a sedimentary rock. The OM appears to have been physically protected by 

clays. Adsorption on the mineral phase possibly played a role, however the alternation of OM 

and clay nanolayers observed by electron microscopy suggest a physical protection 

mechanism. Moreover, clays are known for their catalytic properties, and condensation 

reactions of the associated OM, leading to kerogen formation, were likely favoured by this 

mineral phase. 

Even after 90 Myears, physical protection by clay minerals appears to remain important, as 

evidenced by the instability of the isolated kerogen within 2 years of storage. This last result 

indicates that ancient macromolecular OM, although it is commonly considered as a highly 

inert material, remains sensitive to oxygen-mediated physico-chemical alterations. Due to this 

unexpected lability, it appears necessary to exercise caution in order to avoid 

misinterpretation in kerogen structures and derived information on depositional environment, 

when isolated kerogen samples are analyzed. 
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