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Abstract 

1. Cutover peatlands are valuable as habitat for rare species and as carbon sinks. 

However, assessing peat accumulation is complicated. Approaches such as 

using biological and physico-chemical indicators may represent an alternative 

for managers.  

2. In order to assess the potential of biological and physico-chemical parameters 

as restoration indicators, we studied the organic matter (OM), testate amoebae 

and bacteria in peat profiles from a cutover bog. We selected four regeneration 

stages and an unexploited area of the same peatland. Living Sphagnum was 

analysed for testate amoebae. Physico-chemical parameters were analysed on 

near-surface peat profiles. 

3. Contrasting micromorphological and biochemical signatures of peat OM were 

observed along the profiles. Regenerating and natural peat profiles differ with 

respect to C/N ratio and OM degradation.  

4. The OM composition of the newly regenerated peat also differed along the 

regeneration sequence. Peats from the recent regenerated sites were dominated 

by Sphagnum-derived tissues and were characterised by lesser carbohydrate 

preservation and a high bacterial biomass in comparison to the peat from older 

regenerating sites which showed a heterogeneous botanical composition and 

lower bacterial biomass. 

5. Moss OM inputs are characterised by hemicellulosic mannose and galactose, 

while sedge inputs are characterised by hemicellulosic xylose and arabinose. 

Additional indicators of OM alteration included the differential biodegradation 

of cellulose and hemicellulose. 
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6. Testate amoeba communities changed from the early to the advanced stages of 

regeneration suggesting a shift from wet and mesotrophic conditions to drier 

and more acidic conditions. Species richness and diversity increased but 

density declined from the early to the late regeneration stage and the 

unexploited site. Biomass and the average size of species declined over the 

regeneration sequence but were higher in the unexploited site. 

7. The spontaneous secondary succession in the studied cutover bog leads to an 

ecosystem similar to that of the intact reference site in terms of community 

structure while OM characteristics and testate amoebae continue to reflect 

disturbances associated with peat harvesting. This combination of biological 

and physico-chemical indicators provides a complete assessment of the 

present and recent past ecological conditions. Such an approach has practical 

applications for the management of cutover peatlands. 
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INTRODUCTION 

Regenerating peatlands may act as carbon sinks, and can be important for rare and 

endangered species (Chapman et al. 2003). Therefore much effort is now directed to 

encourage the re-establishment of peat-forming vegetation and especially Sphagnum 

mosses (Grosvernier, Matthey & Buttler, 1995; Gorham & Rochefort 2003; Lavoie et 

al. 2003). However, the outcome of these restoration efforts with respect to carbon 

balance remains difficult to predict and, in many cases, local conditions may not 

allow net accumulation of carbon to occur (Francez, Gogo & Josselin 2000; McNeil 

& Waddington 2003).  

Most of the work on carbon dynamics in peatlands has been approached by 

measurements of processes occurring either on the surface or in the peat, in most 

cases by estimating surface fluxes of CO2 and CH4 (Harriss et al. 1985; Knowles & 

Moore 1989; Moore & Knowles 1989; McNeil & Waddington 2003). There has been 

relatively little attempt to examine key processes occurring at depth. Little is known 

about the quality of the organic matter (OM) and the characteristics of the microbial 

communities responsible for its biochemical transformation, in natural peatlands in 

general, and especially in cutover sites. Studies suggest that these aspects have 

important implications for the functioning of the ecosystem. Indeed, the physio-

chemical and botanical properties of the underlying peat were shown to strongly 

affect (i) the growth of Sphagnum mosses (Grosvernier, Matthey & Buttler 1997; 

Buttler, Grosvernier & Matthey 1998), and (ii) gas fluxes to the atmosphere (Buttler, 

Dinel & Lévesque 1994; Charman, Aravena & Warner 1994), while microbial 

communities were shown to respond to ecological gradients as well as ecosystem 
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perturbations such as N input or elevated atmospheric CO2 concentrations (Gilbert et 

al. 1998a,b; Mitchell et al. 2003).  

Clearly, in order to refine management strategies for cutover peatlands, more 

information is needed on (1) the patterns of changes in the community structure of 

different taxonomic groups and in the physico-chemical characteristics of the peat 

OM and (2) the processes controlling long-term carbon sequestration during peatland 

regeneration. These are two of the main goals of the EU-funded project RECIPE 

(Reconciling commercial exploitation of peat with biodiversity in peatland 

ecosystems) (Chapman et al. 2003). Our focus here is on testate amoebae (Protista), 

bacteria, and biochemical characteristics of peat OM. These indicators are generally 

not considered together in peatland restoration studies, but they may react faster than 

other indicators to the changes occurring during peatland regeneration and are likely 

to provide valuable information on processes occurring in the soil (Warner & 

Chmielewski 1992; Chapman et al. 2003). 

We studied abiotic and biotic aspects of peat in a suite of secondary plant 

communities situated on a cutover peatland in the Swiss Jura Mountains: 1) the depth-

related changes of biochemical and micromorphological characteristics of peat OM, 

2) the bacteria C biomass at different depths, and 3) the abundance, diversity, and 

community structure of testate amoebae living in the Sphagnum mosses at the surface. 

Our aims were to assess how these different variables were correlated and to identify 

specific indicators of changes in the structure or the functioning of the ecosystem. 

Because of the clear changes that can be observed directly from the structure of the 

vegetation along the regeneration sequence, we hypothesised that both the 

accumulated OM and the related microbial indicators would also differ, but we could 
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not predict how the different data sets might compare and to which extent they would 

reflect ecosystem recovery.  

MATERIAL AND METHODS 

Study site and sampling 

La Chaux d’Abel, a cutover peatland in the Jura Mountains, Switzerland (47.09°N, 

6.56°E; altitude 1,020m a.s.l.), was sampled in November 2001. The mean annual 

precipitation and temperature is 1463mm and 6.4°C respectively. The site was 

abandoned after active peat cutting ceased in 1963 with only a small area remaining 

intact. Subsequently, spontaneous regeneration took place and, at present, mosse and 

vasculat plant communities have developed for variable lengths of time on different 

parts of the site (Matthey 1996). Five sites were selected as representative of natural 

and secondary plant communities in cutover peatland of the region: a wet fen 

community representing an early regeneration stage (sites 1 & 2), a transitional zone 

between the fen and the bog (site 3), an advanced regeneration stage (with scattered 

trees) in the bog (site 4), and as a reference, an unexploited area in the same peat bog 

(hereafter coded “unexploited”) (Table 1).  

Three replicate peat cores, 13 cm in diameter were extracted in each community 

adding up to a total of 15 cores. The 60 to 70 cm long cores were cut into 2 cm thick 

slices. One part of each subsample was used for chemical analyses after air drying and 

pulverising into a powder and kept at 4°, and the other part destined to 

micromorphology and bacteria analyses was fixed in a 2% glutaraldehyde solution 

and kept at 4°C. The uppermost 3 cm of living plants were analysed for testate 
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amoebae, whereas OM and bacteria analyses were conducted on the whole profile 

(10-13 samples per profile). 

Laboratory and data analyses 

Testate amoebae 

Testate amoebae were extracted from the samples by sieving on 20 µm and 300 µm 

mesh (Hendon & Charman 1997). All shells, live, encysted, and dead shells were 

identified and counted under microscope at 200X and 400X magnifications. 

Biovolumes of each living (active and encysted) species were estimated by assuming 

geometrical shapes and converted to carbon using the conversion factor: 1 µm3 = 0.11 

5 10-6 µgC (Weisse et al. 1990). Nomenclature for testate amoebae follows the latest 

edition of the illustrated guide to the protozoa (Meisterfeld 2000a,b).  

We compared the sampling sites for a set of five general variables derived from 

the testate amoebae data: total density (living + dead), percentage of living species, 

carbon biomass, species richness, and the Shannon-Wiener diversity index (H’, using 

the base 2 logarithm). The average values were compared using an ANOVA followed 

by comparison of all pairs (Turkey-Kramer HSD). To assess how communities 

change during the regeneration sequence, we inferred the water table depth (WTD) 

and pH using a transfer function based on a data set from an earlier study in the same 

region (Mitchell et al. 1999; Mitchell et al. 2001). The calculations were performed 

using the software WA-CALIB (Line, ter Braak & Birks 1994). The resulting values 

were used to draw a plot of inferred DWT vs pH for the samples. 
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Bacterial density  

Bacteria were stained with DAPI (4,6 diamino 2 phenylindol), filtered on 0.2 µm 

black membrane filters and examined by epifluorescence microscopy at 1000X 

magnification for all peat levels. The image was recorded using a digital camera. 

Bacteria numbers and sizes were estimated on a minimum of 10 random fields for 

each sample. Bacterial biovolumes were estimated by assuming geometrical shapes 

and converted to carbon using the following conversion factor: 1µm3 = 5.6 x 10-7 µgC 

(Bratbak 1985). 

Organic matter: C, N, Micromorphological and sugar analyses 

Total carbon and nitrogen were determined by combustion at 1100°C with a CNS 

LECO 2000 apparatus on dried and crushed samples. Because of the absence of 

inorganic carbon (carbonates) the determined total C represents Total Organic Carbon 

and was used for C/N calculation.  

Identification and quantification of peat constituents were carried out under 

transmitted light microscope. Bulk peat samples were mounted as smear slides and 

examined at 20 and 50X magnification. The surfaces covered by the main organic 

micro-remains were estimated with a grid reticule in the eyepiece of the microscope. 

A total of 3000 to 5000 items per sample were counted to calculate relative 

frequencies with an estimated error of about 10% (Noël 2001).  

A detailled procedure for sugar analysis is given in Comont, Laggoun-Défarge 

& Disnar (2006). Briefly, two aliquots (ca. 100 mg) of a given sample are hydrolysed 

(4 hrs at 100°C) in 1.2 M H2 SO4 solution, one after previous soaking with 24 N H2 

SO4 (12 hrs at room temperature) but not the other. After hydrolysis and adequate 

sample treatment, individual sugars are silylated and quantified by gas 
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chromatography using an internal standard, the individual compound response 

coefficients being determined independently with a mixture of eight common 

monosaccharides. The two hydrolyses release the total and the hemicellulosic sugars, 

respectively. The cellulosic sugars are determined by difference. Replicate analyses 

gave an analytical precision of 10% to 15%. Sugar analyses were first conducted on 

the characteristic peat-forming plants sampled from Le Russey peatlands, in the 

French Jura, about 15 km away from the study site (Comont, Laggoun-Défarge & 

Disnar 2006). The variation in the composition of hemicellulose from one species to 

another provided plant-source signatures: xylose and arabinose for E. vaginatum and 

E. angustifolium; mannose for P. strictum, and rhamnose and galactose for S. fallax. 

These specific signatures were then used in this study to reconstruct past vegetation 

changes in the underlying peat. 

RESULTS  

Testate amoebae  

A total of 22 testate amoebae taxa were encountered in this study (Table 2). The 

overall average and detail for each site for species richness, H’ diversity, percentage 

of living and encysted individuals, density and C biomass are given in Table 3.  

Significant differences in species richness were found among the five sites. The 

highest species richness was found in sites 3 and the unexploited site, while site 4 had 

an intermediate diversity and the two early succession sites (1 and 2) had low species 

richness (Table 3). The pattern of diversity as measured using the Shannon-Wiener H’ 

index is similar to that of species richness: H’ diversity were lower at sites 1 and 2 of 



 10

the regenerating sites compared to values from sites 3 and 4 and the unexploited site 

(Table 3).  

The percentage of living and encysted testate amoebae was higher in sites 1 and 

2 (63-64%) than in the other three sites (49-52%), but this difference was not 

significant. The highest overall testate amoeba densities were observed in sites 1 and 

2, and to a lesser extent site 3. The C biomass was significantly higher in sites 1 and 2 

than in the other three sites. The lowest C biomass was recorded in site 4, which was 

significantly lower than that of the unexploited site (Table 3). The differences 

between the density and C biomass results are due to the change in community 

structure between sites 1 and 2 vs. sites 3 and 4: smaller species such as Assulina 

muscorum and Nebela tincta increased at the expense of the larger Hyalosphenia 

papilio. The significantly higher biomass recorded in the unexploited site is due to the 

presence of large species (e.g. Bullinularia indica, Arcella catinus) and the dominance 

of medium-sized taxa (Nebela tincta, N. tincta var. major, Assulina seminulum and 

Helopera sylvatica).  

Clear differences in testate amoebae communities were found along the 

regeneration sequence (Fig. 1). The early stages are dominated by Hyalosphenia 

papilio, a species indicative for wet conditions in the Jura peatlands (Mitchell et al. 

1999). In the intermediate stage, Archerella flavum (synonym: Amphitrema flavum) 

an indicator of wet, acidic and oligotrophic conditions in the region (Mitchell et al. 

1999), reaches its highest relative abundance and two indicators of drier and more 

acidic conditions, Nebela tincta, and Assulina muscorum increase in abundance. 

Advanced stages are dominated by Nebela tincta, Assulina muscorum and another dry 

and acidic indicator Corythion dubium (Mitchell et al. 1999). In the water table depth 

x pH biplot where the values for each samples were calculated based on the testate 
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amoeba community data using a transfer-function the samples are aligned from the 

initial to intermediate and advanced succession stages suggesting a continuous trend 

towards drier and more acidic conditions (Fig. 1). Illustrations of the key testate 

amoeba indicator species are given in Fig. 4. 

Bacteria 

Overall, bacterial density and biomass averaged 4.84 x 1010 cells and 1.24 mgC.g-1 dw 

of peat respectively, and were not significantly different among the five sites. 

Bacterial biomass tended to decline from the young to the advanced regeneration 

stages, but this trend was not significant (Fig. 2). Biomass decreased with depth in the 

top 40 cm in the early regeneration stages (respectively 1.91, 1.44 and 1.91 in the 

upper 25 cm and 0.81, 1.13 and 0.61 mgC.g-1 dw in the peat below 25 cm depth in 

sites 1-3), while it was stable with a rise at the lower level for the late regeneration 

stage (site 4) and the unexploited zone. As a consequence of these vertical patterns, 

bacterial biomass was significantly higher in the upper peat (top 25 cm) of sites 1-3 

than in the upper peat of site 4 (ANOVA with Fisher’s protected least square 

differences, respectively P=0.0009, P =0.029 and P =0.002), and in the upper peat of 

sites 1 and 3 as compared to the upper peat of the unexploited site (resp. P=0.018 and 

P=0.025). In the lower sections of the cores by contrast the difference were no longer 

correlated to the regeneration sequence. However, bacterial biomass was positively 

correlated to the C/N ratio and the relative percentage of Sphagnum remains in the 

peat (Fig. 3). 



 12

Peat organic matter 

Carbon and nitrogen contents  

Overall, total organic carbon contents are high (ranging between 40 and 51%). In the 

unexploited zone, the profiles of C/N ratios vary little with depth (60 to 80), except at 

20-25 cm and 48-62 cm depth where they significantly decrease (30 to 40) revealing 

thus either a higher OM degradation and/or changes in the OM sources (Fig. 3). By 

contrast, in the two formerly exploited zones (sites 1 and 4), they show a contrasted 

pattern between two sections: the upper one (0 to ≈ 25 cm depth) corresponding to the 

“new” regenerated peat and below, the “old” catotelm peat (Fig. 3). The latter horizon 

is characterised by rather low C/N ratios (20 to 30, especially in site 1) unlike the 

regenerated peat where the ratios are much higher (60 to 100).  

Micromorphological characteristics 

Characteristic tissues deriving from vascular plants, particularly from Cyperaceae 

(Fig. 4g) and mosses (Fig. 4h-j) have been identified and counted in the peat samples. 

Most of the Sphagna- and Polytrichum-derived tissues found in the peat consist of 

characteristic leaf cell walls (Fig. 4i-j-h). Two classes of tissues (well-preserved and 

degraded) depending on their alteration biostructure degree (Fig. 4g-j; 4k-o). 

Amorphous OM flakes (Fig. 4l-o) present in various proportions consist of a complete 

amorphisation of the cell walls. Another “amorphous” component, namely the 

mucilage (Fig. 4k,n&o) is also present as slimy and translucent substances with no 

internal structure. This component is more likely derived, at least partly, from in situ 

microbial syntheses of bacteria, fungi and/or plant roots (Decho 1990; Défarge et al. 

1996; Laggoun-Défarge et al. 1999). Many tangled masses of melanised fungal 

hyphae (Fig. 4o) often associated with decayed plant rootlets are also present in the 
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so-called “old” peat. The microorganisms (Fig. 4a-f&j)  are mostly represented by 

algae, testate amoebae, and more rarely, diatoms, shells of the bdelloid rotifer 

Habrotrocha angusticollis often found in peat. 

As for the C/N ratios, the depth evolution of the relative abundance of the 

organic micro-remains shows contrasting signatures between the profiles (Fig. 3): in 

the unexploited zone peat OM is exclusively composed of morphologically well-

preserved, and to a lesser extent degraded tissues mainly derived from Sphagnum 

mosses, except in the two levels (20-25 cm and 48-62 cm depth) where the C/N ratios 

significantly decrease which are characterised by (i) a higher degradation as revealed 

by the abundance of structure-less plant tissues, amorphous OM and mucilage and (ii) 

the occurrence of well-preserved Cyperaceae tissues. The OM composition in these 

two levels may highlight events such as natural and/or anthropogenic drainage phases, 

which would have allowed the establishment of specific vascular plants such as 

sedges. Peat OM composition of the profiles from the formerly exploited sites (1 and 

4, Fig. 3) confirms also the C/N results. Two sections are distinguished, a deeper 

“old” peat characterised by strong OM degradation as shown by high amounts of 

amorphous OM, structure-less plant tissues and mucilage, and an upper “new” 

regenerated peat composed mainly of well-preserved plant tissues. According to the 

regeneration stage, the “new” peat shows different OM compositions: in site 1 being 

exclusively composed of Sphagnum mosses, while its composition is more 

heterogeneous in the later regeneration stage (site 4) (Fig. 3a & b). 

Sugar contents and distributions  

The results of sugar analyses from characteristic peat-forming plants previously 

reported (Comont, Laggoun-Défarge & Disnar 2006) are summarised in Table 4. The 
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quantitative and qualitative evolution of peat carbohydrates in the peat profiles of the 

two regeneration stages (sites 1 and 4) and the unexploited zone are presented in Fig. 

5.  

In site 1 (and to a lesser extent in site 4), the depth-related changes in total sugar 

yields allows two peat sections to be distinguished along the profiles: the uppermost 

peat (0 - 20/25 cm depth) contains high sugar contents (250 to 400 mg.g-1) which are 

in the same range as those found in the living plants: 282, 326, 400 and 357 mg.g-1 for 

E. angustifolium, E. vaginatum, P. strictum and S. fallax respectively (Comont, 

Laggoun-Défarge & Disnar 2006). By contrast, in the underlying peat sugar yields 

strongly decrease down to ca. 70 mg.g-1 in site 1 and ca. 160 mg.g-1 in site 4 where 

they re-increase up to 300 mg.g-1 at the bottom of the latter profile (Fig. 5). In the 

unexploited site, the amounts of sugars progressively decrease with increasing depth 

(from 327 to 200 mg.g-1), except at 20-25 cm and 48-62 cm where they slightly 

decrease to 200 and 147 mg.g-1 respectively.  

In the whole profiles, total hemicellulose contents are higher than those of total 

cellulose sugars (Fig. 5). Moreover, it is worth noting that a greater discrepancy 

between their amounts occurs only in the upper sections of sites 1 and 4 (ca. 200 to 

300 mg.g-1 for hemicelluloses versus ca. 50 to 100 mg.g-1 for cellulose, respectively). 

However, both in the deeper peat and all along the unexploited site profile they show 

similar patterns (Fig. 5).  

The relative percentages of individual hemicellulose sugars (wt%) also show 

different features when comparing the three profiles. At sites 1 and 4, mannose, and to 

a lesser extent, galactose and rhamnose, are present in a relatively high proportion in 

the surface peat (< 20 cm; % of mannose up to 40% at site 4). In contrast, xylose and 

arabinose concentrations, which are relatively low in this peat section, significantly 
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increase below (section 20-45 cm depth) (Fig. 5). At the unexploited site, relative 

hemicellulose sugar contents show almost constant values along the profile, except (i) 

at 20 cm depth where rhamnose and mannose slightly decreases and increases 

respectively and (ii) at ca. 32 cm depth where xylose significantly increases.  

DISCUSSION 

To our knowledge this is the first study to compare how microbial, biochemical and 

micromorphological indicators vary on a cutover peatland where the surface is in 

different stages of regeneration. Both biological and physico-chemical indicators are 

consistent in showing clear differences between the profiles from the unexploited part 

of the peatland and those from its regenerating parts.  

Testate amoebae and bacteria indicators: 

Testate amoebae can be identified to the species level and can be related to regional 

ecological calibration data sets developed for paleoecological studies (Charman & 

Warner 1992; Charman 1997; Booth 2001, Charman 2001; Booth 2002; Lamentowicz 

& Mitchell 2005; Payne et al. 2006). This constitutes a clear advantage for testate 

amoebae as management tools for peatland resources (Mitchell, Charman & Warner 

In press). The quantitative inference of water table depth and pH based on testate 

amoebae indicators represents an alternative to labour-intensive repeated 

measurements of these variables in the field (Charman et al. 2004).  

Nevertheless, to date testate amoebae have only rarely been included in studies 

of cutover peatland regeneration (Buttler et al. 1996; Davis & Wilkinson 2004). In a 

study of naturally regenerating cutover bogs in the Jura Mountains, Buttler et al. 

(1996) observed that testate amoebae responded fast to changes occurring at the 
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surface. They observed a convergence of vegetation and testate amoeba community 

structure in the late regeneration stage, regardless of the initial conditions.  

Beyond quantitative estimates in water table depth and pH, we observed clear 

differences in species richness, diversity, density, biomass and average species size. 

Species richness and diversity increased but density declined from the early to the late 

regeneration stage and the unexploited site. The increasing species richness and 

diversity from the early to the more advanced stage are in agreement with the patterns 

of community assembly of various groups of organisms during primary or secondary 

succession (Odum 1971). However, recent studies of testate amoeba diversity and 

community structure in chronosequences and relationships between plant and testate 

amoeba diversity showed contrasting responses sugesting that testate amoebae my not 

respond like larger organisms ( Ledeganck, Nijs & Beyens 2003; Wanner & Xylander 

2005). In the cutover peatland secondary succession sequence we found shifts in 

community composition and not simply an addition of new taxa as observed by 

Wanner & Xylander (2005) in sand dunes. However, peatlands are different from 

sand dunes or mineral soils in their evolution. It can be assumed that the changes in 

ecological conditions (e.g. moisture and pH) associated with the development of a 

new, actively growing peat layer acts as a strong ecological filter that prevent early 

colonisers from maintaining themselves in the community.  

Biomass and the average size of species declined over the regeneration 

sequence but were higher in the unexploited site of La Chaux d’Abel peatland. These 

changes also agree well with the changes in ecological conditions over the 

regeneration sequence. Testate amoebae are aquatic organisms and respond to soil 

moisture content in a size (or biovolume)-specific way: large species are more 

stimulated by wet conditions than small species (Lousier 1974). Genera such as 
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Arcella, Bullinularia, Centropyxis, Trinema and Corythion have adapted to dry 

conditions by evolving a ventral aperture and a flattened shell that allows them to 

creep within a thin capillary film and thus reach a larger size than if they had a 

terminal aperture (Bonnet 1964). If true, why then did we observe on average larger 

testate amoebae in the unexploited site compared to advanced regeneration sites?  

We interpret the difference between the community structure of the advanced 

regeneration and unexploited sites as an indication of the different recolonisation 

potential of different testate amoeba taxa. Species such as Bullinularia indica, which 

are among the largest testate amoebae found in Sphagnum-dominated peatlands (and 

the largest in our data set), never reach high numbers, most likely because of a 

(relatively) slow rate of reproduction, although there is only limited data on the 

relationship between size and reproduction rates of testate amoebae (Schönborn 1986 

and references therein). Therefore we would not expect large species to colonise 

favourable habitats very fast. By contrast smaller species such as Assulina muscorum 

or Euglypha species, which are usually more abundant, have a higher colonisation 

potential. It follows that in the more advanced regeneration stages we should expect to 

find more relatively small species, albeit a community indicative for dry and acidic 

conditions similar to that of unexploited but drained sites. Such differences in the size 

and quality of the testate population may serve as predictors of the rate and directions 

of change as the regenerating peat community becomes better established. Beyond the 

quantitative inference of key ecological variables, the structure of the testate amoeba 

community might provide information on the degree of “naturalness” of a site. 

Bacterial biomass is a relatively crude measure of microbial activity in 

ecosystems including secondary succession in cutover peatlands. Nevertheless clear 

changes were observed. Beyond biomass, changes in bacterial community structure 
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and associated processes can be expected. A community approach for bacteria was 

beyond our goals for the bacteria, but testate amoebae provide more information as 

these were identified to the species level. Low densities of bacteria were recorded 

during the apparently drier phases (see the following section), and in the more 

advanced regeneration stages (albeit not significant). Similarly, Gilbert (1998) 

observed lower chemo-heterotrophic assimilation (mainly bacterial) during the dry 

period of mid-summer in a Sphagnum-dominated peatland. This apparent negative 

effect of dry conditions on bacteria density and production parallels the pattern of 

testate amoeba density where low numbers were found in the more advanced, drier 

secondary sites and in the unexploited site. Testate amoebae feed on a broad range of 

micro-organisms (Yeates & Foissner 1995; Gilbert et al. 2000). Thus the lower 

density of testate amoebae in the drier sites is in agreement with the density patterns 

of at least some of their prey (the bacteria) and micobial secondary production. These 

results could also suggest that the larger species of testate amoebae that are 

characteristic for the unexploited site may be less directly dependant on the 

abundance of bacteria and instead feed more (or perhaps exclusively) on fungi. Such 

an assumption is commonly made although there is still little reliable data on the 

feeding habits of most testate amoeba species. 

Organic matter and physico-chemical indicators: 

The high preservation of organic material in peat that results from low pH and anoxia 

make the peat archives particularly useful for palaeoenvironmental reconstructions. 

Nevertheless, to this date the biochemical composition of peat OM has rarely been 

used as indicator for past environmental conditions, particularly in ombrotrophic 

peatlands (e.g. Morita & Montgomery 1980; Nott et al. 2000; Pancost et al. 2002; 

Nichols et al. 2006), and none of these studies concern formerly cutover sites. 
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Recently, a study of a regenerating cutover bog in the Jura Mountains allowed 

Comont, Laggoun-Défarge & Disnar (2006) to obtain insights into changes in the OM 

sources and the dynamics of inherited biopolymers along the regeneration sequence. 

The irregular but overall progressive decrease of total sugars with increasing 

depth evidenced in the unexploited site depicts typical diagenetic evolution (Fig. 5). 

Nevertheless, the high and nearly constant C/N ratio values (i.e. 60 to 80) recorded 

along the peat profile, are typical of rather well preserved inherited plant material. 

This latter statement is supported by microscopic counts that revealed an abundance 

of well-preserved tissues mainly derived from Sphagnum mosses (Fig. 3). In contrast, 

the two sections taken between 20-25 and 48-62 cm depth that display much lower 

C/N ratios, lower total sugar yields, and OM dominated by decomposed plant tissues 

suggest an increasing degradation of OM. At the top of these two sections well-

preserved Cyperaceae-derived tissues replaced the Sphagnum-derived tissues. These 

features suggest a change in vegetation and environmental conditions that might have 

been provoked by drier phases in the history of the bog. Such a dry even would have 

shifted the competition between Sphagnum and Eriophorum in favour of the latter and 

increased peat mineralisation. The causes of these dry phases are uncertain but could 

be related either to climatic fluctuations (Mauquoy & Barber 1999; Barber, Chambers 

& Maddy 2003; Booth & Jackson 2003; McMullen, Barber & Johnson 2004) or to 

two successive phases of peat exploitation between which the vegetation was able to 

recover. Taken together, these results illustrate well the fact that although this part of 

the bog has not been exploited for peat, either climate change or drainage related to 

peat harvesting affected both the vegetation (and therefore the botanical composition 

of the peat) and the evolution of the existing peat. 
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In the regenerating sites, vertical patterns of OM composition revealed a limit 

between the upper “new” peat and the lower “old” catotelm peat. The latter one, 

especially in site 1 profile, was characterised by a pronounced OM degradation as 

attested by relative low C/N ratios and sugar contents and a predominance of 

amorphous OM and mucilage. In contrast, the “new” regenerated peat showed 

contrasting features in terms of plant sources and degradation/preservation of the OM. 

Microscopic counts revealed that the “new” peat was dominated by moss-derived 

tissues. This assessment was confirmed by distributions of individual hemicellulose 

sugars displaying high proportions of mannose and, in a lesser extent galactose, 

compounds typical for mosses (Comont, Laggoun-Défarge & Disnar 2006). In 

addition, the “new” peat exhibited much higher yields of total hemicellulosics in 

comparison to total cellulosic sugars. Such a discrepancy might reflect a higher 

contribution of moss to the peat, these plants being richer in hemicellulosic sugars 

than sedges (Comont, Laggoun-Défarge & Disnar 2006). However, here a relative 

enrichment of the hemicellulosic carbohydrate pool as a result of cellulose 

destructuration cannot be excluded (Comont, Laggoun-Défarge & Disnar 2006). 

Nevertheless, the amounts of total sugars recorded in this peat layer, which are in the 

same range as in living plants, are indicative for a good OM preservation. This later 

statement is also fully supported by high C/N ratios as well as by well-preserved and 

recognisable Sphagnum and Polytrichum-derived tissues in the regenerated peat layer 

both at sites 1 and 4. Surprisingly, although the vegetation cover is nowadays 

dominated by mosses and sedges, no evidence of any Cyperaceae-derived material – 

and/or related biomarkers has been identified either by microscopic counts or sugar 

analyses. In fact, xylose and arabinose, which are characteristic of Cyperaceae 

(Bourdon et al. 2000), are present at higher levels in the “old” peat than in the “new” 
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one (Fig. 5). The overall lack of Eriophorum record in the “new” peat, particularly in 

site 1, can at first be attributed to its higher decomposability compared to Sphagnum 

mosses (Coulson & Butterfield 1978; Clymo & Hayward 1982; Chague-Goff & Fyfe 

1996).  

A close examination of organic composition of the “new” peat at the two 

regenerating sites actually revealed contrasting signatures. In site 1 the peat was 

strongly dominated by Sphagnum-remains, while in site 4, it was much more 

heterogeneous with Polytrichum remains, amorphous OM and Cyperaceae-derived 

tissues at the bottom of the section. Furthermore, a better carbohydrate preservation 

was depicted in the latter peat (ca. 337 mg.g-1 versus ca. 243 mg.g-1 at site 1). In 

addition to the original botanical composition, such a contrasting composition might 

also be related to abiotic factors, i.e. trophic conditions inducing differences in 

biodegradation processes between site 1 and site 4. In fact, the surface vegetation 

suggests that the environmental conditions of the recent regenerating stage (site 1) are 

probably more minerotrophic, and consequently more favourable to microbial activity 

than the more advanced regenerating stage (site 4) (Unpublished data, Samaritani et 

al.). This explanation was supported by the bacterial biomass which was about twice 

as high in the “new” peat of the recent regenerating stage as in the advanced stage and 

the unexploited site. Results on testate amoebae also confirmed these features: the 

higher densities and C biomass being associated to the recent regeneration stage and 

the community patterns clearly showing a shift from a fen community towards a more 

acidic, drier bog community. In the same way, when considering the whole profiles 

(new and old peat), it appeared that the highest bacterial biomass was recorded in the 

Sphagnum-dominated peat layers and the lowest one in the highly decomposed and 



 22

deeper peat layers that were interpreted, at least at site 1, as consequence of drainage 

phases during the peat extraction.  

CONCLUSIONS  

Our aims were to assess how testate amoebae, bacteria, and peat OM correlated and to 

identify specific indicators of changes in the structure or the functioning of the 

ecosystem. From this comparative study the following emerged: 

While bulk chemical OM characterisation revealed by C/N profiles, allowed the 

newly regenerated peat to be differentiated from old peat, OM indicators 

(carbohydrates and botanical composition of the peat) combined with heterotrophic 

bacteria biomass and testate amoebae diversity revealed contrasting signatures 

between the recent and the advanced stages of regeneration.  

Differences observed in the composition of the newly accumulated peat may be 

due not only to plant sources but also to trophic and abiotic conditions inducing 

differences in biodegradation processes between the two stages. This interpretation 

was supported by testate amoebae communities and bacterial biomass.  

In the natural unexploited site, specific OM indicators provided information on 

past changes in vegetation and related environmental conditions, well recorded in the 

accumulated peat.  

Understanding ecosystem dynamics in secondary ecosystems is challenging 

because we rarely have accurate information on the nature of the ecosystem prior to 

disturbance and a detailed account of human impact. It is therefore valuable to 

compare independent lines of evidence to determine such characteristics of the site. A 
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multidisciplinary assessment approach may therefore prove useful for the 

management of abandoned cutover peatlands. 
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Table 1. Characteristics of the sampling sites in La Chaux d'Abel peatland, Swiss Jura 
Mountains. 

 
 
 
 

Site General description Vegetation (dominant plants)

Site 1 Regenerating zone in a part of the mire where 
no intact portion remains. Fen vegetation

Polytrichum strictum, P. commune, Sphagnum 
fallax, Carex nigra, etc.

Site 2 Same zone as stage 1, but different dominant 
plants species

Eriophorum vaginatum, Sphagnum fallax, etc.

Site 3 Regenerating zone at the base of a peat 
extraction wall, open mixed forest of birch and 
pine

Eriophorum vaginatum, Sphagnum fallax, 
Betula pubescens, Pinus rotundata, etc.

Site 4 Same zone, but drier and with different 
dominant plant species

Polytrichum strictum, P. commune, Sphagnum 
fallax, Betula sp., Pinus rotundata, etc.

Unexploited Intact raised bog, but under the influence of 
lateral drainage from the peat cutting wall. Tall 
pine forest with dense shrub cover.

Pinus rotundata, Picea abies, Vaccinium 
uliginosum. Moss layer dominated by non-
Sphagnum mosses, with discontinuous 
Sphagnum patches.
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Table 2. List of testate amoebae taxa identified in the Sphagnum samples from La 
Chaux d'Abel peatland. 
 
 

 
 

Taxon n Mean SE Min Max Mean SE Min Max

Archerella flavum * 4 1438 691 0 7704 2,35 1,19 0,00 26,16
Arcella catinus 7 357 141 0 1531 1,00 0,46 0,00 10,00
Assulina muscorum 15 3146 954 274 15406 18,71 4,59 0,26 73,48
Assulina seminulum 8 459 231 0 2914 1,62 1,02 0,00 23,03
Bullinularia indica 5 136 79 0 1166 0,71 0,42 0,00 9,21
Centropyxis aculeata 3 119 109 0 1636 0,25 0,10 0,00 1,89
Centropyxis aerophila var sphagnicola 1 9 9 0 136 0,01 0,01 0,00 0,16
Corythion dubium 11 978 518 0 8044 4,40 1,10 0,00 24,31
Euglypha ciliata-type 11 746 206 0 2693 4,83 1,29 0,00 19,79
Euglypha compressa 5 150 78 0 919 0,51 0,21 0,00 3,81
Euglypha laevis ** 3 45 25 0 273 0,06 0,02 0,00 0,37
Heleopera sylvatica 7 311 138 0 1996 1,23 0,46 0,00 9,52
Heleopera rosea 10 318 138 0 2045 0,63 0,14 0,00 2,36
Hyalosphenia elegans 3 219 129 0 1572 0,27 0,12 0,00 1,87
Hyalosphenia papilio 13 30556 8542 0 91693 33,82 7,20 0,00 91,43
Hyalosphenia subflava 1 7 7 0 98 0,02 0,01 0,00 0,33
Nebela militaris 12 1087 651 0 10089 2,10 0,55 0,00 11,65
Nebela penardiana 1 41 41 0 615 0,04 0,03 0,00 0,65
Nebela tincta 14 4888 1139 0 12815 20,85 4,58 0,00 86,13
Nebela tincta var major 14 3067 959 0 10756 4,69 1,04 0,00 19,52
Phryganella acropodia 9 446 218 0 3136 1,32 0,43 0,00 8,94
Trigonopyxis arcula 5 64 29 0 333 0,59 0,20 0,00 3,13

* Synonym: Amphitrema flavum
** includes E. rotunda

Overall density [ind. / g d.w.] Overall relative frequency [%]
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Table 3. Summary data for testate amoebae extracted from Sphagnum samples taken 
in the five plant communities in La Chaux d'Abel peatland, Switerland 

 
 

 

Ave. SE ‡ * Ave. SE  Ave. SE  Ave. SE  Ave. SE  Ave. SE Min Max

Species richness 8,3 1,3 ab 7,3 a  ad 15 1,4 b 10 1,2 ab 14 0,9 ab 10,8 0,9 4 17

H' Diversity index 1,1 0,3 a 0,9 0,3  a 2,7 0,3 b 2,1 0,2  ab 2,6 0,3 b 1,89 0,22 0,53 3,23

% living and encysted 63 2,9  a 64 6  a 49 10  a 50 2,3  a 52 1,2  a 55,6 2,7 32,3 75,6

Density [103 ind./g d.w.] 83 7  a 84 12  a 53 17  ab 7,9 4,5  b 16 2,4  b 48,6 9,4 3,3 104

C biomass [µg g.d.w.-1] 831 123 ab 1006 189 a 297 42 c 83 51 c 478 25 bc 539 99 21 1371

‡ Standard errors n=3

* Lowercase letters indicate significant differences among sites in the ANOVA and Turkey-Kramer HSD comparison among pairs of sites.

All sitesSite 1 Site 2 Site 3 Site 4 Unexploited
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Table 4. Yields of total sugars, cellulosics and hemicellulosics (mg.g-1) and 
distributions of hemicellulosic sugars (wt %) for Sphagnum fallax, Polytrichum 
strictum, Eriophorum vaginatum and E. angustifolium collected in Le Russey, a 
peatland near La Chaux d’Abel in the Jura region of France (after Comont, Laggoun-
Défarge & Disnar  2006). 

S. fallax P. strictum E. vaginatum E. angustifolium

Total sugars (mg/g) 357 401 326 282
Total Cellulosics (mg/g) 142 112 224 218
Total Hemicellulosics (mg/g) 215 289 102 64,5

Hemicellulosic Glucose (w%) 27,3 30,6 13,5 15,2
Xylose (w%) 16,2 4,51 52,4 47,9
Arabinose (w%) 4,13 2,57 16,1 11,9
Mannose (w%) 11,1 41,5 4,45 6,67
Rhamnose (w%) 12,7 5,12 3,20 4,95
Ribose (w%) 0,40 0,95 0,63 0,04
Fucose (w%) 1,39 0,94 0,71 1,42
Galactose (w%) 27,6 13,8 8,92 11,9
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Fig. 1. Changes in testate amoeba community structure and inferred water table depth 
and pH in the regenerating vegetation and non-harvested bog. The water table and pH 
are inferred using a transfer-function from the Jura Mountains (Mitchell et al. 1999; 
Mitchell et al. 2001). 
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Fig. 2. Depth evolution of bacteria biomass in the early and advanced regenerating 
stages (sites 1,2, 3, 4) and the unexploited site. 
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Fig. 3. Depth profiles of atomic C/N ratio (i), relative percentages of organic 
microremains (ii), and bacterial biomass (iii) in the early regeneration stage (site 1), 
the advanced regeneration stage (site 4), and the unexploited site of La Chaux d’Abel 
peatland. The dotted line delineates the threshold between the uppermost “new” 
regenerating peat and the “old” catotelm peat.  
(AOM: Amorphous organic matter; Mb, Cut, Sp: membranes, cuticles, spores; GD, OD: gelified 
debris, oxidised debris). 
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Fig. 4. Characteristic taxa of testate amoebae and main organic components identified 
in Sphagnum mosses and bulk peat samples, respectively: (a) Hyalosphenia papilio, 
(b) Assulina muscorum, (c) Nebela tincta, (d) Archerella flavum, (e) Corythion 
dubium, (f) Nebela militaris [scale bars = 50 µm except for C. dubium (10 µm)], (g) 
Cyperaceae-derived leaf tissues, (h) Polytrichum-derived leaf tissues, (i) Sphagnum-
derived leaf tissues, (j) shell of the bdelloid rotifer Habrotrocha angusticollis (hab) 
associated with Sphagnum-derived leaf tissues, (k) degraded Sphagnum-derived leaf 
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tissues and mucilage (mu), (l) structureless unspecified plant tissue and an amorphous 
OM (AOM) flake, (m) Amorphous OM (AOM) flakes and Cyperaceae-derived sheath 
tissue, (n) mucilage (mu) and structureless unspecified plant tissue (o) fungal hyphae, 
mucilage (mu) and an amorphous OM (AOM) flake. 
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Fig. 5. Depth evolution of total sugar, cellulosics and hemicellulosics yields (mg.g-1) 
and concentrations (wt%) of moss and Cyperaceae markers in the early and advanced 
regenerating stages (sites 1 and 4) in comparison to the unexploited site. 


