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ABSTRACT.  We obtained 453.2 ± 1.8 Ma and 449.4 ± 1.8 Ma (2σ) laser step-heating 40Ar/39Ar 

plateau ages for phengite from quartzite mylonites from the blueschist-facies Ondor Sum subduction-

accretion complex in Inner Mongolia (northern China). These ages are within error of the inverse 

isochron ages calculated using the plateau steps and the weighted mean ages of total fusion of single 

grains. The compositional change from glaucophane in the cores to crossite in the rims of blue 

amphiboles, as revealed by electron microprobe analysis, points to decompression, probably caused 

by progressive exhumation of the subducted material. The Late Ordovician ages were not affected by 

excess argon incorporation because in all likelihood the oceanic sediments were wet on arrival at the 

trench and free of older detrital mica. The ca. 450 Ma ages are, hence, interpreted as the time of 

crystallization during mylonitization under high fluid activity at fairly low temperatures. This means 

that accretion of the quartzite mylonite unit occurred about 200 Ma before final closure of the Paleo-

Asian Ocean, amalgamation of the Siberian, Tarim and North China cratons, and formation of the 

end-Permian Solonker suture zone. 

We argue that the Early Paleozoic evolution of the Ondor Sum complex occurred along the 

northeastern Cimmerian margin of Gondwana, which was composed of micro-continents fringed by 

subduction-accretion complexes and island arcs. The later evolution took place during the building of 

the Eurasian continent following middle Devonian and younger rifting along the East Gondwanan 

margin and northward drift of the detached North China craton. An extensive review shows that this 

type of two-stage scenario probably also applies to the geodynamic evolution of other micro-

continents like, South China, Tarim, a number of Kazakh terranes, Alashan, Qaidam and Kunlun, as 

well as South Kitakami and correlatives in Japan, and probably Indochina. Like the North China 

craton, these were bordered by Early Paleozoic subduction-accretion complexes, island arcs or 

contained calc-alkaline volcanic margins, like for example, the central Tienshan, North Qinling, 

North Qaidam-Altun, North Qilian and Kunlun belts in China, as well as the Oeyama and Miyamori 

ophiolites and Matsugadaira-Motai blueschist belt of Japan and the dismembered Sergeevka 

ophiolite of the southern part of the Russian Far East. This implies that a vast orogenic system, 

comprising an archipelago of micro-continents, seems to have existed along the Cimmerian margin of 
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East Gondwana in Early Paleozoic time in which the ultrahigh-pressure metamorphism that 

characterizes the early evolution of many of the Asian micro-continents occurred. 
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INTRODUCTION AND AIM 

The Central Asian Orogenic Belt (CAOB) is a complex collage of island arcs, micro-continental 

fragments and remnants of oceanic crust, including small forearc and backarc basins, situated between the 

Siberian craton to the north and the Kazakhstan, North China (or Sino-Korean) and Tarim cratons in the 

south (Zonenshain, 1973; Zonenshain and others, 1990; Mossakovsky and others, 1994; Jahn and others, 

2000; Filippova and others, 2001; Badarch and others, 2002; Kheraskova and others, 2003; Xiao and 

others, 2003; Jahn, 2004; fig. 1). The CAOB likely continues eastward as far as the Hida belt in Japan (fig. 

1, loc. 11; Arakawa and others, 2000; Jahn and others, 2000) that was part of the Asian mainland before the 

Miocene (Maruyama and others, 1997). Although the southern margin of Siberia was the site of 

subduction-accretion tectonics from the Neoproterozoic on (Dobretsov, 2003; Dobretsov and others, 2003; 

Khain and others, 2003), the CAOB formed mainly during the Paleozoic by accretion of oceanic plate 

sediments and magmatic arcs, as well as by amalgamation of terranes of different type and derivation 

(Coleman, 1994; Didenko and others, 1994; Mossakovsky and others, 1994; Dobretsov and others, 1995; 

Buslov and others, 2001; Filippova and others, 2001; Badarch and others, 2002; Windley and others, 2002; 

Dobretsov, 2003; Kheraskova and others, 2003; Xiao and others, 2003, 2004a). This process was 

accompanied by emplacement of immense volumes of mafic and granitic magmas (Chen and others, 2000; 

Jahn and others, 2000; Wu and others, 2002; Jahn, 2004). The CAOB resulted from the closure of an 

oceanic basin (Mongolian seaway: Maruyama and others, 1997; Paleo-Asian Ocean: Xiao and others, 

2003) by double subduction below the southern active margin of the Siberian craton and the northern 

margins of North China and Tarim (Wang and Liu, 1986). Li and Wu (1996) argued that intermixing of 

floras typical for the Siberian craton on the one hand and the North China and Tarim cratons on the other 

constrains their incipient collision as early Late Permian. Cope and others (2005) envisaged that 

convergence and ultimate collision resulted in a paleo-current reversal in North China due to the onset of 

uplift and creation of topography on the northern margin of the craton, from mid-Permian time on. The 

collision resulted in the formation of the Solonker suture zone, a major structure developed just north of the 

North China craton (Badarch and others, 2002) and Tarim craton (Xiao and others, 2004b), and that can be 

followed all along the CAOB from Kyrgyzstan in the west to the coastal area of the Sea of Japan in 

northernmost North Korea in the east (fig. 1). Different lines of evidence point to a suturing that occurred 
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progressively later from west to east (Dobretsov, 2003; Xiao and others, 2004b; Cope and others, 2005). 

During the final stages of the collision crustal shortening was partitioned into vertical, ductile, strike-slip 

shear zones between the micro-continents that often reactivated older sutures, during the late Carboniferous 

to early Permian in the western part (Buslov and others, 2001, 2004) and the late Permian in the central part 

(Laurent-Charvet and others, 2003) of the orogen. Early Permian A-type granites, occurring in a narrow 

belt along the suture zone, formed as result of post-collisional slab break-off, and Late Triassic to Early 

Jurassic A-type granites from subsequent lithospheric delamination (Wu and others, 2002). Triassic 

molassic sediments that overly weakly foliated to undeformed about 230-Ma old granite plutons (Wang and 

Liu, 1986; Chen and others, 2000) mark their cooling and exhumation, and herald the end of the collision 

and uplift of the orogen. A compilation by Wang and Liu (1986) and data obtained by the Bureau of 

Geology and Mineral Resources of Inner Mongolia (Nei Mongol) (BGMRIM, 1991) indicate that terrestrial 

sediments were deposited across the suture zone in early Jurassic time.  

Şengör and others (1993) favored continuous, forearc subduction-accretion and arc collision along 

the southern margin of the Siberian craton. However, ophiolite belts in the CAOB have been interpreted 

alternatively as discrete suture zones between terranes, rather pointing to punctuated closure of multiple 

oceanic basins (Hsü and others, 1991; Mossakovsky and others, 1994; Buchan and others, 2002). Xiao and 

others (2003) proposed a model for the evolution of the CAOB with three main stages that are related to 

progressive two-way subduction of the Paleo-Asian Ocean: (1) early to mid-Paleozoic Japanese-type 

subduction-accretion, (2) a Permian Andean-stage when the two opposing margins became sufficiently 

consolidated, and (3) continent-continent collision, leading to the formation of the Solonker suture zone at 

the end of the Permian during the final closure of the Paleo-Asian Ocean due to its coeval southward and 

northward subduction beneath the Tarim and North China cratons and Siberia, respectively. 

The 60-km wide Erdaojing complex forms part of the Solonker suture zone in Inner Mongolia 

(fig. 2) and consists of tectonic mélanges with blocks of meta-chert, marble, and ultramafic-mafic rocks of 

blueschist-facies metamorphic grade (Tang, 1990; Xu and others, 2001). The latter authors obtained a 

40Ar/39Ar age of 383 ± 13 Ma (mid-Devonian) on a sodic-amphibole from a blueschist block (fig. 2, for 

location). Recently, late Guadalupian (middle Permian) radiolarians have been found (Shang, 2004). The 

subduction-accretion complex can be compared to the Jilin complex that occurs northeast of the Sino-

Korean craton in northeastern China (Li, 2006). The suture has a multiple character, because it occurs 
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within two opposing subduction-accretion complexes formed by two-way subduction (Xiao and others, 

2003). Although the former controversy about the timing of the formation of the Solonker suture zone has 

been resolved as end-Permian (Chen and others, 2000; Wu and others, 2002; Xiao and others, 2003; Cope 

and others, 2005), the age and significance of the early accretionary stages are poorly known and 

understood. The Ondor Sum accretion-subduction complex offers a key opportunity to constrain the timing 

of the early accretion along the northern margin of the North China craton. Therefore, we applied the 

40Ar/39Ar dating method to well-selected samples of blueschist-facies, phengite-bearing quartzitic mylonite 

in the Ulan Valley in the Ondor Sum region (figs. 2 and 3), where the best section through the subduction-

accretion complex is exposed. 

The ca. 450 Ma 40Ar/39Ar ages that we obtained on phengites imply that ductile deformation in the 

Ondor Sum subduction-accretion complex took place some 200 Ma before the formation of the Late 

Permian Solonker suture zone. We argue that the Late Ordovician deformation and metamorphism took 

place along the margin of East Gondwana, parts of which, such as Tarim and the North and South China 

cratons, were rifted off in Late Paleozoic time and entered the Paleo-Asian Ocean as micro-plates, in part 

fringed by Early Paleozoic subduction-accretion complexes and island arcs.  

THE NORTHERN MARGIN OF THE NORTH CHINA CRATON 

The basement of the North China craton consists of Archean predominantly trondhjemitic-

tonalitic-granodioritic gneisses and minor mafic igneous rocks, as well as Paleoproterozoic 

metasedimentary and igneous rocks, which are locally overlain by Neoproterozoic to Early Paleozoic 

passive margin sediments (Hsü and others, 1991; Zhao, 2001; Kusky and Li, 2003; Zhai and others, 2003, 

2005; Jia and others, 2004). Cambrian to middle Ordovician platform carbonates are unconformably 

covered by Carboniferous-Permian strata (BGMRIM, 1991). Based on 40Ar/39Ar plateau ages of amphiboles 

from the Bayan Obo area (fig. 2), Chao and others (1997) postulated a regional metamorphic event that 

started at about 425 Ma and continued until at least 395 Ma. By the end of the Carboniferous the northern 

side of the North China craton was an active continental margin into which Andean-type granites and 

granodiorites were intruded, onto which andesites, basalts, dacites, rhyolites were extruded, and tuffs were 

deposited (Xiao and others, 2003). The Late Carboniferous to Permian series contain detritus from both 
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plutonic and metamorphic sources (polycrystalline quartz, feldspar and lithic fragments) that supplied 

detrital zircons with Archean-Paleoproterozoic and Late Paleozoic Sensitive High-Resolution Ion 

MicroProbe (SHRIMP) U-Pb ages (Cope and others, 2005). The latter, 425-275 Ma, age group increases in 

importance stratigraphically upward and reveals that the northern margin of North China was a continental 

margin arc already in the Silurian and which activity would last into Permian time (Cope and others, 2005). 

Late Paleozoic granite and granodiorite intrusions in the Precambrian basement of the northernmost North 

China craton (BGMRIM, 1991; Chao and others, 1997; figs. 2 and 10 of Xiao and others, 2003) probably 

form the source that is being progressively eroded in the terminal Paleozoic (Cope and others, 2005). The 

Carboniferous-Permian strata exposed near the most northern limit of the Archean basement are deformed 

into a series of tight north-vergent overturned to isoclinal folds, which are unconformably overlain by Early 

Jurassic fluvial-lacustrine sediments (Cope and others, 2005). 

The Chifeng-Bayan Obo fault (fig. 2) is widely regarded as the northern boundary of the North 

China craton (Wang and Liu, 1986; Shao, 1989; Tang and Yan, 1993; Bai and others, 1993a, b). A number 

of Early Paleozoic island arcs occur to the north of the fault. The Ulan arc formed within the Ondor Sum 

subduction-accretion complex during this period, as part of a north-dipping, oceanward-directed subduction 

system along the northern margin of the craton, and subsequently, the Bainaimiao arc formed as a result of 

southward subduction (fig. 4; Xiao and others, 2003). The latter arc consisted of calc-alkaline tholeiitic 

basalts to minor felsic lavas, alkaline basalts, agglomerates, volcanic breccias and tuffs, as well as gabbros, 

granodiorites and granites (Hu and others, 1990). Zircon from a granodiorite porphyry has a U-Pb age of 

about 466 Ma and a muscovite from a granite yielded a K-Ar age of ca. 430 Ma (Zhang and Tang, 1989). 

Xiao and others (2003) argued that the high initial strontium isotope ratio (87Sr/86Sri = 0.7146) of granites 

(Shao, 1989) and the εNd value of 2.4 ± 1.7 of granodiorite (Nie and Bjørlykke, 1999) imply that the 

Bianaimiao arc was formed by mixing between mantle-derived and crustal rocks in an active continental 

Cordilleran-type margin, rather than in an island arc, as commonly thought. A 20-30 km wide and 120 km 

long east-trending belt occurring about 50 km south of Bayan Obo (fig. 2) contains ca. 455 Ma-old granitic 

plutonic rocks that intrude Proterozoic metasediments (Chao and others, 1997). The ca. 430 Ma K-Ar 

muscovite from a granite probably reflects the cooling of the Bainaimiao arc. The occurrence of shallow-

marine clastic sediments and carbonates (with late Silurian fossils corals) on top of early Paleozoic granites 
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in the western Ondor Sum region (Wang and Liu, 1986) constrains the exhumation of the Bainaimiao-type 

magmatic rocks, which may point to the extinction of the arc. In the Silurian, Devonian and Carboniferous 

no island arcs were generated and accreted to the northern margin of the North China craton (Xiao and 

others, 2003).  

ONDOR SUM SUBDUCTION-ACCRETION COMPLEX 

Isolated outcrops of ophiolites occur around Ondor Sum, in an area of about 70 km along strike 

associated with high-pressure metamorphic rocks, and further eastward in the area of Kedenshan and along 

the northern banks of the Xar Moron River (fig. 2). These rocks form part of the Ondor Sum subduction-

accretion complex (fig. 2), which incorporates the Ondor Sum Group (Zhang and Wu, 1998), Ondor Sum 

Ophiolite Belt (Wang and Liu, 1986), Wentermiao (Tang and others, 1983) or Wendurmiao (Hu and others, 

1990) Group or the Ondor Sum magmatic-metamorphic complex (Zhai and others, 2003). The subduction-

accretion complex comprises Early Paleozoic rocks (Xiao and others, 2003) that have been thrust onto the 

continental margin of the North China craton. The Mesoproterozoic amphibolite-facies orthogneisses and 

supracrustal rocks as well as Neoproterozoic greenstones described by Zhai and others (2003) probably 

belong to this basement.  

We have structurally subdivided the Ondor Sum complex at its type locality in the Ulan Valley 

(also known as: Ulangou, Wulan valley, or Wulangou) northeast of Ondor Sum into three units. These are, 

from south to north (fig. 3), in order of increasing intensity of deformation and structural position: Unit 1 

(undeformed pillow basalt with a cover of chert and clastics), Unit 2 (a series of volcanic rocks) and Unit 3 

(mylonitic meta-chert with lenses of ocean-floor derived lithologies). The three units of the subduction-

accretion complex are described below in more detail.  

Unit 1 

Unit 1 comprises about 600 meters of undeformed pillow basalt, in which lensoid bodies of 

gabbro and limestone occur imbricated (fig. 3). Pillows are up to 30-50 cm long, have vesicular chilled 

margins and well-preserved amygdaloids filled wth carbonate, chlorite and occasionally albite. Pillow 

breccias and hyaloclastites, with centimeter-size lava fragments, are found near the bottom of the lavas. 
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Many flows have a shear foliation parallel to the bedding of the pillows. The basalts are considered to be of 

MORB-type, on the basis of their major and trace elements compositions (Tang, 1992; Wu and others, 

1998). The basalts are characterized by the metamorphic assemblage: lawsonite + albite + pumpellyite + 

chlorite + aragonite + calcite + quartz + epidote; lawsonite occurs mainly in the cores of pillows and 

decreases in abundance outward (Yan and others, 1989).  

The series of pillow basalt form the upper part of a locally preserved ophiolite sequence of, from 

bottom to top; serpentinized harzburgite and dunite, cumulate gabbro, and diabase (Wang and Liu, 1986), 

developed to the south of the area displayed in figure 4. The ultramafic rocks have the metamorphic 

mineral assemblage: talc + calcite + magnesite + chlorite + magnetite (Yan and others, 1989). Gabbros 

contain: omphacite (Jd% 35-25) + chlorite + epidote + pumpellyite + albite + titanite + quartz as high-

pressure metamorphic assemblage (Yan and others, 1989).  

The basalts in the uppermost part of unit 1 are covered by a thrust-imbricated, but stratigraphically 

intact succession of red to purple-colored chert and overlying sandstone (figs. 4, 5). Chert may contain m-

size lenses of serpentinite and magnetite-pyrolusite-quartz rock. Chert has yielded fossil sponge spicules, 

Hyolithes, Monoplaco-phora, radiolaria, acritarchs and spores, indicative of a Late Precambrian to 

Cambrian age (Peng, 1984; Wang and Liu, 1986). Xiao and others (2003) interpreted the thrust duplex on 

the ophiolitic rocks as representing the ridge-trench transition in ocean plate stratigraphy.  

The north-dipping contact zone with the overlying lava series of unit 2 is made up of a 200-250 m 

thick zone in which pillow basalts, gabbro and more or less serpentinized harzburgite occur intimately 

imbricated (fig. 5). At the uppermost thrust contact ultramafic rocks are transformed into talc schists or 

magnesite-chlorite schists, pointing to pervasive retrogressive hydration.  

Unit 2 

Unit 2 contains calc-alkaline basalts, andesites, dacites, rhyolites and bedded pyroclastic tuffs. The 

unit is separated from the structurally underlying unit 1 and overlying unit 3 by a north-dipping thrust faults 

(fig. 3). Xiao and others (2003) regarded this series of volcanic rocks as a relic of a dismembered island arc 

that was incorporated into the subduction-accretion complex.  
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Unit 3 

Unit 3 occupies the structurally highest tectonic position and is the principal target of our study. It 

consists of a ca. 400 m-thick series of phengite-bearing quartzitic mylonites that are typically reddened due 

to the presence of hematite. The mylonites contain a well-developed, moderately northward plunging 

mineral and stretching lineation (fig. 3). The regional foliation is deformed into open and upright folds with 

wavelengths in the order of 50 m and axes that shallowly plunge in approximately east- and westward 

directions. The mylonites contain lenses, which are up to 200 meters across, of several different lithologies 

such as: meta-basaltic greenschist and blueschist (fig. 3), chlorite schist and chlorite-magnetite-epidote 

schist, meta-chert, magnetite-pyrolusite-quartz rock, quartz-pyrite-hematite rock, quartz-sericite schist, K-

white mica-rich quartzitic schist and marble. Some quartzites contain deerite, glaucophane, hematite, 

magnetite, minnesotaite, piemontite and stilpnomelane (Yan and others, 1989). Phase equilibria point to 

temperatures of 250-350˚C and pressures in the order of 0.60-0.75 GPa (Tang and Yan, 1993). 

Xiao and others (2003) considered the quartzites of unit 3 to be derived from ocean-floor chert 

enriched in Fe and Mn and imbricated with slices of oceanic basalt and gabbro during subduction.  

Age constraints 

An number of small bodies of different leucocratic rocks, like fine-grained plagiogranite and 

granophyric trondhjemite, occur associated with the gabbroic rocks and pillow lavas in the Ondor Sum 

region between Tulinkai and Deyenqimiao to the east of the Ulan Valley (Zhao and Li, 1987; Tang, 1990; 

Jian and others, 2006). The latter authors obtained U-Pb SHRIMP ages on zircon from these rocks: 477 ± 

10 Ma (ophiolite), 477 ± 6 Ma (low-K rhyolites), 467 ± 12 Ma (trondhjemite associated with island arc 

tholeiites) and 457 ± 10 Ma (adakite). These ages are much younger, but within error of the Rb-Sr whole-

rock age of 509 ± 40 Ma that is often quoted for a meta-basalt of unit 1 (for example, Yan and others, 1989; 

Tang, 1990). However, analytical data for this particular sample are not given and it is not stated where it is 

taken, rendering its value somewhat uncertain. 

40Ar/39Ar isochron ages of 446 ± 15 Ma and 426 ± 15 Ma are often quoted for glaucophane (for 

example, Zhang and Liou, 1987; Yan and others, 1989; Tang and Yan, 1993). In spite of the fact that these 

dates are the only available isotopic constraints on the timing of the high-pressure metamorphism of the 
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Ondor Sum complex their meaning is uncertain, because analytical data, descriptions of the samples and of 

their provenance are lacking,  

The late Silurian shallow-marine clastic sediments and carbonates that unconformably overlie the 

ophiolites, blueschists and cherts in the central part of the Ondor Sum region (Tang and others, 1983) do 

not place tight age constraints on the timing of exposure at the surface of the subduction-accretion complex. 

SAMPLE DESCRIPTION, PETROGRAPHY AND MINERAL CHEMISTRY 

 The dated mica-bearing quartzites of unit 3 (fig. 3) are intensely foliated and lineated, fine-grained 

mylonites. The pronounced mineral and stretching lineation plunges moderately to the north. IM-2 has a 

brick red color, whereas IM-5 is more brownish due to some secondary limonitization. The main minerals 

in both mylonites are quartz and (minor) phengite, whereas hematite is the major accessory phase. The 

thoroughly dynamically recrystallized quartz has a grain size of < 200 μm. The mylonite foliation is formed 

by an alternation of red, hematite-rich and milky white, hematite-free quartz layers at the scale of less than 

a millimeter. The hematite-free layers are interpreted as quartz veins that were rotated parallel to the 

mylonite foliation as a result of the intense elongation of the rocks during their ductile deformation. Less 

deformed folded and boudinaged quartz veins that are discordant to the mylonite foliation also occur. 

Foliation boudinage resulted in an anastomosing foliation. Cross cutting, mm-thick quartz veins occur sub-

perpendicular to both foliation and lineation, which contain fibrous crystals with their c-axis parallel to the 

stretching lineation, pointing to a crack-seal mechanism during brittle extension. The occurrence of 

different generations of progressively stronger deformed quartz veins points to alternating phases of brittle 

and ductile deformation. These are probably associated with variations in strain rate and/or fluid pressure. 

Yellowish green phengite occurs in lozenge-shaped aggregates of a few millimeters long between 

anastomosing quartz layers, but may also be extremely elongated forming several centimeter-long and 

highly attenuated lenses. These structures are interpreted as micro-boudins.  

Blueschist sample IM-19 is taken from the foliated and lineated margin of a 70 m-diameter meta-

gabbro/leucogabbro lens imbricated in the quartzite mylonite (fig. 3). It is a fine-grained rock (fig. 6) with a 

weakly developed planar and linear fabric, containing the following mineral paragenesis: Na-amphibole + 



12 
 

stilpnomelane + chlorite + plagioclase + phengite + calcite + dolomite + quartz, with accessory titanite and 

magnetite. 

The sodic-amphiboles occur as ~0.8 mm-long, rectangular or flaky porphyroblasts with a 

distinctive deep blue to pale violet pleochroism. They are optically and compositionally zoned, usually with 

deep bluish cores, which seems to be common for the sodic-amphiboles in the area (Yan and others, 1989). 

Occasionally, the amphiboles have more irregular and complicated spotted and/or oscillatory zoning 

patterns. A small number of sodic-amphiboles have rectangular mineral inclusions, presumed to be relict 

igneous augite, some of which are boudinaged (fig. 6). Electron microprobe analyses show that Na-

amphibole varies in composition from glaucophane in the cores to crossite in the rims (fig. 7). The cores 

generally have a slightly higher Fe2+/Mg ratio, higher M4 site Na (>1.8) and Al(VI) contents, but a lower 

Fe3+ content than the rims (table 1, fig. 7). The blue amphibole that seals the pulled-apart augite (fig. 6) has 

a crossitic composition. 

Plagioclase is almost pure albite (Ab > 99; table 2) and forms irregular porphyroblasts. The main 

matrix minerals are: pale-green stilpnomelane that occurs abundantly as aggregates of tiny flakes or laths, 

relatively rare chlorite, and occasional K-white mica that forms tiny laths. Electron microprobe analysis 

demonstrates that the K-white mica in this sample is a phengite with 1.67 Al pfu and 3.64 Si pfu and a 

negligible paragonite component (table 2). Magnetite is the major accessory phase, whereas titanite, 

although rare, occurs as relatively large grains up to 1.2 mm long.  

Calcite and dolomite are abundant in the matrix and occur as anhedral crystals that cement cracks 

and grain boundaries of other matrix minerals, suggesting secondary infiltration of a CO2-rich fluid. Both 

carbonates have dolomitic rims of higher Mg composition (table 2). The Ca/(Ca+Mg) ratio in the cores of 

calcite and dolomite is ca. 0.01 and 0.31, respectively, whereas the ratio in the rim of both is about 0.35-

0.38. Both minerals have a small siderite component (XSd < 0.1), which shows a concomitant increase with 

magnesite in the rim.  

The mineral paragenesis of IM-19 points to high-pressure metamorphism related to subduction, 

but it does not permit a quantitative estimate of its pressure-temperature condition. At first sight the 

maximum pressure seems constrained by the stability of albite instead of sodic-pyroxene and the lack of 

lawsonite. Yan and others (1989) noted that lawsonite and glaucophane never occur in the same 

assemblage in the high-pressure metamorphic rocks in the Ulan Valley. Absence of lawsonite might also be 
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partly due to the presence of an elevated CO2 component in the metamorphic fluid in this particular sample, 

which strongly reduces the stability field of the mineral (Nitsch, 1972). Glaucophane cores of sodic-

amphiboles imply relatively high-pressure conditions during the prograde stage. The increase of Fe3+, in 

combination with the decrease in the alumina and Na(M4) contents and the Fe2+/Mg ratio, toward grain 

rims points to decreasing pressure and increasing temperature (Brown, 1977; Maruyama and others, 1986) 

during advanced metamorphic stages. The decompression was most likely due to progressive exhumation 

of the subducted material. The sealing of pulled-apart augite (fig. 6) by blue amphibole of crossitic 

composition instead of glaucophane indicates that exhumation occurred during deformation. 

40Ar/39Ar DATING RESULTS 

40Ar/39Ar dating of phengite occurred by incremental heating of 64-100 µm diameter grains with a 

defocused, continuous ultraviolet laser beam. Fusion was achieved in the final step by beam focusing. All 

grains of IM-5 were step-heated, whereas splits of sample IM-2 were step-heated separately in two 

experiments (IM-2a and IM-2b). A number of grains of each sample were dated by total fusion too. The 

40Ar/39Ar analytical data are listed in tables 3 and 4; the ages are summarized in table 5 and portrayed as 

age spectra in figures 8 and 9, respectively. The inverse of the 39Ar/40Ar intercept yields an inverse isochron 

age, whereas the inverse of the 36Ar/40Ar intercept ((40/36)i in table 5) indicates the composition of the 

trapped non-radiogenic argon component (Roddick and others, 1980; Heizler and Harrison, 1988). With the 

use of IsoPlot (Ludwig, 2000) plateau ages were calculated if 55% or more of the 39Ar was released in three 

or more contiguous steps with a probability-of-fit of the weighted mean of more than 5%. All errors are 

quoted at the 2σ level. For analytical details the reader is referred to Appendix A. 

Step-heating yielded somewhat irregular age spectra. The first apparent ages are as young as about 

395 Ma (IM-2a; Fig. 8) and 385 Ma (IM-5; Fig. 9) and rise to constant values over the following 20-25% of 

39Ar release. Both samples yielded almost concordant plateau ages of 453.2 ± 1.9 Ma (IM-2a) and 449.4 ± 

1.8 Ma (IM-5) for 79% and 57.3% of the released 39Ar, respectively. Sample IM-2b yielded a weighted 

mean age of 453.2 ± 2.4 Ma (46.6% of 39Ar release) for the flat upper part of the dome that is concordant to 

the plateau age of sample split IM-2a (Fig. 8). The decreasing apparent ages for part of the spectrum 

following the flat part of the dome are probably due to the observed turning of some bigger grains during 
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the final part of the experiment, exposing parts that had apparently not homogeneously degassed earlier, 

given the younger apparent ages of the last four steps. The relatively strong age variation of contiguous 

steps in IM-5 (Fig. 9) is probably due to the same phenomenon. The plateau ages are within error of the 

inverse isochronal ages calculated using the plateau steps (table 5). The weighted mean ages of total fusion 

of single grains are concordant to the plateau and inverse isochronal ages of each sample, but they are a 

couple of Ma’s older than the integrated ages of all heating steps (table 5).  

INTERPRETATION AND DISCUSSION 

Although research during the last decade of the past millennium made it clear that phengite in 

high-pressure metamorphic rocks has often taken up excess argon, the mineral has also commonly yielded 

meaningful 40Ar/39Ar ages (Okay and Monié, 1997; Bosse and others, 2000; Gao and Klemd, 2003; 

Rodriguez and others, 2003). Incorporation of excess argon by phengite has been explained by its partial 

recrystallization during subsequent metamorphism at lower pressure (Hammerschmidt and Franz, 1992; 

Hannula and McWilliams, 1995; de Jong and others, 2001), or by strongly restricted fluid mobility during 

the high-pressure metamorphism (Scaillet, 1996; Boundy and others, 1997; de Jong, 2003). The fluid 

activity in rocks depends on their pre-metamorphic history (Scaillet, 1996; Okay and Monié, 1997). In our 

case, the late Precambrian to Cambrian pelagic siliceous sediments that cover the ocean-floor pillow basalts 

(unit 1) and the Fe- and Mn-rich ocean-floor chert protoliths of the dated phengite-bearing quartzite 

mylonite (unit 3) were in all probability still relatively water-rich at their arrival at the trench and during 

early accretion. The occurrence of different generations of progressively stronger deformed quartz veins 

points to the presence of a fluid phase throughout the deformation history. In addition, the formation of 

glaucophane at the cost of magmatic minerals in the basaltic rocks may have liberated water, depending on 

the exact reaction by which it formed. The dated quartzite mylonites were therefore not metamorphosed 

under fluid-deficient conditions and were not recrystallized at a later stage. Under these metamorphic 

conditions, the still relatively young, pelagic sediments had, hence, not cumulated significant, if any, 

radiogenic argon. It is thus highly unlikely that the obtained ages of ca. 450 Ma were affected by excess 

argon. The concordant step-heating and single grain total fusion ages of the two samples provide additional 

supportive evidence against the latter phenomenon, because phengite with excess argon may show highly 
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different plateau ages for neighboring samples or different grains from a given sample (Ruffet and others, 

1995; de Jong and others, 2001).  

The amount of older detrital mica in these pelagic sediments was probably negligible, because 

microstructures indicative of such components, like porphyroclasts and strain shadows are lacking. In 

addition, straightforwardly recognizable detrital feldspar is absent. Moreover, we can argue on geochemical 

grounds that it is highly unlikely that the ages of about 450 Ma are due to this phenomenon. In the very first 

place, the presence of older detrital K-white mica would have resulted in a much greater spread in single 

grain total fusion ages. Secondly, white mica being a hydrous mineral; it releases Ar during step-heating 

under vacuum as a consequence of chemical and structural changes within the crystals, rather than by 

volume diffusion (see references in: de Jong and others, 2001). A major consequence of this is that 39ArK 

and 40Ar* are released simultaneously from cores and rims of crystals, leading to homogenization of ages. 

In contrast, the presence of different generations of chemically distinct white micas in grain separates often 

results in complicated or dome-shaped 40Ar/39Ar age spectra due to their differential degassing over a 

temperature interval (Wijbrans and McDougall, 1986; de Jong, 2003). In such cases 37ArCa/39ArK ratios - 

proxies for the Ca/K ratios of the degassing material - are also irregular. The finding of age plateaux and 

constant 37ArCa/39ArK ratios can thus be taken as an argument in favor of degassing of chemically 

homogeneous white mica, further underscoring the absence of detrital components. Finally, the phengite 

ages are comparable to the 460-410 Ma 40Ar/39Ar ages of glaucophane in high-pressure metamorphic rocks 

from the Ulan Valley referred to by Chinese authors. 

Because the metamorphic temperature of the main tectono-metamorphic recrystallization during 

which the quartzite mylonites were formed was well below the blocking temperature of K-white mica (see 

Villa (1998) for a listing), the ca. 450 Ma age is interpreted as the crystallization age of phengite during 

mylonitization. White mica ages in the accretionary complexes of Japan, represented by the Sambagawa 

and Mikabu belts, have been interpreted in a similar way (Takasu and Dallmeyer 1990; de Jong and others 

2000 and references therein). Our ca. 450 Ma phengite ages are probably a better and in any case a tighter 

constraint on the age of accretion-related tectono-metamorphic recrystallization than the range of 460-410 

Ma 40Ar/39Ar ages of glaucophane quoted by Chinese authors. Glaucophane is K-poor and submicroscopic 

inclusions of K-rich minerals like mica, which may have formed during later recrystallization or alteration, 

may critically influence its age (Sisson and Onstott, 1986). The meta-gabbro/leucogabbro lens that occurs 
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in the quartzite mylonite of unit 3 (fig. 3) has a foliated and lineated margin from which blueschist IM-19 

was sampled. The micro-boudinage of magmatic augite in IM-19 occurred in stability field of crossite that 

was formed at the expense of glaucophane during exhumation. This implies that the final stages of the 

penetrative ductile deformation during which the dated quartzite mylonites IM-2 and IM-5 were formed 

also occurred during exhumation. Our ca. 450 Ma phengite dates provide, hence, an age constraint on the 

final phase of the formation of the Ondor Sum subduction-accretion complex.  

Xiao and others (2003) pointed out that the right-way-up ocean plate stratigraphy and the upward-

facing pillows of unit 1 of the Ondor Sum accretion-subduction complex, together with the consistent 

northward dip of the entire section, indicate that the rocks have not been overturned. Therefore, they 

envisaged that southward accretion took place on a north-dipping subduction zone that generated the Ulan 

arc. Our ca. 450 Ma plateau ages would thus constrain the dynamic recrystallization of the quartzite 

mylonites formed during this phase of southward accretion (fig. 4A). Accordingly, this event was of Late 

Ordovician age according to the time-scale of Harland and others (1990) or earliest Ashgill using the recent 

chronostratigraphic scale of Webby and others (2004).  

The supra-subduction zone ophiolite sequence and a variety of subduction-related leucocratic 

rocks in the Tulinkai area that yielded zircons with U-Pb SHRIMP ages of 477 to 457 Ma, as indicated 

above, have highly variable εNd(t) (+11.9 - -0.75) and high initial Sr ratios (87Sr/86Sri = 0.7043-0.7062) (Jian 

and others, 2006). On the basis of these data the authors favor a near-trench setting for these magmatic 

rocks and generation by ridge-trench interaction. This interpretation supports our model of an early 

Paleozoic intra-oceanic evolution of the Ondor Sum subduction-accretion complex and the Ulan arc (fig. 

4A). Jian and others (2006) also pointed out that younger ages of ca. 437 Ma for metamorphic zircons from 

some of these leucocratic rocks may reflect intra-oceanic overthrusting and crustal thickening under 

amphibolite-facies conditions. A ca. 420 Ma age of an albitite dyke in a serpentinite places an upper time 

constraint on this event (Jian and others, 2006). These ages strengthen our interpretation that the ca. 450 

Ma age of phengite from the Ulan Valley better constrains the timing of the high-pressure metamorphism 

in the Ondor Sum subduction-accretion complex than the 40Ar/39Ar ages of glaucophane referred to by 

Chinese authors. Indeed, the youngest glaucophane age of ca. 426 Ma agrees with the timing of the post-

accretion metamorphism and may be related to recrystallization caused by it. 
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EARLY PALEOZOIC BELTS AND TERRANES IN CHINA, KAZAKHSTAN, MONGOLIA, RUSSIA, 

VIETNAM, JAPAN 

Our radiometric dating implies that a 200 Ma gap existed between the early accretion in the Ondor 

Sum subduction-accretion complex along the northern margin of the North China craton and the formation 

of the Solonker suture zone, which marks the final closure of the Paleo-Asian Ocean. As shown below, 

other margins of the North China craton and of many other continental fragments in the Paleo-Asian Ocean 

were bordered by early Paleozoic subduction-accretion complexes, island arcs or contained calc-alkaline 

volcanic margins, which were formed well before the final closure of this oceanic basin.  

Kazakhstan and Junggar 

A number of early Paleozoic ophiolites occur along the northern margin of the Junggar terrane (Xinjiang, 

China; fig. 1), namely, the Tangbale-Mayile-Hongguleleng-Aermantai complexes (Wang and others, 2003). 

Radiometric and micro fossil data show that the Tangbale ophiolite was formed in late Cambrian-

Ordovician time, whereas, the age of the other complexes is less well constrained, but probably pre-middle 

Ordovician (Wang and others, 2003). The ophiolites are associated with volcanic and volcanoclastic 

sequences, as well as radiolarian cherts, turbidites and limestones of Ordovician and/or Silurian age (Wang 

and others, 2003). 40Ar/39Ar ages of sodic-amphibole from blueschists in the Tangbale ophiolite mélange 

(table 6) point to accretion and high-pressure metamorphism in middle Ordovician time along the northern 

margin of Junggar. 

The Altai-Sayan fold belt (fig. 1) comprises terranes of different age and derivation that are 

separated by subduction-accretion complexes that contain ophiolites, and are cut by strike-slip faults of 

different age (Zonenshain and others, 1990; Berzin and Dobretsov, 1994; Buslov and others, 2001; 

Windley and others, 2002). The Chara ophiolite belt is located along the northeastern margin of the 

Kazakhstan composite terrane and was formed in Late Carboniferous-Permian time as a strike-slip zone 

during the collision with Siberia, but also contains older serpentine mélanges and accreted terranes (Buslov 

and others, 2001). The oldest subduction-accretion complex is of Early Paleozoic age and contains amongst 

others: cherts, eclogites, amphibolites and blueschists, which yielded K-white mica with Late Ordovician to 

Early Silurian K-Ar ages (table 6). 
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Mongolia, Russian Far East and northeastern China 

Mongolia and bordering areas in Russia contain a number of crustal blocks situated along the 

southern margin of Siberia (Badarch and others, 2002; Dobretsov and others, 2003; Khain and others, 

2003). A compilation by these authors revealed that these amphibolite- and locally granulite-facies 

metamorphic rocks yielded many radiometric ages in the 535-450 Ma range. They explained these data by 

high-grade metamorphism and anatexis related to Cambro-Ordovician ridge subduction and/or terrane 

collision. 

Northeastern China and adjacent areas of the Russian Far East, contain a complex suite of 

continent-related terranes composed of rocks of in part early and middle Paleozoic age of diverse tectonic 

settings (Khanchuk and others, 1996; Şengör and Natal’in, 1996; Kojima and others, 2000; Nokleberg and 

others, 2001, 2004; Jia and others, 2004). A number of these terranes that are situated just north of the 

North China craton have been grouped as the Khanka superterrane (Kojima and others, 2000; Nokleberg 

and others, 2001, 2004). 

The Khanka superterrane in the southern part of the Russian Far East (fig. 1, loc. 1) comprises four 

terranes that amalgamated in the Silurian (Kojima and others, 2000) and were covered by similar Devonian 

and Mississippian continental-rift-related volcanic and sedimentary series (Nokleberg and others, 2001). 

The superterrane consists of a series of related terranes of early and middle Paleozoic age, representing a 

continental-margin, an island arc and subduction-accretion complexes (amongst others the Voznesenka 

terrane) with Cambrian ophiolite, chert, clastic rocks and limestone (Khanchuk and others, 1996; Kojima 

and others, 2000; Nokleberg and others, 2001). The Sergeevka terrane is located along the southeastern 

margin of Khanka and comprises a gneissose meta-dioritic complex, granite and associated metamorphic 

rocks that may have been formed in an island arc (Khanchuk and others, 1996; Kojima and others, 2000; 

Nokleberg and others, 2001). Rocks from this long-lived and complex terrane yielded isotopic ages in the 

490-530 Ma range and the dismembered Sergeevka ophiolite contains metagabbros with 430 to 470 Ma-old 

hornblendes (table 6) that are as old as hornblendes of some ophiolites in Japan (see below). 

Jia and others (2004) argued, on the basis of whole-rock 40Ar/39Ar plateau ages of blueschists and 

syn-tectonic granites, that two terranes that are not part of Khanka, namely the Jiamusi and Songliao-

Zhangguangcai blocks (fig. 1, loc. 2) collided along the Heilongjiang belt (also known as Mudanjiang belt) 
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at about 450-410 Ma. This belt is regarded as a subduction-accretion complex and contains, amongst 

others, serpentinized ultramafic rocks and gabbro, rare plagiogranite, pillow basalt, marble, a variety of 

siliceous-argillaceous metasediments and blueschists (Yan and others, 1989). The amphibolite- to 

granulite-facies metamorphic Mashan complex, which forms part of the Jiamusi block, has yielded ca. 500 

Ma SHRIMP zircon ages (table 6).  

North and South Qinling Belts 

The Qinling belt of eastern central China, developed to the south of the North China craton (fig. 1, 

loc. 3), is divisible into northern and southern belts that are separated by metamorphic rocks with Late 

Carboniferous 40Ar/39Ar hornblende ages (Zhai and others, 1998).  

The northernmost part of the North Qinling belt contains sediments accumulated on the southern 

passive margin of the North China craton formed by latest Mesoproterozoic metamorphic rocks (Zhai and 

others, 2003). The youngest sediments are mid-Ordovician that were deformed and metamorphosed under 

greenschist-facies conditions before deposition of mid-Carboniferous strata (Xue and others, 1996a, b). The 

central Qinling island-arc, farther south, contains deformed, medium pressure/temperature (P/T) meta-

igneous rocks with 487 to 470 Ma single-zircon 207Pb/206Pb evaporation ages, and relatively undeformed 

calc-alkaline granitoid plutons with 422 to 383 Ma isotopic ages (Erlangping unit: Ratschbacher and others, 

2003 and references therein) that truncate older structures (Xue and others, 1996a, b). 434-404 Ma 

40Ar/39Ar hornblende ages constrain the time of metamorphism related to these intrusions (Sun and others, 

2002a) or their cooling (Zhai and others, 1998). The lower Qinling unit developed farther south comprises 

gneisses (local granulites), amphibolites and marbles, with Paleoproterozoic and Neoproterozoic 

metamorphic ages, as well as early Paleozoic K-Ar mineral ages (that is 370-480 Ma see Ratschbacher and 

others (2003) for a compilation). The northern zone of the unit contains lenses and blocks of eclogite and 

gneiss that have yielded garnets with inclusions of coesite and zircons with included micro-diamonds. The 

ultrahigh-pressure metamorphism occurred at around 500 Ma (table 6; Yang and others, 2003). 

These data have been interpreted in terms of the formation of an intra-oceanic island arc 

(Erlangping unit) caused by southward (Xue and others, 1996a, b) or northward (Ratschbacher and others, 

2003) subduction of the oceanic basin bordering the North China craton in the early Ordovician. Following 
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the closure of the North Qinling back-arc basin (Sun and others, 2002a), the island arc, micro-continents 

(like the lower Qinling unit) and subduction-accretion complexes collided with the southern margin of 

North China before the intrusion of latest Silurian to Early Devonian post-collisional calc-alkaline 

granitoids (Xue and others, 1996a, b; Ratschbacher and others, 2003). Intrusion of these stitching plutons is 

part of the building of a ca. 400 Ma Andean-type continental margin arc along the amalgamated southern 

margin of the North China craton due to northward subduction of oceanic lithosphere (Ratschbacher and 

others, 2003).  

 In contrast in the South Qinling belt, most of the isotopic dates that refer to the age of the (ultra) 

high-pressure metamorphism that formed the local coesite- and diamond-bearing eclogites span the late 

Carboniferous to late Triassic (references in: Gao and others, 1995; Chang, 1996; Zhai and others, 1998; 

Sun and others, 2002a, b; Roger and others, 2003; Liou and others, 2004). Recently, however, Qiu and 

Wijbrans (2006) obtained Late Ordovician to Silurian 40Ar/39Ar ages from eclogites in the Dabieshan by 

stepwise crushing of garnet (table 6) and they suggest that these ultrahigh-pressure metamorphic rocks 

were first formed in the early Paleozoic. Also eclogite in the northwest Dabieshan yielded early Paleozoic 

isotopic ages that were interpreted by Yang and others (2003) as dating the amphibolite-facies 

recrystallization of the (ultra) high-pressure metamorphic rocks (table 6).  

Tianshan Belt 

The ca. 400 km wide and 2500 km long Tianshan belt similarly records about 200 Ma of tectonic 

history of collision of the Tarim craton and intervening smaller crustal fragments with the southern 

Angaran active margin of the Siberian continent (Shu and others, 2002, 2004; Laurent-Charvet and others, 

2002, 2003; Xiao and others, 2004b). A central belt is separated from the northern and southern Tianshan 

belts by suture zones (Windley and others, 1990) that contain mélanges with a schistose meta-pelitic matrix 

that surrounds blocks of (ultra) mafic magmatic rocks, tholeiitic pillow lavas, siliceous rocks and 

limestones of Ordovician to Late Silurian age, as well as blueschists, eclogites and (mafic) granulites (Gao 

and others, 1998; Shu and others, 2002, 2004; Xiao and others, 2004b).  

The Central Tianshan belt (fig. 1, loc. 4) is considered as an Early Ordovician to Early Silurian 

magmatic arc (table 6) formed on Proterozoic basement and overlain by Late Paleozoic platform sediments 
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(Windley and others, 1990; Laurent-Charvet and others, 2002; Shu and others, 2002, 2004; Xiao and 

others, 2004b). The immature, intra-oceanic Harlik-Dananshu arc, situated in the central Asian archipelago 

to the north of the central Tianshan arc, was also initiated in the Early Ordovician (Xiao and others, 2004b, 

and references there-in).  

Despite the formation of an Ordovician-Silurian magmatic arc due to subduction of oceanic 

lithosphere isotopic ages for blueschists and eclogites from the mélanges along the Central Tianshan’s 

northern limit in western China cluster closely around 350 Ma (Gao and others, 1998; Gao and Klemd, 

2003). Geochronologic indications for early Paleozoic high-pressure metamorphism in this area and 

correlative belts farther west in Kyrgyzstan (Atbashy eclogite belt) and in Tajikistan (Fan-Karategin 

blueschist belt) are not conclusive (Wang and others, 2006). However, the latest Neoproterozoic to earliest 

Early Cambrian Weiya granulite from the northern margin of the eastern Central Tianshan belt experienced 

an early Paleozoic retrograde thermo-tectonic event (Shu and others, 2004; table 6). 

The Makbal coesite-grade eclogite in the northern Tianshan belt in Kyrgyzstan may have been 

formed around Cambrian Ordovician boundary times (table 6). 

Kunlun Belt 

The Kunlun belt occurs to the south of the Tarim craton and the Qaidam block and is divided into 

a western and an eastern range that are offset along the sinistral Altyn Tagh strike-slip system (fig. 1). The 

Kunlun belt contains the remnants of superimposed early Paleozoic and late Paleozoic-Triassic arcs. In 

both the western and the eastern Kunlun belt the older suite of batholiths shows a pronounced concentration 

of 450-490 Ma radiometric ages, pointing to the presence of an Early to Late Ordovician magmatic arc 

(Yuan and others, 2002; Cowgill and others, 2003; Schwab and others, 2004). The youngest isotopic ages 

obtained by Cowgill and others (2003) on batholiths in both belts are identical (384 ± 2 and 389 ± 5 Ma, 

that is Middle Devonian). Ca. 405 Ma-old lamprophyres and a 384 ± 2 Ma-old pluton are post-tectonic 

(Schwab and others, 2004). 

Based on data from the Kudi area (fig. 1, loc. 5) Xiao and others (2002) proposed a model of an 

early Paleozoic arc-accretionary prism for the western Kunlun belt that has resemblance to the model for 

the early Paleozoic tectonic evolution of the Ondor Sum subduction-accretion complex, outlined earlier in 
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this paper. In agreement with Mattern and Schneider (2000), they envisaged that in the Late Cambrian to 

earliest Ordovician an oceanward-dipping intra-oceanic subduction zone was generated to the south of 

Tarim. This led to the formation of the earliest Ordovician intra-oceanic Yixieke arc that was emplaced 

northward onto the margin of Tarim (Xiao and others, 2002). This process gave rise to flip in the 

subduction polarity, and consequent northward subduction beneath the southern margin of the accreted 

Yixieke arc led to the formation of an Early to Mid-Ordovician Andean-type continental margin on the 

southern side of Tarim (Xiao and others, 2005). The end of northward subduction may be related to the 

docking of the Kudi terrane, a Precambrian continental fragment with gneisses with Late Ordovician to 

Silurian isotopic ages (table 6) that probably record the collision (Matte and others, 1996; Zhou and others, 

1999). Yuan and others (2002) argued that the end of the collision is constrained by the 405 ± 2 Ma single-

grain zircon U-Pb age of the post-dynamic, A-type North Kudi pluton and coeval lamprophyre dikes, 

indicating the beginning of extensional deformation that would last until the Early Permian. Schwab and 

others (2004) underlined the similarities in Paleozoic tectonic evolution between the Kunlun belt and the 

Qinling belt, 2500 to 3000 km farther to the east. They compared the formation and accretion of the intra-

oceanic Yixieke arc, with that of the Erlangping unit, and the docked Kudi terrane with the Qinling micro-

continent. 

Liu (ms) obtained 440-360 Ma hornblende and mica 40Ar/39Ar ages from Proterozoic gneisses 

from both sides of the central Kunlun fault in the eastern Kunlun range. He interpreted these ages to reflect 

the age of amphibolite-facies metamorphism during collision of the South and North Kunlun blocks that 

followed the closure of the small oceanic or marginal basin between them. 

North Qilian Belt 

The North Qilian Belt (fig. 1, loc. 6) comprises (1) a northern terrane with middle Cambrian 

sediments (Wu and others, 1993), (2) a ca. 1000 km long, discontinuous belt composed mainly of 

greenschist-facies metamorphic felsic and mafic volcanic rocks interpreted as an Ordovician volcanic 

(island) arc (Yin and Harrison, 2000; Wang and others, 2005), and (3) a southern terrane accretion-

subduction complex with abyssal and bathyal sedimentary rocks, an imbricated ophiolite (Qian and Zhang, 

2001), with blueschists, blocks of eclogite, gabbro, and serpentinized and carbonated ultramafic rocks (Liu, 
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ms; Wang and others, 2005). Phengite and glaucophane from the southern terrane yielded 460-440 Ma K-

Ar and 40Ar/39Ar ages (Xiao and others, 1986; Song and Wu, 1992; Wu and others, 1993; Zhang and others, 

1997; Liu, ms). Granodiorite and associated skarn formed in Proterozoic continental fragments present in 

the southern terrane yielded Late Ordovician isotopic ages (table 6). Ordovician to Early Silurian (table 6) 

rhyolites and basalts (Wang and others, 2005) and intrusive rocks were emplaced in an island-arc setting 

(Zhang and others, 2006). 

Wang and others (2005) interpreted the geochemistry of the volcanic rocks as pointing to an 

Ordovician volcanic arc formed on the southern margin of the North China craton above a northward 

subduction zone, possibly evolving into an island arc separated from the continent by a back-arc basin. The 

northward drifting of the Central Qilian microcontinental fragment, with Archean basement rocks (Liu, 

ms), eventually resulted in the amalgamation of both terranes and their collision with the North China 

craton in Silurian times (Wang and others, 2005). 

North Qaidam-Altun Eclogite Belt 

The North Qaidam-Altun eclogite belt occurs over almost the entire length of the northern margin 

of the Qaidam block (constituted by Precambrian metamorphic rocks with a Paleozoic sedimentary cover), 

and is displaced by the Altyn Tagh fault (fig. 1). The belt comprises quartzo-feldspathic and pelitic gneisses 

with local garnet peridotites and eclogite lenses and layers, which may contain ultrahigh-pressure minerals 

(Song and others, 2003; Zhang and others, 2004; Liou and others, 2004).  

Metamorphic zircon from eclogites and garnet peridotites yielded U-Pb TIMS (Thermal Ionization 

Mass Spectrometry) and SHRIMP ages that span 436 to 504 Ma; eclogites have whole-rock-garnet-

omphacite Sm-Nd isochrons in the 500-435 Ma range (Zhang and others, 2001; 2004; 2005; Yang and 

others, 2002; Song and others, 2003), which according to these authors date the (ultra) high-pressure 

metamorphic conditions. Exhumation to lower-crustal depths is constrained by 40Ar/39Ar ages of 477 to 407 

Ma (Zhang and others, 2005; table 6). I-type granites in the region yielded SHRIMP ages of 496-445 Ma 

(Yang and others, 2002). The North Qaidam-Altun eclogite belt probably constituted a tectonic collage of 

multiple (ultra) high-pressure metamorphic units formed as a result of early Paleozoic (that is 500-445 Ma) 
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subduction and subsequent collision between the Qilian and Qaidam blocks, which were probably both 

Precambrian micro-continents (Song and others, 2003; Zhang and others, 2005).  

Bian and others (2004) regarded the entire Kunlun-Qilian-Qinling system during the Early 

Ordovician to latest Silurian as constituted by an number of colliding micro-continents fringed by 

subduction-accretion complexes and island arcs developed as a result of northward subduction and closure 

of oceanic basins. 

South China and Indochina 

Although the tectonic significance and geodynamic setting are unclear, scarce information implies 

that the Indochina block (or Annamia) and the southern part of the Cathaysia block (that is, the southern 

South China craton) were affected by Silurian magmatism, regional sub-greenschist facies metamorphism 

and deformation. This is indicated by U-Pb zircon ages (table 6) and by a lack of Silurian sediments, a 

regional angular unconformity between unmetamorphosed Late Devonian and younger deposits and folded 

Neoproterozoic to early Paleozoic metasediments of the South China craton with isotopic ages of about 440 

to 415 Ma (Zhao and Cawood, 1999; Roger and others, 2000, and references therein). The Dai Loc and 

Kontum massifs in the Indochina craton of central Vietnam (fig. 1, loc. 9) contain early Paleozoic, in part 

granulite-facies gneisses (Carter and others, 2001; Lan and others, 2003) and granodiorite (Nagy and 

others, 2001) (table 6). 

Japanese Belts 

The Japanese terranes oceanward of the Hida belt (fig. 1, loc. 11), the geotectonic element the 

closest to the Asian continent and that can be regarded as the eastward continuation of the CAOB, are 

generally interpreted as subduction-accretion complexes (Isozaki, 1997a, b). Only a small number of 

terranes have been considered as derived from a mature island arc or a micro-continent (for example, Faure 

and Charvet, 1987; Aitchison and others, 1991; Maruyama and others, 1997; Hada and others, 2001; 

Takagi and Arai, 2003), and occur isolated in the Japanese islands due to late Triassic and younger 

tectonism. These are the Kurosegawa terrane (western Honshu and Kyushu; indicated in fig. 1 as H and K, 

respectively), the Hida Gaien (or Marginal) terrane (central Honshu), the South Kitakami terrane (central 
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and northeastern Honshu; fig. 1, loc. 10) and parts of the Paleo-Ryoke terrane (in restricted areas from 

Kyushu to the Kanto Mountains of central Honshu). These four terranes can be correlated on the basis of 

similarities in litho- and bio-stratigraphy of Late Silurian to early Middle Devonian and Late Palaeozoic 

sedimentary series, isotopic ages and petrochemistry of late Ordovician and Permian granitoids (Umeda, 

1998; Ehiro, 2000; Hada and others, 2000; Takagi and Arai, 2003; Kurihara, 2004; Kawajiri, 2005). The 

Hida Gaien terrane as used in this paper refers to the recently redefined Hida Gaien belt by Tsukada and 

others (2004) that crops out along the southern margin of the Hida belt (fig. 1, loc. 11), which it structurally 

underlies. These authors pointed out that part of the tectonic elements of the classic belt can be regarded as 

belonging to the Paleozoic Renge, Suo, Akiyoshi and Maizuru subduction-accretion complexes. 

The Oeyama suite is interpreted as an early Paleozoic ophiolite nappe that occupies the highest 

structural position in the stack of superimposed subduction-accretion complexes of southwest Japan 

(Ishiwatari and Tsujimori, 2003), and is here regarded as belonging to the Renge belt, as defined by 

Nishimura (1998). A ca. 560 Ma Sm-Nd age of a gabbro dyke with magmatic clinopyroxene, plagioclase 

and (?) hornblende, and MORB-like affinities, suggests that the Oeyama ophiolite formed during the 

Cambrian (Hayasaka, 1995, in: Tsujimori and Itaya, 1999). The peridotite of the Oeyama suite may have 

been formed in a supra-subduction zone mantle beneath an intra-oceanic arc (Tsujimori and Itaya, 1999; 

Ishiwatari and Tsujimori, 2003). The Osayama serpentinite mélange, which is associated with the Oeyama 

belt, contains tectonic blocks of kyanite- and staurolite-bearing high-pressure metamorphic gabbros and a 

rare blueschist with an eclogite-facies mineral assemblage that yielded early Paleozoic isotopic ages (table 

6), which match those from the Sergeevka ophiolite of the southern part of the Russian Far East (fig. 1, loc. 

1; table 6).  

Ishiwatari and Tsujimori (2003) and Sakashima and others (2003) have considered the South 

Kitakami terrane as an early Paleozoic active continental margin or mature island arc, on the basis of late 

Cambrian to Ordovician isotopic ages from ophiolite, blueschists, as well as calc-alkaline and granitic 

rocks (table 6). Metamorphic rocks with hornblendes that have 400-445 Ma K-Ar ages furthermore occur 

in a serpentinite mélange in the Kurosegawa terrane (Tsujimori and Itaya, 1999; Ishiwatari and Tsujimori, 

2003). 
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GEODYNAMICS 

Şengör and others (1993) considered all Precambrian crustal blocks present in the CAOB as 

fragments derived from the margin of the Laurentian part of the former Meso-Neoproterozoic 

supercontinent Rodinia (that is from Siberia and, probably, North China). These were emplaced as a result 

of the separation of a single magmatic arc from this margin in latest Neoproterozoic-Early Cambrian time 

(namely, the Kipchak arc), rather than as micro-continents. In contrast, based on paleomagnetic data that 

point to predominant migration of such continental fragments from Gondwana toward Siberia, 

Mossakovsky and others (1994) and Didenko and others (1994) regarded these fragments as Gondwana-

derived micro-continents. Other authors like for example, Dobretsov and others (1995) and Buslov and 

others (2001, 2004), however, underlined the heterogeneity of these fragments and inferred that they were 

composite micro-continents with Gondwanan and “Laurentian” fragments. The evolution of micro-

continental fragments can be quite complicated as illustrated by the Altai-Sayan terrane, for which Fortey 

and Cocks (2003) proposed that it rifted from Siberia around Cambrian-Ordovician boundary times and 

subsequently drifted to obtain a peri-Gondwanan position in the Caradoc. 

In the following section we will point out that micro-continents that currently form part of Asia as 

a result of latest Paleozoic to earliest Mesozoic collision were at least in part peri-Gondwanan terranes. 

These terranes were situated close to the northeastern Cimmerian margin of the Gondwana supercontinent 

in the early Paleozoic, and fringed by subduction zones, accretionary complexes and calc-alkaline volcanic 

margins, before they separated from this margin after the middle Devonian and subsequently drifted 

northward. The early Paleozoic tectonic cycle was preceded by, and a consequence of, the break-up of 

Rodinia. This event is the rationale behind the accumulation of late Neoproterozoic to earliest Paleozoic 

passive margin sediments of the eastern margin of Gondwana, the North China craton and many of the 

micro-continents of mainland Asia. 

The Early Paleozoic Gondwanan Margin 

Paleogeographical reconstructions by Li and Powell (2001) imply that during the Early Cambrian, the 

North and South China cratons (the latter forming part of a continental ribbon with northwest Tasmania in 

its southern tip) were located adjacent to the Australia-New Zealand-Antarctica continental margin of 
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eastern Gondwana, close to or in the Paleo-Pacific oceanic basin. The magmatic and tectonic evolution of 

the eastern Gondwanan margin is related to different subduction stages of the Paleo-Pacific Ocean and 

associated marginal basins (Li and Powell, 2001; Veevers, 2004; Foster and others, 2005), as a result of 

which the Terra Australis Orogen was formed that continued into South America (Cawood, 2005). Oblique 

subduction was initiated in the East Gondwana segment in late Neoproterozoic time (580-560 Ma; Cawood, 

2005), or in the earliest Phanerozoic (ca. 550 Ma; Veevers, 2004). The main pulse of convergence started at 

about 530-520 Ma (Cawood, 2005) and enduring westward subduction occurred from 490 Ma onward 

(Veevers, 2004). Ultrahigh-pressure metamorphic conditions were attained during the Ross orogeny in 

Antarctica that are dated by Sm-Nd and 238U-206Pb methods at about 500 Ma, whereas the amphibolite-

facies overprinting is constrained by 40Ar/39Ar ages of 490-486 Ma for Ca-amphibole (Liou and others, 

2004). 

 Paleomagnetic data suggest that the northwestern Tasmania part of the ribbon continent that also 

contained South China, may have accreted to the Pacific margin of Gondwana by the Late Cambrian (Li 

and Powell, 2001). Due to the oblique subduction of Paleo-Pacific oceanic lithosphere below the eastern 

Gondwanan margin in Early Cambrian time, the South and North China micro-continents traveled along 

the active margin, reaching their position near the Cimmerian re-entrant by the Early Ordovician (Li and 

Powell, 2001; fig. 10). The Arabia-Iran-Himalayan-part-of-India segment of this re-entrant may have been 

an active margin from the terminal Neoproterozoic to at least the Early Cambrian, characterized by 

magmatic arc complexes and possibly a back-arc zone of attenuated continental crust, developed above a 

continent-ward dipping subduction zone (Ramezani and Tucker, 2003). Research by many workers has 

revealed the Himalayan part of the Gondwanan margin experienced widespread early Paleozoic tectonism. 

Its manifestations in various regions of the Himalayas include Late Cambrian to Early Ordovician large-

scale thrusting, crustal thickening and ductile deformation; medium- to high-grade regional metamorphism 

and the generation of granitic crustal melts; uplift and erosion of metamorphic rocks, as well as 

accumulation of thick sequences of synorogenic sediments (DeCelles and others, 2000; Miller and others, 

2001; Gehrels and others, 2003, 2006a, b; Schwab and others, 2004, and references therein). Rolland and 

others (2002) regarded the Masherbrum Greenstone Complex of the southern Karakoram (NE Pakistan) as 

a dismembered ophiolite comprising relics of an Early Ordovician subduction-accretion complex, a 

volcanic arc and a back-arc system formed along the southern margin of a Northern Karakoram micro-
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continent. The Karakoram micro-continent, together with the Helmand block of central Afghanistan and the 

Lhasa block of Tibet, belonged to the peri-Gondwanan Cimmerian domain during the Early Ordovician (Le 

Fort and others, 1994). The Cimmerian re-entrant is regarded as composed of a number of semi-

independent blocks during the Cambro-Silurian and not as a single entity (Fortey and Cocks, 2003), 

although for clarity it is depicted as such in figure 10.  

As the oceanic lithosphere that contained North and South China and other micro-continents that 

now form part of Asia interacted with these active margins rimming East Gondwana, subduction zones and 

island arcs formed on the rims of different blocks that, in some cases, subsequently may have collided, like 

for example, the Qilian and Qaidam blocks. Taking into account the age constraints outlined in earlier in 

this paper, the Ondor Sum subduction-accretion complex probably records this evolution as the entire 

process of creating the oceanic lithosphere (unit 1), the accretion of oceanic sediments (unit 3), the flip of 

the subduction polarity and the formation of the Bainaimiao arc in the margin of the North China craton 

seems to have been accomplished between the earliest Cambrian to the early Silurian. These basalts and 

ocean floor sediments may hence be relics of the Paleo-Pacific oceanic crust.  

As outlined in the previous section, retrograde metamorphism was superimposed on high-pressure 

assemblages of a number of belts around micro-continents present in the Cimmerian margin of Gondwana 

and related to the exhumation of subducted rocks and their final cooling. Therefore, orogenic activity may 

have lasted into the Devonian. The clockwise rotation of the supercontinent in Ordovician to early 

Devonian time might have attributed to tectonic activity in micro-continents along its margins (Li and 

Powell, 2001). 

It is well accepted that by the Early Cambrian (ca. 530 Ma) Tarim had broken away from the 

Gondwana supercontinent and formed an independent micro-continent, like North and South China (for 

example, Meert and others, 2001; Li and Powell, 2001 and references there-in). Nevertheless, because of 

their close trilobite affinities, the three micro-continents are inferred to have had a position close to 

Australia until the Late Cambrian (references in: Li and Powell, 2001; Metcalfe, 2002; Choi and others, 

2003). Plate reconstructions show that the main continents of Gondwana, Laurentia, Baltica and Siberia 

were widely separated in the Ordovician (Li and Powell, 2001; Fortey and Cocks, 2003; fig. 10). In the 

Cambrian to Ordovician the North China and Tarim micro-continents occupied a position close to the 

Cimmerian margin of Gondwana, thus far from the Siberian craton with which they were to collide in Late 
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Paleozoic times (fig. 10). Similarities in pre-Ashgill stratigraphies and fossil record between the North 

China craton and North Australia confirm this position (Metcalfe, 1996, 1998). Currently available 

paleomagnetic and fossils records imply that this situation had not essentially changed in the Silurian to 

latest Early Devonian (Metcalfe, 1996, 1998, 2002; Li and Powell, 2001).  

The above paleomagnetic and paleogeographic reconstructions imply that the formation of Late 

Cambrian to Early Ordovician island arcs, subduction-accretion complexes and high-pressure metamorphic 

belts in Ondor Sum and the Solonker orogen, the Central Tianshan, some of the Kazakh terranes, the North 

Qinling, the North Qaidam-Altun belt, the North Qilian Mountains as well as the Kunlun range all formed 

in a geodynamic setting that was drastically different from that of the Late Paleozoic Central Asian 

orogenic belt. Silurian granitic magmatism, metamorphism and deformation that affected the southern part 

of the South China craton implies that this micro-continent probably was part of this orogenic zone along 

the Cimmerian margin of Gondwana too (fig. 10). Although Carter and others (2001) explained the Late 

Ordovician to Silurian magmatic event in central Vietnam by an extensional event related to the rifting of 

Indochina from Gondwana, Nagy and others (2001) pointed out that it cannot be ruled out that the calc-

alkaline rocks originated in a magmatic arc related to subduction. This would imply that the Indochina 

micro-continent was located in the orogenic system along the Gondwanan margin as well (fig. 10). 

Indochina and some of the terranes involved, like the Alashan, Qaidam and Kunlun with their Early 

Paleozoic stratigraphic, faunal and floral affinities to Tarim, North and South China are widely interpreted 

as being peri-Gondwanan terranes in pre-middle Devonian times (Metcalfe, 1996, 2002; Fortey and Cocks, 

2003).  

Middle Paleozoic Rifting and Drifting from the Gondwanan Margin 

Paleomagnetic reconstructions by Li and Powell (2001, their figs. 12, 13) show that the North and 

South China cratons as well as Tarim began to separate from the Cimmerian margin of Gondwana after the 

Early Devonian, opening the Paleo-Tethyan Ocean, and giving rise to lack of faunal and floral affinities 

from that time onward (Metcalfe, 1998, 2002). The evolutionary trend of Late Devonian tholeiitic volcanic 

rocks to Early Carboniferous alkali basalts observed in the Youjiang Basin of the southernmost part of the 

South China craton, reflects a lithospheric thinning in a passive continental margin related to the opening of 

the Paleo-Tethys (Guo and others, 2004). Also the present-day northern margin of Tarim records the 
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transition from a passive margin to a rifted margin during the same period (Xiao and others, 2004b). After 

the Early Carboniferous these micro-continents began their northward drift that led to collision with the 

Angaran active margin of Siberia (fig. 14 of Li and Powell, 2001) by means of subduction of the Paleo-

Pacific (Metcalfe, 1996, 1998; Li and Powell, 2001) or Paleo-Asian Ocean (Xiao and others, 2003; fig. 11). 

By the end of the Carboniferous the northern sides of the Tarim and North China cratons had evolved into 

active continental magmatic margins (Xiao and others, 2003, 2004b). 

Provenance of Terranes North of the Solonker Suture 

The preceding paragraphs revealed that many micro-continents to the south of the Solonker suture 

have an East Gondwana provenance. For some of the crustal blocks situated north of this suture a similar 

case can be made, but for other terranes Gondwana derivation is less clear.  

 

 The early Paleozoic Siberian margin.--- 

The southern part of the Siberian craton changed from a terminal Neoproterozoic to middle 

Cambrian passive margin to a complex active continental margin (Khain and others, 2003). This margin 

contains a number of amalgamated cratonic and metamorphic terranes, around which Late Cambrian to 

middle Ordovician subduction-accretion complexes and late Neoproterozoic and younger island arcs 

accreted and ophiolite complexes obducted, before the assemblage collided with Siberia (Badarch and 

others, 2002; Windley and others, 2002; Dobretsov and others, 2003; Khain and others, 2003; Xiao and 

others, 2004a). Buslov and others (2001), Dobretsov (2003), Dobretsov and others (2003) and Kheraskova 

and others (2003) proposed that in the 550 to 490 Ma period oceanic islands and Gondwana-derived micro-

continents (like for instance, Kokchetav, Tuva-Mongolia, Central Mongolia) collided with a Cambrian to 

Early Ordovician island arc system present to the south of the Siberian continent, as a result of which many 

(ultra) high-pressure rocks formed. In Early Ordovician time this system collided with the Siberian 

continent, leading to attenuation of the island arc volcanism (Buslov and others, 2001; Kheraskova and 

others, 2003). Subsequently, the southern active margin of Siberia moved progressively southward and in 

the Ordovician a two km-thick series of calc-alkaline volcanic and volcaniclastic rocks was laid down (Hsü 

and others, 1991). 
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 Kazakhstan.--- 

Kazakhstan is regarded as a composite terrane made up of a number of continental fragments, 

terranes, island arcs and oceanic crust remnants of different age, and that formed as the result of prolonged 

accretion and collision (Dobretsov, 2003; Fortey and Cocks, 2003; Khain and others, 2003; Kheraskova 

and others, 2003; Buslov and others, 2004). Amalgamation of the Kazakh terranes appears to have been 

accomplished at least by Early Carboniferous time (fig. 11; Li and Powell, 2001; Dobretsov, 2003; Fortey 

and Cocks, 2003; Torsvik and Cocks, 2004), but continental assemblies as old as Early Devonian (Buslov 

and others, 2004) or Late Ordovician (Filippova and others, 2001; Kheraskova and others, 2003) have been 

envisaged too. The collision of Kazakhstan with Siberia took place in the middle Carboniferous 

(Dobretsov, 2003); Gondwana-derived Tarim appears to have collided with Kazakhstan by mid-Permian 

time (Şengör and Natalin, 1996).  

In southern Kazakhstan several micro-continental fragments with Precambrian granitic gneisses 

have been identified (Abdulin and others, 1995) that are considered as derived by Neoproterozoic rifting 

from the margins of Siberia (Berzin and Dobretsov, 1994) or East Gondwana (Mossakovsky and others, 

1994; Kheraskova and others, 2003). The latter view is based on similarities in the late Neoproterozoic and 

early Paleozoic stable margin sequences between Kazakhstan and Australia, China and Tarim (Eganov and 

Sovetov, 1979). On the basis of faunal considerations Fortey and Cocks (2003) considered a number of the 

Kazakh terranes (like Chingiz and Chu-Ili) as peri-Gondwanan, which like Tarim, would have drifted 

across the paleoequator into the northern hemisphere by Ordovician-Silurian boundary times. Also 

paleomagnetic data indicate that elements of the Kazakhstan composite terrane have consistently drifted 

northward from at least the Early Ordovician through the Permian (Bazhenov, 2003; Collins and others, 

2003; Buslov and others, 2004).  

 Mongolia, Russian Far East and northeastern China.--- 

Badarch and others (2002) showed that only the Hutag Uul terrane and its western correlative the 

Tsagaan Uul terrane of southernmost Mongolia contain Silurian-Devonian strata that lack fossils of 

Siberian affinity, in contrast to other Mongolian terranes with Precambrian basement. The Hutag Uul 

terrane is equivalent to the Baolidao arc-accretion complex (fig. 2; Xiao and others, 2003). 
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Wilde and others (2000) speculated that the ca. 500 Ma-old metamorphism in the Jiamusi block in 

northeastern China (fig. 1, loc. 2) occurred while the rocks were located at the margin of Gondwana. 

However, in the absence of paleomagnetic and paleontological data, the origin of these high-grade 

metamorphic blocks and the geodynamic setting in which their metamorphism took place, hence, remain 

unclear. It is therefore not excluded that the Cambro-Ordovician metamorphism of some terranes north of 

the Solonker suture zone might well have been generated in subduction-arc-accretion complexes fringing 

Siberia’s southern margin, and or during the subsequent collision of the system with this continent, as 

outlined in an earlier section.  

Khanchuk and others (1996) regarded the Voznesenka terrane of the southern part of the Khanka 

superterrane in the Russian Far East (fig. 1, loc. 1) as element of the early Paleozoic continental margin of 

Gondwana, on the basis of affinities of Cambrian microfossils with the Australian paleobiogeographic 

province. These authors also regarded the Sergeevka terrane as Gondwana-derived. Khanchuk and others 

(1996) envisaged that the Khanka superterrane was rifted from Gondwana in Devonian time, resulting in 

the formation of bimodal volcanic rocks. In contrast, Şengör and Natal’in (1996) considered the Khanka as 

part of the northern margin of the North China craton, which we regard as peri-Gondwanan (fig. 10). The 

amalgamation of the different terranes of Khanka occurred during the early Paleozoic before the deposition 

of Middle and Late Devonian and younger volcanic rocks and clastic sediments that overlap the entire 

superterrane (Nokleberg and others, 2004). This would imply that the entire early Paleozoic accretion 

evolution of the Khanka superterrane took place in a peri-Gondwanan setting. Collision with the North 

China craton probably occurred in the Early Triassic (Zonenshain and others, 1990; Wu and others, 2004). 

Terranes in Japan 

The South Kitakami terrane of northeastern Japan (fig. 1, loc. 10) can be regarded as a Gondwana-

derived terrane that documents the entire Paleozoic geodynamic evolution. It comprises a nearly complete 

and coherent Silurian to Early Cretaceous sedimentary succession that rests on the Miyamori ophiolite and 

possibly on minor granitic and metamorphic basement of Ordovician age (Tazawa, 2002; Ishiwatari and 

Tsujimori, 2003; Sakashima and others, 2003; Yoshida and Machiyama, 2004). The Paleozoic strata 

contain abundant fossil fauna and flora, which document that South Kitakami was part of Gondwana in the 

Silurian and Devonian, then broke away from this supercontinent and subsequently drifted northward (for 
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instance, Ehiro, 2000, and references in Tazawa, 2002. On the basis of middle Permian Boreal-Tethyan 

mixed brachiopod fauna Tazawa (1999, 2002) positioned South Kitakami in the northern hemisphere 

associated with the North China micro-continent. Using ammonoids, Ehiro and others (2005), however, 

favored an equatorial position for the terrane during this time slice, closer to the South China micro-

continent. South Kitakami has been considered as having formed part of a single system in the early 

Paleozoic with geologic entities of the Russian Far East: the Khanka superterrane (Şengör and Natal’in, 

1996; Tazawa, 2002) or more specifically the Sergeevka terrane (Kojima and others, 2000). The similar 

Ordovician radiometric ages of some granitoids, the Sergeevka, Miyamori and Oeyama ophiolites, as well 

as the Matsugadaira-Motai blueschists (table 6) lend some support to this correlation. A Gondwana 

derivation has also been advocated for the Kurosegawa terrane (Aitchison and others, 1991; Maruyama and 

others, 1997; Hada and others, 2001). 

South Kitakami’s clastic series of Permian age contain substantial input from andesitic and 

granitic sources, and their contact metamorphic aureoles (Takeuchi, 1994), which point to the proximity of 

island arcs or an active magmatic margin (Yoshida and Machiyama, 2004). Diorite pebbles in middle 

Permian (Usuginu-type) conglomerates yielded hornblende with 240-270 Ma K-Ar ages (references in: 

Takeuchi, 1994) and tonalite pebbles contain zircon and monazite with 240-260 Ma CHIME ages 

(Takeuchi and Suzuki, 2000). Similar conglomerates of Permian age with similarly aged granitic clasts are 

known from the Kurosegawa terrane (Hada and others, 2000; Takagi and Arai, 2003). The latter authors 

argued that the source area was formed by the Paleo-Ryoke terrane that contains a number of suites of 

Permian granitic rocks that yielded hornblende with K-Ar ages in the 250-277 Ma range, and that were 

generated in an immature volcanic arc or active continental margin. A granodiorite body that probably 

belongs to the Usukigawa suite in eastern Kyushu yielded zircon with a SHRIMP U-Pb age of 292 ± 12 Ma 

(Sakashima and others, 2003). The Hida Gaien terrane experienced widespread deposition of mainly felsic 

pyroclastic rocks during the Late Carboniferous and Early Permian in a volcanic arc, and local bimodal 

volcanism in Early Permian time (Takeuchi and others, 2004). Kawajiri (2005) pointed out that the 

diversity of magma types suggests that the terrane was situated in an island arc or back-arc basin setting in 

latest Permian time. 

Permian gabbro intrusions, local tonalite and plagiogranite, as well as basalt, andesite and rhyolite 

of Permian to early Triassic age (Jia and others, 2004), occur in northeastern China and the Russian Far 
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East (Nokleberg and others, 2001, 2004). These rocks form the Laoelin-Grodekovsk terrane that the latter 

authors interpret as a magmatic arc. Younger, collision-related, Late Permian granitic plutons intrude the 

terrane and are co-magmatic with Permian volcanic rocks in the Khanka superterrane. Nokleberg and 

others (2004) suggests that this relation shows that the Laoelin-Grodekovsk magmatic arc accreted to the 

Khanka superterrane at the end of the Paleozoic. The occurrence of such terminal Paleozoic magmatic and 

volcanic activity, the presence of a Late Permian-Early Triassic subduction-accretion complex in the Jilin 

area of northeastern China (Li, 2006) and the Chongjin subduction-accretion complex in northernmost 

North Korea, which contains late Paleozoic ophiolites, chert and limestone (Nokleberg and others, 2001), 

all imply that the Solonker suture zone continues eastward to the Sea of Japan (fig. 1).  

Principally on geochemical grounds Arakawa and others (2000) and Jahn and others (2000) 

regarded the Hida belt in Japan as an eastward continuation of the CAOB, rather than as the eastern margin 

of the North China craton with which it has chemical and geochronological dissimilarities. They arrived at 

this conclusion on the basis of the age and isotopic characteristics of the Paleozoic to Mesozoic granitic 

rocks, the young Sm-Nd (Dm) model ages for metapelitic Hida gneisses, implying a sedimentary protolith 

not older than Early Paleozoic, and finally the 250-220 Ma age for the main metamorphism. Indeed, the 

range of radiometric ages from the Hida belt is comparable to ca. 240 Ma U-Pb zircon ages (F.-Y. Wu, 

unpublished data in: Wu and others, 2004), ca. 225 Ma 40Ar/39Ar biotite and muscovite ages from 

amphibolite-facies rocks and synorogenic granites from the Hulan group (Xi and others, 2003) located in 

the easternmost part of the CAOB in China. These early Mesozoic isotopic dates agree with the 

progressively younger age of suturing signaled in the Introduction of this paper.  

The picture that emerges is that the Japanese islands contain remnants of a Gondwana-derived 

terrane, comprising parts of the present-day South Kitakami, Hida Gaien, Paleo-Ryoke and Kurosegawa 

terranes made up of early and late Paleozoic sedimentary and volcanic series, as well as late Ordovician 

and Permian granitoids. As a result of subduction of oceanic lithosphere below this proto-Japan 

superterrane, early and late Paleozoic high-pressure metamorphic rocks and several subduction-accretion 

complexes of Permian age were formed. The subduction-accretion complexes contain fragments of ocean 

floor possibly as old as Cambrian (Oeyama ophiolite, Renge belt) and Late Devonian (early Famenian red 

chert lenses in basalt of the Hayachine belt in the northern margin of South Kitakami terrane (Hamano and 

others, 2002)). This points to prolonged subduction-accretion tectonism before the proto-Japan superterrane 
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collided with the East Asian active margin, formed by the eastern continuation of the CAOB. The timing of 

this collision is ill constrained but occurred before the intrusion of the 170-200 Ma-old Funatsu granites in 

the Hida belt, which can be correlated with similar middle Jurassic Daebo-type granitoid intrusions in 

Korea (Nakajima, 1997). The 250-220 Ma-old main metamorphism in the Hida belt (Arakawa and others, 

2000) may be related to the collision. Takeuchi (1994) noted a fundamental change in the source areas of 

sedimentary basins of South Kitakami and other terranes in Triassic-Jurassic boundary time. He regarded 

detritus in Jurassic sandstones as derived from medium- to high-grade metamorphic rocks. Such type of 

metamorphic rocks are only widespread in the Hida belt, suggesting deep erosion of the collision belt 

between the proto-Japan superterrane and the East Asian margin in early Jurassic time. 

Implications 

As outlined above, we view the evolution of suture zones and orogenic belts between the blocks 

that make up present-day China and surrounding areas in a two-stage tectonic scenario: 1. The early 

Paleozoic evolution occurred near the margin of East Gondwana, 2. The late Paleozoic geodynamic 

development and crustal evolution occurred within a framework for the accretionary building of the 

Eurasian continent. This explains the 200 million year time-span between the early accretion in the Ondor 

Sum subduction-accretion complex and the Late Permian age of the Solonker suture zone.  

Our two-stage model implies that a vast orogenic system existed along the Cimmerian margin of 

Gondwana, comprising an archipelago of sometimes colliding micro-continental fragments that were 

bordered by subduction-accretion complexes, island arcs or contained calc-alkaline volcanic margins. Part 

of these micro-continents may have been derived by rifting from the Australian part of the Gondwanan 

margin (for example, South China, Tarim, a number of Kazakh terranes, and Indochina), whereas others 

may have had a Siberian provenance before their peri-Gondwanan history (like North China; Li and 

Powell, 2001). This view implies that the early Paleozoic ultrahigh-pressure metamorphism that 

characterizes the early evolution of many of the Asian micro-continents occurred in a peri-Gondwana 

orogenic system. It is unclear in how far the early Paleozoic tectono-metamorphic evolution of the peri-

Gondwanan terranes is actually related to accretion to the Cimmerian margin. Accretion might have 

occurred following closure of a marginal basin that could have been created by the same extensional event 

that could have rafted continental fragments from the Gondwana margin. Cawood (2005) invoked such a 
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model for the early Paleozoic tectonic evolution of the Andean segment of the West Gondwanan margin.  

The tectonic evolution of the CAOB has certain parallels with those of the Variscan belt in Europe 

and the Appalachians in the eastern USA, which both contain much older micro-continental fragments that 

are derived from the margin of West Gondwana (Ziegler, 1989; Pickering and Smith, 1995), like for 

example, Armorica and Avalonia (figs. 10 and 11). These terranes experienced an important late 

Neoproterozoic to Early Cambrian crust-forming phase, may contain relics of volcanic island arcs and 

subduction-accretion complexes, experienced an Ordovician orogenic event prior to collision, and were 

separated from Gondwana at different times (Schaltegger and others, 2003; von Raumer and others, 2003; 

Murphy and others, 2004). 

A two-stage tectonic scenario in which the tectonic evolution related to accretionary building of 

Eurasia in latest Paleozoic to earliest Mesozoic time is preceded by earlier tectonic phases not directly 

related to this event can similarly explain ambiguities in the timing of the collision of the South and North 

China cratons. A number of authors (like for example, Gao and others, 1995; Chang, 1996; Yang and 

others, 2003; Liou and others, 2004; review by Roger and others, 2003) assumed that early Paleozoic 

tectono-metamorphic and magmatic events in the North Qinling belt might be due to episodic collision or 

collision phases between the North and South China cratons. However, Sun and others (2002a) pointed out 

that because the Late Silurian to Early Devonian metamorphism and magmatism have been recorded 

exclusively in the North Qinling belt and are absent in the South Qinling belt, it is not related to the 

collision between both cratons. Collision between the North and South China cratons in the (early) 

Permian, or even late Carboniferous, and that climaxed in the Late Triassic, associated with local ultrahigh-

pressure metamorphism in the South Qinling belt (for example, Zhai and others, 1998; Li and Powell, 

2001; Sun and others, 2002a, b; Roger and others, 2003; Liou and others, 2004), preceded by early 

Paleozoic accretion against these micro-continents in a peri-Gondwanan setting, seems to explain most of 

the available data.  

CONCLUSIONS 

 40Ar/39Ar dating of phengite has shown that dynamic recrystallization of quartzitic mylonite and 

ductile deformation in the higher part of the Ondor Sum subduction-accretion complex along the northern 
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margin of the North China craton occurred at about 450 Ma. That was about 200 Ma before the final 

closure of the Paleo-Asian Ocean and the formation of the Solonker suture zone. In all likelihood the 

oceanic sediments were free of older detrital mica, and unconsolidated and hydrated when they arrived at 

the trench and they were accreted and metamorphosed under fluid-sufficient conditions. Consequently, we 

argue that the 200 million year age difference was neither due to the incorporation of excess argon, which 

often plagues dating of this high-pressure mica, nor to the presence of older detrital mica. Instead, we 

propose that the Ondor Sum complex formed part of an early Paleozoic orogenic system that involved a 

number of drifting micro-continents fringed by subduction-accretion complexes and island arcs along the 

northeastern Cimmerian margin of Gondwana. This might have been preceded by an earlier evolution in 

the Paleo-Pacific Ocean. Northward drift of the detached North China craton and closure of the Paleo-

Asian Ocean by double subduction finally resulted in collision of the micro-continent with the southern part 

of the Central Asian Orogenic belt and Siberia, and the formation of the Solonker suture zone by the end-

Permian. This type of two-stage scenario probably also applies to the geodynamic evolution of other micro-

continents that currently form part of Asia due to collision in the late Paleozoic to early Mesozoic (South 

China, Tarim, a number of Kazakh terranes, Alashan, Qaidam, South and North Kunlun, Khanka, South 

Kitakami, and probably Indochina), and which were bordered by early Paleozoic subduction-accretion 

complexes, island arcs or contained calc-alkaline volcanic margins while located in the Cimmerian margin 

of East Gondwana. It might be possible that these events in some blocks have been preceded by an earlier 

evolution in Cambrian time associated with the subduction of the Paleo-Pacific Ocean below the Australia-

New Zealand-Antarctica continental margin of the Gondwana supercontinent. Finally, this two-stage model 

implies that an archipelago of micro-continents existed along the Cimmerian margin of Gondwana and that 

the early Paleozoic ultrahigh-pressure metamorphism that characterizes the early evolution of many of the 

Asian micro-continents occurred in this vast, peri-Gondwanan orogenic system. 
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APPENDIX A 

EXPERIMENTAL PROCEDURES 

40Ar/39Ar Dating 

Phengite separates were prepared from the 64-100 µm sieve fraction by means of handpicking 

under a binocular zoom microscope and subsequent ultrasonic cleaning in demineralized water for five 

minutes. The mineral separates were wrapped in high-purity aluminum foil and irradiated for 30 hours 

along with irradiation standard biotite LP-6 (Odin and others, 1982) in the VT-C position of the Tsing-Hua 

University Open-Pool Reactor, Taiwan. A weighted mean of five fusions of irradiation standard LP-6 

Biotite with a calibrated 40Ar/39Ar age of 128.4 ± 0.2 Ma, based on Fish Canyon Sanidine (28.02 ± 0.28 

Ma) (Baksi and others, 1996; Renne and others, 1998) resulted in an average J value of 0.003440063 ± 

0.000020617, which is used in the age calculations. The neutron flux gradient across the top and bottom of 

the irradiation canister was about 3.6%, as indicated by the variation of J values from the flux monitor.  

Irradiated phengite grains were loaded into a high-vacuum sample housing fitted with a sapphire 

UHV window, and were incrementally heated to fusion with a defocused, continuous ultraviolet (266 nm) 

laser beam. Experiments were monitored with a coupled Nikon SMZU microscope equipped with a CCD 

camera and a US laser up collimator/objective lens. The laser probe comprises a US laser 403TQ A.O. 

quadrupled Nd:YAG laser, an all-metal extraction line and a high resolution VG3600 noble-gas mass 

spectrometer, operated in static mode, and outfitted with a Nier-type 'Bright' ion source and a Johnston 

electron multiplier. Chemically active gases were removed with Zr-Al and Fe-V alloy getters operated at 

400°C. Each heating step lasted for 3 minutes followed by 1 minute of gettering. Extraction line blanks 

were measured at the start and finish of an experiment and repeated typically every third to fifth step.  

 Apparent 40Ar/39Ar ages of individual steps were calculated from the corrected isotopic ratios 

using decay constants and isotopic abundance ratios given by Steiger and Jäger (1977), and were corrected 

for blanks, isotopic decay and interference by irradiation-induced contaminant Ar-isotopes derived from 

Ca, K and Cl. The (36Ar/37Ar)Ca, (39Ar/37Ar)Ca, (40Ar/39Ar)K and (38ArCl/39ArK) ratios used in the corrections 

for irradiation-induced contaminant Ar-isotopes derived from Ca, K and Cl (determined from irradiated 
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aliquots of K2SO4, CaSO4 and KCl) are: 2.3992 (± 1.0487) x 10-4, 5.6997 (± 0.1649) x 10-4, 2.9393 (± 

0.2463) x 10-2 and 0.5183 (± 0.0530) respectively, with errors quoted on the 1σ level. Integrated dates were 

obtained from the sum total of the peak heights and their errors from the square root of the sum square of 

the peak-height errors for all steps. Regression lines in 36Ar/40Ar versus 39Ar/40Ar correlation diagrams were 

obtained by cubic least-squares fitting according to York’s 1969 procedure. Decay constant and isotopic 

abundance ratios used: 40Ktot = 5.543 x 10-10 a-1; 40K/K = 0.01167 atom % (Steiger and Jäger, 1977). A 

40Ar/36Ar of 292.4 ± 0.5 was measured on aliquots of air Ar. For further details on data correction and age 

calculations the reader is referred to Lo and Lee (1994).  
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Figure captions 

Fig. 1.  Tectonic map of Asia with the main terranes, the Central Asian Organic Belt, and the 

Solonker suture zone (string of black elongated dots, modified after Badarch and others 

(2002) and Xiao and others (2004b)). White star indicates Ondor Sum region; numbered 

stars locations discussed in the text: 1). Sergeevka ophiolite, 2). Jiamusi and Songliao-

Zhangguangcai blocks, 3). North Qinling belt, 4). Central Tianshan, 5). Western Kunlun 

range, 6). North Qilian Mountains, 7). Zhuguangshan batholith, 8). Song Chay complex, 9). 

Dai in Loc and Kontum massifs, 10). South Kitakami terrane, 11). Hida belt, with small 

stars: main occurrences of the Oeyama ophiolite and correlatives. K: Kyushu; H: Honshu. 

The boundary between South China and Indochina follows the Song Ma zone, allowing 

early Paleozoic sedimentary series (Findlay, 1998) and Permian Emeishan flood basalts 

(Chung and others, 1997) to be on the South China craton for the time slice considered. AT: 

Altyn Tagh fault; RR: Red River segment of the Ailao Shan-Red River shear zone. 

Modified after: Chang, 1996; Chung and others, 1997; Arakawa and others, 2000; Jahn and 

others, 2002; Ota and others, 2002; Wilde and others, 2000; Khain and others, 2003; Song 

and others, 2003; Jahn, 2004; Jia and others, 2004; Oh and others, 2005). Azimuthal equal-

area projection.  

Fig. 2.  Tectonic sketch map of central Inner Mongolia from which late Mesozoic-Cenozoic strata 

are omitted for clarity (modified after Xiao and others, 2003). Arrow indicates the sampling 

area in the Ulan Valley (fig. 3). 

Fig. 3.  Geological map of the Ondor Sum subduction-accretion complex in the Ulan Valley based 

on Xiao and others (2003), showing its main litho-tectonic units and structures. Samples for 

radiometric dating (phengite-bearing quartzite mylonites IM-2 and IM-5) and microprobe 

analysis (glaucophane-bearing foliated margin of meta-gabbro/leucogabbro IM-19) are 

indicated. Position indicated in figure 2. The position of the blow-up map of the contact 

between units 1 and 2 (fig. 5) is outlined.  
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Fig. 4.   Cartoon-like profiles demonstrating the tectonic evolution of the northern margin of the 

North China craton in Inner Mongolia (A. Cambrian-Late Ordovician; B. Ordovician-

Silurian) in the present-day geographic reference frame, modified after Xiao and others 

(2003). 

Fig. 5.  Detailed geological map of the contact zone between the pillow basalts of unit 1 (footwall) 

and the arc volcanic rocks of unit 2 (hanging wall) of the Ondor Sum subduction-accretion 

complex in the Ulan Valley. Position indicated in figure 3. 

Fig. 6.  Photomicrograph of boudinaged augitic (Aug) relics within a sodic-amphibole (Na-Amp) 

crystal in IM-19, the foliated margin of a meta-gabbro/leucogabbro. Note the filling of pull-

aparts by amphibole with a crossite composition. 

Fig. 7. Composition diagrams for sodic-amphiboles in meta-gabbro/leucogabbro IM-19 from the 

Ondor Sum subduction-accretion complex in the Ulan Valley. A. Na(M4) versus 

Al/(Al+Fe3+) for cores and rims of zoned amphibole crystals, B. Fe2+/(Fe2++Mg) versus 

Al/(Al+Fe3+) ratios for cores and rims of zoned amphiboles. For EPMA data, see table 1; for 

analytical details, see footnote to table 1. 

Fig. 8.  40Ar/39Ar age spectra of phengite from quartzite mylonite IM-2 obtained by step-heating of 

about 10 (IM-2a) and 20 (IM-2b) grains with a defocused laser beam. 

Fig. 9.  40Ar/39Ar age spectrum of phengite from quartzite mylonite IM-5 obtained by step-heating 

of about 90 grains with a defocused laser beam. 

Fig. 10.  Geodynamic reconstructions of the major lithospheric plates for the Late Ordovician 

(modified after Li and Powell, 2001). Positions of micro-continents (those discussed in the 

text are dark shaded) and subduction zones modified mainly after: Pickering and Smith 

(1995), Li and Powell (2001), Fortey and Cocks (2003), Torsvik and Cocks (2004). Ar = 

Armorica; Av = Avalonia; I = Indochina; NC = North China Craton; Q = Qaidam-Qilian 

block; SC = South China Craton; T = Tarim.  
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Fig. 11.  Geodynamic reconstructions of the major lithospheric plates for the Early Carboniferous 

(modified after Li and Powell, 2001). Positions of micro-continents (those discussed in the 

text are dark shaded) and subduction zones modified mainly after: Metcalfe (1998), 

Filippova and others (2001), Li and Powell (2001), Torsvik and Cocks (2004). Ar = 

Armorica; I = Indochina; Kaz = Kazakhstan; NC = North China Craton; Q = Qaidam-Qilian 

block; SC = South China Craton; T = Tarim. 



70 
 



71 
 

Table footnotes 

Table 1                
Representative mineral analyses Na-amphibole            
                

Gln Gln core rim core rim rim core rim rim core rim rim core rim 

wt%                
SiO2 55.94 57.27 56.62 55.93 54.80 55.67 55.08 56.67 56.40 55.58 56.25 57.11 56.50 56.17 54.92 
TiO2 0.00 0.02 0.03 0.06 0.10 0.03 0.20 0.01 0.00 0.01 0.07 0.09 0.13 0.19 0.12 
Al2O3 6.81 5.86 7.04 3.78 6.20 7.98 3.35 7.12 7.08 4.31 6.29 8.48 9.20 7.45 4.36 
FeO* 17.02 18.30 17.39 18.76 20.95 16.89 19.54 16.80 17.02 20.63 18.60 16.11 15.40 17.91 20.94 
MnO 0.15 0.19 0.16 0.19 0.15 0.22 0.25 0.19 0.12 0.21 0.11 0.09 0.15 0.15 0.23 
MgO 7.80 7.51 7.57 8.74 5.40 7.04 8.54 7.92 7.07 7.49 7.19 7.10 7.23 7.53 7.79 
CaO 0.87 0.43 0.87 1.37 0.37 0.50 1.73 1.17 0.46 0.94 0.47 0.27 0.57 0.63 1.77 
Na2O 6.72 6.61 6.31 6.14 6.83 6.74 5.99 6.27 6.88 6.42 6.72 6.78 6.81 7.09 6.42 
K2O 0.00 0.02 0.05 0.02 0.05 0.04 0.09 0.02 0.02 0.03 0.03 0.00 0.07 0.06 0.05 
Total 95.32 96.21 96.05 95.02 94.85 95.13 94.78 96.17 95.05 95.68 95.72 96.02 96.05 97.19 96.60 
                
pfu                
Si 8.084 8.195 8.098 8.140 8.107 8.049 8.095 8.088 8.182 8.095 8.118 8.131 8.052 7.988 7.979 
Al(IV) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.021 
Al(VI) 1.160 0.988 1.186 0.649 1.081 1.360 0.580 1.197 1.210 0.740 1.070 1.423 1.544 1.236 0.726 
Ti 0.000 0.002 0.004 0.007 0.011 0.004 0.023 0.002 0.000 0.001 0.007 0.009 0.014 0.021 0.013 
Fe3+ 0.518 0.647 0.586 0.894 0.599 0.481 0.915 0.529 0.345 0.957 0.649 0.342 0.256 0.576 0.901 
Fe2+ 1.539 1.543 1.494 1.390 1.993 1.561 1.487 1.476 1.720 1.557 1.596 1.576 1.580 1.554 1.644 
Mn 0.018 0.023 0.020 0.024 0.019 0.026 0.031 0.023 0.014 0.026 0.013 0.010 0.018 0.018 0.029 
Mg 1.681 1.601 1.613 1.897 1.191 1.518 1.871 1.685 1.530 1.626 1.546 1.507 1.536 1.595 1.687 
Ca 0.135 0.066 0.133 0.213 0.058 0.078 0.273 0.179 0.071 0.147 0.073 0.041 0.087 0.096 0.275 
Na(M4) 1.865 1.835 1.750 1.733 1.942 1.890 1.707 1.733 1.929 1.812 1.880 1.871 1.882 1.904 1.725 
Na(A) 0.018 0.000 0.000 0.000 0.017 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.052 0.084 
K 0.001 0.004 0.010 0.004 0.010 0.006 0.018 0.003 0.004 0.005 0.005 0.000 0.013 0.011 0.008 
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Total 15.019 14.904 14.892 14.950 15.027 14.975 14.998 14.915 15.011 14.965 14.958 14.912 14.982 15.063 15.092 
                
Alvi+Ti+Fe3+ 1.678 1.638 1.775 1.550 1.691 1.845 1.517 1.728 1.555 1.697 1.726 1.775 1.814 1.833 1.640 
XFe3+ 0.309 0.396 0.331 0.579 0.357 0.261 0.612 0.307 0.222 0.564 0.377 0.194 0.142 0.318 0.554 
Fe/Mg 0.916 0.963 0.926 0.733 1.674 1.028 0.795 0.876 1.124 0.957 1.032 1.046 1.028 0.974 0.975 
XMg 0.522 0.509 0.519 0.577 0.374 0.493 0.557 0.533 0.471 0.511 0.492 0.489 0.493 0.507 0.506 
A site 0.02 0.00 0.01 0.00 0.03 0.01 0.02 0.00 0.01 0.01 0.01 0.00 0.01 0.06 0.09 
                
Iron calculated as FeO cation (O=23)              

 
 
 
Tab. 1.  Representative electron probe microanalyses of sodic-amphibole (Na-Amp) in meta-gabbro/leucogabbro IM-19 from the Ondor Sum subduction-

accretion complex in the Ulan Valley. The analyses were made with a JEOL-8800 electron probe X-ray micro-analyzer (Department of Earth and 

Planetary Science, Tokyo Institute of Technology), operated at 15 kV with a beam current of 1.20 x 10-8 Å and a < 4 μm beam diameter.  
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 Phengite  Chlorite  Plagioclase   Dolomite-core Dolomite-rim
wt%   wt%  wt%   wt%   
  

SiO2 55.86  SiO2 28.64 SiO2 69.03  SiO2 0.05 0.96 
TiO2 0.00  TiO2 0.01 TiO2 0.00  TiO2 0.00 0.09 

Al2O3 21.93  Al2O3 17.23 Al2O3 19.38  Al2O3 0.19 0.44 
Cr2O3 0.03  Cr2O3 0.00 Cr2O3 0.00  Cr2O3 0.05 0.03 

Fe-Ox* 3.70  Fe-Ox* 21.95 Fe-Ox+ 0.03  Fe-Ox* 5.11 7.02 
MnO 0.00  MnO 0.43 MnO 0.00  MnO 0.95 1.10 
MgO 5.15  MgO 16.98 MgO 0.01  MgO 11.75 17.55 
CaO 0.05  CaO 0.06 CaO 0.06  CaO 34.80 29.62 

Na2O 0.04  Na2O 0.04 Na2O 10.71  Na2O 0.10 0.04 
K2O 11.51  K2O 0.09 K2O 0.05  K2O 0.00 0.00 

P2O5 0.00  P2O5 0.00 P2O5 0.00  P2O5 0.15 0.13 
Total 98.26  Total 85.45 Total 99.28  Total 53.15 56.98 
           
pfu   pfu  pfu   pfu   

Si 3.642  Si 6.293 Si 3.020  Si 0.021 0.340 
Ti 0.000  Ti 0.002 Ti 0.000  Ti 0.000 0.025 

Al(IV) 0.358  Al(IV) 1.705       
Al(VI) 1.327  Al(VI) 2.759       

Al 1.685  Al 4.464 Al 0.999  Al 0.088 0.183 
Cr 0.001  Cr 0.000 Cr 0.000  Cr 0.014 0.007 
Fe 0.202  Fe2+ 4.033 Fe3+ 0.001  Fe 1.686 2.075 

Mn 0.000  Mn 0.079 Mn 0.000  Mn 0.318 0.330 
Mg 0.501  Mg 5.564 Mg 0.000  Mg 6.916 9.246 
Ca 0.003  Ca 0.014 Ca 0.003  Ca 14.720 11.222 
Na 0.004  Na 0.017 Na 0.908  Na 0.074 0.024 
K 0.957  K 0.026 K 0.003  K 0.000 0.000 
P 0.000  P 0.000 P 0.000  P 0.051 0.040 

Total 8.681  Total 20.49 Total 4.935  Total 23.888 23.492 
           

Mg/(Fe+Mg) 0.713  Mg/(Fe+Mg) 0.58 An 0.308     
A site 0.965    Ab 99.369     

K/(K+Na) 0.995    Or 0.324     
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Fe-Ox* Iron calculated as FeO         
Fe-Ox+ Iron calculated as Fe2O3         
           
Phengite  cation (O=11)         
Chlorite cation (O=28)         
Plagioclase cation (O=8)         
 

Tab. 2.  Representative electron probe microanalyses of various minerals in meta-gabbro/leucogabbro IM-19 from the Ondor Sum subduction-accretion 

complex in the Ulan Valley. Abbreviations according to Kretz (1983); Phn: phengite. Analytical details, see footnote to table 1.  

 

 

Table 3  
40Ar/39Ar analytical data of phengite from IM-2  

  
power 

(watts) 
cum.39 Atm. % 36Ar/39Ar 37Ar/39Ar 38Ar/39Ar 40Ar/39Ar 40Ar/36Ar Age  

(Ma)
Error 

  
Laser step-heating IM-2a 10 grains  

0.04 0.098 0.2 0.000620 0.012820 0.142300 78.26 126200 429.0 5.0
0.06 0.210 0.4 0.001185 0.080930 0.013180 82.17 69370 447.3 5.4
0.09 0.321 0.8 0.002291 0.198100 0.011940 83.08 36260 450.2 6.8
0.12 0.387 0.5 0.001500 0.234300 0.013760 83.98 55990 455.7 6.0
0.15 0.515 0.2 0.000473 0.008534 0.011600 82.88 175300 451.7 5.4
0.21 0.639 0.5 0.001457 0.012630 0.012260 83.75 57480 454.6 5.0
0.24 0.721 0.4 0.001132 0.009586 0.012350 83.99 74200 456.2 5.6
0.27 0.778 0.7 0.002173 0.183500 0.015870 84.77 39010 458.5 7.8
0.48 0.842 0.8 0.002484 0.372000 0.014540 83.78 33730 453.4 5.0
0.67 0.904 0.5 0.001424 0.027380 0.014380 82.93 58230 450.6 5.2
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1.62 1.000 0.9 0.002686 0.034340 0.011590 83.18 30970 450.1 5.2
  
  

Laser step-heating IM-2b 20 grains  
0.02 0.059 2.0 0.00493 0.01806 0.19010 72.51 14710 394.4 7.6
0.05 0.138 2.1 0.00535 0.03831 0.01120 73.79 13800 400.2 5.2
0.09 0.207 1.3 0.00347 0.01717 0.01135 81.43 23490 440.4 5.6
0.12 0.313 0.3 0.00090 0.01125 0.01048 81.17 90180 442.8 5.4
0.15 0.370 1.4 0.00412 0.01636 0.00863 85.08 20650 457.2 6.4
0.19 0.437 0.8 0.00229 0.13870 0.00937 84.02 36660 454.7 7.0
0.22 0.496 0.3 0.00077 0.03814 0.01113 82.69 107300 450.4 6.6
0.25 0.533 0.7 0.00215 0.33010 0.01181 84.76 39360 458.6 7.8
0.29 0.571 4.1 0.01188 0.16160 0.01200 85.82 7224 449.8 6.6
0.32 0.635 0.4 0.00118 0.01872 0.01091 83.39 70850 453.2 5.0
0.35 0.715 1.0 0.00289 0.08763 0.01110 83.33 28850 450.5 5.8
0.39 0.782 0.5 0.00132 0.01772 0.01161 81.16 61640 442.2 5.0
0.43 0.856 0.7 0.00203 0.00315 0.01180 81.32 40100 441.9 5.4
0.53 0.883 2.3 0.00670 0.13430 0.01203 84.57 12620 451.1 17.6
2.00 1.000 0.8 0.00214 0.01404 0.01252 79.30 37090 432.0 5.2

  
  

grain cum.39 Atm. % 36Ar/39Ar 37Ar/39Ar 38Ar/39Ar 40Ar/39Ar 40Ar/36Ar Age  
(Ma)

Error 

  
Total Laser fusion  

1 0.090 0.7 0.00204 0.02230 0.00713 85.53 41880 462.3 6.6
2 0.160 7.6 0.02290 0.06805 0.01414 88.49 3865 446.9 7.8
3 0.295 0.4 0.00125 0.01491 0.00936 84.41 67320 458.0 5.2
4 0.421 1.0 0.00282 0.01589 0.00852 82.57 29270 446.9 5.0
5 0.533 1.0 0.00277 0.09582 0.00985 83.93 30280 453.6 5.4
6 0.661 2.0 0.00568 0.01567 0.01043 83.04 14610 445.1 5.2
7 0.776 4.2 0.01241 0.01814 0.01130 87.55 7054 457.3 5.6
8 0.843 0.2 0.00067 0.03113 0.00917 82.20 122600 448.2 5.2
9 0.958 0.1 0.00020 0.01818 0.00888 83.34 425500 454.4 6.2

10 1.000 1.5 0.00426 0.04947 0.00853 84.68 19860 455.0 8.8
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Tab. 3. 40Ar/39Ar analytical data of phengite from quartzite mylonite IM-2 from the Ondor Sum subduction-accretion complex in the Ulan Valley. a. Step-

heating experiment on about 10 (IM-2a) and 20 (IM-2b) grains. b. Total fusion of 10 single grains. 40Ar* is radiogenic argon from natural K-decay; 

37Ar, 38Ar, and 39Ar are Ca-, Cl- and K-derived argon during irradiation. Uncertainty for 40Ar* and 39Ar volumes is ± 5%.  

 

Table 4  
40Ar/39Ar analytical data of phengite from IM-5  

  
power 

(watts) 
cum.39 Atm. % 36Ar/39Ar 37Ar/39Ar 38Ar/39Ar 40Ar/39Ar 40Ar/36Ar Age  

(Ma)
Error 

  
a. Laser step heating 90 grains  

0.02 0.125 1.8 0.00431 0.00369 0.01313 70.18 16280 383.6 5.0
0.05 0.181 1.6 0.00417 0.00829 0.01408 77.69 18620 421.1 5.0
0.09 0.241 1.0 0.00271 0.00765 0.01316 82.63 30530 447.3 6.6
0.12 0.277 1.3 0.00368 0.01287 0.01307 84.44 22970 454.7 5.6
0.15 0.348 1.1 0.00292 0.00651 0.01249 81.45 27930 441.3 5.2
0.19 0.374 1.5 0.00434 0.01783 0.01071 84.59 19480 454.5 8.0
0.22 0.396 1.9 0.00558 0.02120 0.01294 84.74 15200 453.5 9.6
0.25 0.419 2.2 0.00626 0.02029 0.01179 83.68 13370 447.4 7.0
0.29 0.465 1.2 0.00329 0.01002 0.01227 83.51 25400 450.7 5.6
0.32 0.498 1.5 0.00413 0.01398 0.01275 82.40 19950 444.2 7.6
0.35 0.527 1.7 0.00485 0.01607 0.01252 83.59 17230 448.9 6.2
0.39 0.581 0.2 0.00059 0.00878 0.01298 81.38 138600 444.3 7.6
0.43 0.618 0.3 0.00083 0.00497 0.01367 82.56 98950 449.7 5.4
0.53 0.645 0.5 0.00136 0.01773 0.01344 82.43 60830 448.3 7.2
2.00 0.726 0.1 0.00026 0.00593 0.01209 80.39 309700 440.0 8.6
2.50 0.750 1.8 0.00507 0.01978 0.01273 83.63 16500 448.8 6.6
2.90 0.786 1.0 0.00279 0.01333 0.01237 83.58 29950 451.8 5.8
3.00 0.862 0.4 0.00099 0.00635 0.01078 80.83 81440 441.0 9.0
3.50 0.893 0.2 0.00048 0.01536 0.01185 83.55 174100 455.0 6.8
4.00 0.920 0.6 0.00159 0.01755 0.01261 83.88 52750 455.0 7.0
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4.50 0.968 0.8 0.00222 0.01000 0.01163 84.36 38020 456.4 5.2
5.00 1.000 1.0 0.00285 0.00603 0.01438 84.52 29670 456.2 7.6
5.50 0.421 1.0 0.00282 0.01589 0.00852 82.57 29270 446.9 5.0
6.00 0.533 1.0 0.00277 0.09582 0.00985 83.93 30280 453.6 5.4
6.50 0.661 2.0 0.00568 0.01567 0.01043 83.04 14610 445.1 5.2
7.20 0.776 4.2 0.01241 0.01814 0.01130 87.55 7054 457.3 5.6
8.00 0.843 0.2 0.00067 0.03113 0.00917 82.20 122600 448.2 5.2
9.00 0.958 0.1 0.00020 0.01818 0.00888 83.34 425500 454.4 6.2
9.90 1.000 1.5 0.00426 0.04947 0.00853 84.68 19860 455.0 8.8

  
  
  

grain cum.39 Atm. % 36Ar/39Ar 37Ar/39Ar 38Ar/39Ar 40Ar/39Ar 40Ar/36Ar Age  
(Ma)

Error 

  
b. Total Laser fusion  

  
1 0.152 7.3 0.02236 0.03831 0.01341 90.65 4055 458.0 6.8
2 0.438 2.5 0.00702 0.02037 0.01328 82.91 11810 442.5 5.8
3 0.651 17.5 0.05936 0.02739 0.01992 100.40 1692 452.3 6.4
4 1.000 5.9 0.01732 0.01669 0.01433 86.89 5016 447.1 6.0
  

          
 

Tab. 4.  40Ar/39Ar analytical data of phengite from quartzite mylonite IM-5 from the Ondor Sum subduction-accretion complex in the Ulan Valley. a. Step-

heating experiment on about 90 grains. b. Total fusion of 4 single grains. 
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Table 5  
 

  

sample experiment Age and error (Ma) MSWD 40/36 ratio

   

IM2 Total fusion 10 grains Weigted mean 452.8 ± 5.0 

  Inverse Isochron 450.4 ± 3.3 4.4 345 ± 25
   

IM2-a Stepheating 10 grains Weigted mean all steps 450.1 ± 4.8 

  Plateau ages (79% 39Ar release) 453.2 ± 1.9 0.9

  Inverse Isochron plateau steps 446.8 ± 10.8 6.3 470 ± 50

   

   
IM2-b Stepheating 20 grains Weigted mean all steps 442.4 ± 4.8 

  Plateau ages (46.6% 39Ar release) 453.2 ± 2.4 1.1

  Inverse Isochron plateau steps 407.3 ± 49.4 0.3 450 ± 30

   

   

IM5 Total fusion 4 grains Weigted mean 448.6 ± 5.2 

 Stepheating 90 grains Weigted mean all steps 438.4 ± 4.8 

  Plateau ages (57.3 % 39Ar release) 449.4 ± 1.8 1.5

  Inverse Isochron plateau steps 449.3 ± 6.4 0.3 344 ± 31

   
 
 

Tab. 5.  Summary of the 40Ar/39Ar age results of phengite IM-2 and IM-5. MSDW = SUMS/(n-2), 

with SUMS = minimum weighted sum of residuals; n = number of points fitted. (40/36)i 

inverse of the 36Ar/40Ar intercept in an isotope correlation diagram, that is the composition 

of the trapped component.  
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Terrain/Belt Tectonic units Minerals Rocks Method Ages (Ma) References 

Kazakhstan 
and Junggar 

Tangbale 
ophiolite 
mélange 

sodic 
amphibole blueschist Ar/Ar 458 to 470 Zhang, 1997 

 
Chara 
ophiolite belt phengite blueschist K-Ar  440-445 

Buslov and others, 
2001 

 
Chara 
ophiolite belt 

K-white 
mica 

garnet 
amphibolite K-Ar  429-437 

Buslov and others, 
2001 

 
Chara 
ophiolite belt phengite 

blueschist in 
serpentinite 
mélange Ar/Ar 

449 ± 1 and 
450 ± 5 

Volkova and others, 
2005 

 
Chara 
ophiolite belt barroisite 

blueschist in 
serpentinite 
mélange Ar/Ar 

449 ± 6 and 
450 ± 3 

Volkova and others, 
2005 

Russia Far East 
Sergeevka 
terrain zircon metagabbro TIMS U-Pb 528 ± 3 

Khanchuk and others, 
1996 

 
Sergeevka 
terrain zircon foliated diorite TIMS U-Pb 504 ± 3 

Khanchuk and others, 
1996 

 
Sergeevka 
terrain zircon granite TIMS U-Pb 493 ± 12 

Khanchuk and others, 
1996 

 
Sergeevka 
terrain 

K-white 
mica  granite Ar/Ar 492 ± 2 

Khanchuk and others, 
1996 

 
Sergeevka 
terrain hornblende metagabbro K-Ar 430 to 470 

Ishiwatari and 
Tsujimori, 2003 

Jiamusi block 
(Northeast 
China) 

Mashan 
complex zircon gneiss, schist 

U-Pb and Pb-
Pb SHRIMP 

496 ± 8 to 
507 ± 12 Wilde and others, 2001

North Qinling 
Belt 

northern zone 
lower Qinling 
unit zircon (rim) 

diamond 
eclogite SHRIMP U-Pb

482 ± 6 to 
560 ± 9 Yang and others, 2003 

South Qinling 
Belt Dabieshan garnet 

Bixiling 
eclogites Ar/Ar plateau 

427 ± 20 to 
444 ± 10 Qiu and Wijbrans, 2006

 Dabieshan garnet 
Bixiling 
eclogites Ar/Ar isochron

448 ± 34 to 
459 ± 58 Qiu and Wijbrans, 2006

 
northwest 
Dabieshan zircon  

Xiongdian 
eclogites SHRIMP U-Pb

400 ± 2 to 
424 ± 5 Yang and others, 2003 

North 
Tianshan Belt 

Makbal coesite 
eclogite paragonite  

paragonite 
eclogite K-Ar 482 ± 5 Tagiri and others, 1995

Central 
Tianshan Belt Bayinbulak zircon granite TIMS U-Pb 421 ± 11 Han and others, 2004 

 
Kumux/Kumu
shi zircon granite TIMS U-Pb 457 ± 2 Han and others, 2004 

 Yeyungou zircon granite TIMS U-Pb 475 ± 3 Han and others, 2004 
 Hongliuhe zircon granodiorite TIMS U-Pb ca. 440 Li and others, 2001 

 Weiya  
retrograde 
amphibole granulite Ar/Ar plateau 432 ± 1 Shu and others, 2004 

Kunlun Belt Kudi terrain hornblende gneiss Ar/Ar 452 ± 5 Xiao and others, 2003 
 Kudi terrain biotite gneiss Ar/Ar 428 ± 2 Xiao and others, 2003 
North Qilian 
Belt 

Yeniutan 
granodiorite zircon granodiorite TIMS U-Pb 460 ± 3 Mao and others, 2000 

 

Xiaoliugou 
granodiorite 
stock molybdenite skarn 

Re-Os 
isochron 462 ± 13 Mao and others, 1999 

 Baiyin zircon basalt TIMS U-Pb 475 ± 10 Wang and others, 2005
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volcanic rocks 

 
Baiyin 
volcanic rocks zircon rhyolite TIMS U-Pb 453 ± 12 Wang and others, 2005

 
Baiyin 
volcanic rocks zircon rhyolite SHRIMP U-Pb 446 ± 3 Wang and others, 2005

 
Yanjiadian 
diorite zircon diorite SHRIMP U-Pb 441 ± 10 Zhang and others, 2006

 
Caochuanpu 
granite zircon granite SHRIMP U-Pb 434 ± 10 Zhang and others, 2006

North Qaidam-
Altun Eclogite 
Belt Yuka eclogite amphibole eclogite Ar/Ar 477 ± 8 Zhang and others, 2005
 Yuka eclogite phengite eclogite Ar/Ar 466 ± 5 Zhang and others, 2005

 
Xitieshan 
eclogite amphibole eclogite Ar/Ar 407 ± 4 Zhang and others, 2005

South China 
craton (China) 

Zhuguangshan 
batholith zircon granite TIMS U-Pb 427 ± 3 Roger and others, 2000

 
Zhuguangshan 
batholith zircon granite TIMS U-Pb 434 ± 2 Roger and others, 2000

South China 
craton 
(Vietnam) 

Song Chay 
complex zircon granite TIMS U-Pb 428 ± 5 Roger and others, 2000

 Dai Loc massif zircon gneiss SHRIMP U-Pb 407 ± 11 Carter and others, 2001
 Dai Loc massif zircon gneiss SHRIMP U-Pb 418 ± 8 Carter and others, 2001
 Kontum massif zircon charnockite SHRIMP U-Pb 444 ± 17 Carter and others, 2001

 Kontum massif zircon gneiss SHRIMP U-Pb 436 ± 10 

S.L. Chung, unpubl. 
data in: Lan and others, 
2003 

 Kontum massif zircon granodiorite TIMS U-Pb 451 ± 3 Nagy and others, 2001 

Japanese Belts 

Osayama 
serpentinite 
mélange hornblende metagabbro K-Ar 470-400 

Tsujimori and Liou, 
2005 

 

Osayama 
serpentinite 
mélange zircon blueschist  SHRIMP U-Pb 472 ± 9 

Tsujimori and Liou, 
2005 

 
Renge belt, 
Kyushu hornblende metagabbro Ar-Ar fusion ca. 450 

Tsujimori pers comm, 
2005 

 
South 
Kitakami belt hornblende 

Miyamori 
ophiolite K-Ar 445-485  

Ishiwatari and 
Tsujimori (2003) 

 
South 
Kitakami belt hornblende 

Matsugadaira-
Motai 
blueschist K-Ar 480-525  

Ishiwatari and 
Tsujimori (2003) 

 
South 
Kitakami belt hornblende 

tonalite dyke 
in schist K-Ar 457  

Ishiwatari and 
Tsujimori (2003) 

 
South 
Kitakami belt zircon 

Daiouin 
granitoids SHRIMP U-Pb 491 ± 6 

Sakashima and others 
(2003) 

 
paleo-Ryoke 
belt zircon 

Hikawa 
granitoids  SHRIMP U-Pb 503 ± 10 

Sakashima and others 
(2003) 

 

Tab. 6.  TIMS = Thermal Ionization Mass Spectrometry; SHRIMP = Sensitive High-Resolution Ion 

MicroProbe. 
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