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S U M M A R Y
We present a new upper-mantle tomographic model derived solely from hum seismic data.
Phase correlograms between station pairs are computed to extract phase-coherent signals.
Correlograms are then stacked using the time–frequency phase-weighted stack method to
build-up empirical Green’s functions. Group velocities and uncertainties are measured in the
wide period band of 30–250 s, following a resampling approach. Less data are required to
extract reliable group velocities at short periods than at long periods, and 2 yr of data are
necessary to measure reliable group velocities for the entire period band. Group velocities
are first regionalized and then inverted versus depth using a simulated annealing method in
which the number and shape of splines that describes the S-wave velocity model are variable.
The new S-wave velocity tomographic model is well correlated with models derived from
earthquakes in most areas, although in India, the Dharwar craton is shallower than in other
published models.

Key words: Time-series analysis; Surface waves and free oscillations; Seismic tomography.

1 I N T RO D U C T I O N

Over the last 30 yr, progress in imaging the Earth has been driven
by the growing amounts of earthquake data and by theoretical and
numerical improvements to tomographic techniques. There is in-
creasing agreement between tomographic models on the large-scale
elastic structure of the Earth, but the intermodel correlations remain
low for the small-scale structure (see Moulik & Ekström 2014, for
a review). One limitation is the non-uniform Earth coverage that
results from earthquake distributions remaining mainly along plate
boundaries.

It has been shown theoretically that empirical Green’s functions
(EGFs) can be extracted from seismic noise cross-correlations be-
tween stations pairs (Lobkis & Weaver 2001; Derode et al. 2003;
Wapenaar 2004; Snieder 2004; Wapenaar 2004). The use of noise
correlations provides a good alternative or a complementary data
set for improvements to the resolution of tomographic models, be-
cause the corresponding path coverage only depends on the station
locations. Shapiro et al. (2005) and Sabra et al. (2005) first demon-
strated that this technique can be applied to regional tomography.
Since these pioneer studies, noise mostly in the period band of 3–
100 s has been extensively used for local and regional tomographic
studies and also to complement earthquake data sets (e.g. Bensen
et al. 2008; Dias et al. 2015). Nishida et al. (2009) further showed
that longer period noise (i.e. 150–250 s) can be used for global
tomography.

Noise in the period band of 1–250 s can be separated into so-
called primary and secondary microseisms and hum. The source
mechanisms of primary and secondary microseisms are well un-
derstood (Longuet-Higgins 1950; Hasselmann 1963). Primary mi-
croseisms (i.e. with periods of 10–20 s) are generated by interac-
tions between ocean gravity waves with bathymetry at the coast,
whereas secondary microseisms (i.e. with periods of 3–12 s) are
generated by the mutual interactions of ocean gravity waves. Sec-
ondary microseisms have been successfully modelled considering
pressure sources close to the ocean surface (e.g. Kedar et al. 2008;
Ardhuin et al. 2011; Stutzmann et al. 2012). Longer period noise
(i.e. 30–250 s), which is known as hum, is several orders of magni-
tude weaker than microseisms. The hum source mechanism remains
controversial (Rhie & Romanowicz 2004; Tanimoto 2005; Webb
2007; Nishida 2013; Traer & Gerstoft 2014), although recently Ard-
huin et al. (2015) showed that it can be modelled between 30 and
250 s, considering pressure sources generated by the interactions of
infragravity waves with continental shelves.

Ideally, cross-correlation can only retrieve the EGFs for sys-
tems with equipartitioned waves (Weaver & Lobkis 2006). As noise
sources are mostly located in the oceans and are not randomly dis-
tributed, the equipartition of waves is not guaranteed. Therefore,
averaging cross-correlograms over long-time spans is necessary
to improve the emergence of the EGF (e.g. Shapiro et al. 2005).
Schimmel et al. (2011) proposed a new approach that was based
on the instantaneous phase of the analytical signal to improve EGF
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recovery and to increase its signal-to-noise ratio. They successfully
applied this to selected stations from the global GEOSCOPE net-
work, and they were able to extract the first and second Rayleigh
wave trains from the noise in the period band of 25–330 s.

The purpose of this study is to derive a new global tomographic
model of the upper mantle using only hum data. We use the method
of Schimmel et al. (2011) to extract EGF in the wide period band of
30–250 s at the global scale. We use a statistical approach to measure
the group velocities (Schimmel et al. 2015). The global maps of
group velocities are then inverted to obtain the three-dimensional
(3-D) S-wave velocity model using a simulated annealing method
in which the number and shape of splines that describe the model
vary within the inversion (e.g. Sambridge et al. 2013). This model
is derived solely from seismic hum in the wide period band of
30–250 s, and it can be used to study the upper-mantle structure
as independent and complementary observations, with respect to
models derived from earthquake measurements.

2 M E T H O D

2.1 Empirical Green’s function estimation

For a pair of stations, the EGF is extracted from the seismic-
noise cross-correlograms. The data processing steps are: (1) pre-
processing, (2) cross-correlation and (3) cross-correlogram stack-
ing. Classical methods (e.g. the classical correlation and stack
[CCS] method; Bensen et al. (2007)) usually require pre-processing,
such as 1-bit normalisation and spectral whitening of the data, to re-
move the influence of large-amplitude signals such as earthquakes.
Correlograms are then computed between seismograms recorded
by station pairs and linearly stacked.

Here, we use different data processing to obtain the EGFs. This
is based on analytical signal theory and we compute the phase
correlation followed by the phase weighted stack, as proposed by
Schimmel et al. (2011). This method is called hereafter the PCPWS
(i.e. phase correlation, phase weighted stack) method and does not
require pre-processing for down-weighting earthquakes, because
the phase correlation is amplitude unbiased.

For each station, continuous vertical seismograms sampled at
1 Hz are selected and cut into 24-hr segments. Instrumental re-
sponses are removed and the data are converted into velocities. No
further pre-processing is applied to the data.

For each station pair, phase correlograms between daily seismo-
grams are computed as follows. Considering the seismogram u(t)
as a function of time t, the analytical signal is given by s(t) = u(t) +
iH(u(t)) = A(t) exp (iφ(t)), where H(u(t)) is the Hilbert transform of
u(t). A(t) and φ(t) are the instantaneous envelope and phase, respec-
tively. Considering two time-series u(t) and ν(t), starting at time τ 0

and with duration T, and their instantaneous phases �(t) and �(t),
the phase cross-correlation is defined as (Schimmel 1999):

CPCC(τ ) = 1

2T

T −τ+τ0∑
t=τ+τ0

(|ei�(t+τ ) + ei�(t)|ν − |ei�(t+τ ) − ei�(t)|ν) (1)

where τ is the time lag, t is the time, T is the length of the correlation
window, which is taken as equal to the seismogram duration. We
use T = 24 hr and exponent ν = 1. Phase correlation provides a
measure of the similarity of the two time-series as a function of
lag time τ , which is unbiased by the amplitude of the two signals.
This strategy allows the detection of weak amplitude signals that are
more phase-coherent than noise and therefore can be more efficient
than using the classical approach.

Daily cross-correlograms between each station pair are then
stacked non-linearly using the time–frequency phase-weighted
stack method (Schimmel & Gallart 2007; Schimmel et al. 2011). For
each day j, we compute the S-transform of the cross-correlogram,
Cpcc j (τ ), to obtain its time–frequency representation, Sj (τ, f ) =
ST (Cpcc j (τ )) (Stockwell et al. 1996). The corresponding time–

frequency instantaneous phase is defined as
S j (τ, f )ei2π f τ

|S j (τ, f )| . We com-

pute the time–frequency phase-weighted stack as the product of the
time–frequency phase stack and the S-transform of the linear stack
of the daily correlograms:

Spws(τ, f ) =
∣∣∣∣∣∣

1

N

N∑
j=1

Sj (τ, f )ei2π f τ

|Sj (τ, f )|

∣∣∣∣∣∣
ν

.ST

(
1

N

N∑
i=1

CPCCi (τ )

)
(2)

where N is the number of daily phase correlograms. We use the
exponent ν = 2 and we stack together correlograms for positive and
negative lag times after time-reversing negative time lags. Finally,
we compute the inverse of the S-transform (Schimmel & Paulssen
1997; Schimmel & Gallart 2005) to obtain the stack spws(τ ) as a
function of the time lag τ . For more details on this method, the
reader is addressed to Schimmel & Gallart (2007) and Schimmel
et al. (2011). In this approach, the time–frequency-dependent phase
coherence is used as a data adaptive attribute to attenuate the inco-
herent noise. The benefits are that coherent signals stand out more
clearly with respect to the incoherent noise.

2.2 Robust group-velocity measurement

To perform a global study of the Earth upper mantle, we measure
Rayleigh wave group velocities in the frequency band of 0.004–
0.032 Hz. The group velocity corresponds to the maximum energy
as a function of the frequency of the EGF time–frequency represen-
tation Spws(τ , f). The highest frequency is fixed at 0.032 Hz for all
station pairs and the lowest frequency is adjusted so that the inter-
station distance corresponds to at least three wavelengths. Station
pairs with interstation distances ranging from 500 to 15 000 km are
selected.

2.2.1 Convergence of the group-velocity measurement

One parameter to adjust is the amount of data to stack to obtain
reliable group-velocity measurements. We first used 1 yr of data
recorded by the vertical component of broad-band stations. We fil-
tered the data between 0.003 and 0.020 Hz, and we applied the
PCPWS method. Fig. 1 shows an example of the EGF that corre-
sponds to the path between two GEOSCOPE stations, as INU in
Japan and CLF in France. The interstation distance is 9738 km.
Fig. 1(a) shows that we can clearly identify the R1 and R2 trains
of Rayleigh waves. We then compute the S-transform of the R1 arc
Rayleigh waves (between the dashed lines in Fig. 1a) and Fig. 1(c)
shows the energy diagram normalized per frequency. The group
velocity can be measured in the entire frequency band of 0.003–
0.020 Hz without ambiguity (Fig. 1c, green line). This group veloc-
ity is hereafter called the reference group velocity, Vref.

We then evaluated the convergence towards Vref as a function
of the frequency and the amount of stacked data. We randomly
selected a subset of phase correlograms that correspond to a fixed
number of days, and we measured the group velocity from their
phase-weighted stack. We repeated the measurement 20 times on
different random subdata sets, and we computed the median group
velocity Vmed. Fig. 1(e) shows the relative difference between Vref

and Vmed for each frequency and number of days. We see that at
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Figure 1. EGFs obtained from 1 yr of noise recorded by stations CLF (France) and INU (Japan) from the GEOSCOPE network, using the PCPWS method
(a) and the CCS method (b). In (a), minor and major arc Rayleigh waves can be clearly identified, whereas in (b) the signal-to-noise ratio is lower and only
the minor arc Rayleigh wave is visible. The energy diagrams in (c) and (d) are those for the EGFs plotted in (a) and (b), respectively. The measured group
velocity is in green. (e) and (f) show the relative differences with respect to the reference group velocities, in green in (c) and (d), respectively, as a function
of frequency and number of days stacked. Both methods require more data to be stacked to recover group velocities at long periods than at short periods. The
reference group velocity (dark blue) is accurately recovered after stacking fewer days using the PCPWS method (e), than the CCS method (f).

high frequencies (i.e. 0.02–0.01 Hz) the reference group velocity is
retrieved after stacking about 120 d, whereas at long periods (i.e.
0.005 Hz), about 320 d are necessary to converge toward Vref.

For comparison, we also evaluated the convergence towards the
reference group velocity using classical data processing, here re-
ferred to as the CCS method (Bensen et al. 2007). Data were cut
into 24-hr segments, filtered between 0.003 and 0.020 Hz and nor-
malized to 1 bit. We then applied spectral whitening and computed
the classical correlation between the daily traces. Correlograms
were linearly stacked. Fig. 1(b) shows that the EGF computed with
the CCS method is noisier than the EGF computed with the PCPWS
method (Fig. 1a). We can still identify the R1 Rayleigh wave train,
but the R2 train is not visible. Nevertheless, the R1 train group
velocity, VCCSref, can be accurately measured (Fig. 1d), even though
the energy diagram is noisier than in Fig. 1(c). Finally, we analysed
the convergence toward VCCSref. Fig. 1(f) shows that the convergence
is slower than with the PCPSW method. We need to stack at least
250 d at short periods and at least 1 yr of data at long periods to con-
verge toward VCCSref. We similarly investigated many station pairs
for varying epicentral distances, and concluded that the PCPWS
method provides less noisy EGF and group-velocity measurements
in the wide frequency band of interest than the CCS method. In the
following, we have only used the PCPWS method.

2.2.2 Selection of the frequency range and the amount of data

We then tested the robustness of the group-velocity measurement
by comparing the measurements on the positive, negative and sym-
metric EGFs. Fig. 2(a) shows the EGFs for positive and negative
time lags and Fig. 2(b) shows the EGFs after the phase-weighted
stack of all of the positive and reversed negative phase correlograms
together. In all three cases, the Rayleigh waveform is clearly visi-
ble. Fig. 2(c) shows the group velocities corresponding to the three
EGFs. We obtain the same group velocities between 30 and 180 s of
the periods, but the group velocities are different at longer periods.
We then added another 1 yr of data, and so stacked these 2 yr of
data. Figs 2(d) and (e) show almost no differences with respect to
the EGF in Figs 2(a) and (b), although Fig. 2(f) shows that the group
velocities of the positive, negative and symmetric correlograms are
now similar for the entire period band. Therefore, in the following
we stacked together 2 yr of data with positive and reversed-negative
time lags.

Even after stacking 2 yr of data, we often observed that the group
velocity could not be recovered in the entire frequency band. This is
illustrated in Figs 3(a) and (b) for the path between station BKNI in
Indonesia and PET in Russia. The interstation distance is 7879 km.
Fig. 3(a) shows that the waveform is complex, and Fig. 3(b)
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Figure 2. (a) EGF obtained using the PCPWS method on 1 yr (2010) of noise recorded by stations KEV (IU network, Finland) and KULLO (DK/GLISN
network, Greenland). (b) EGF (SYM) obtained after phase-weighted stacking positive and reversed negative time-lag phase correlograms. (c) Group velocities
measured using the EGF in (a) with positive time (blue), with reversed negative time (green), and the EGF in (b) (red). The three group-velocity curves differ
for periods larger than 170 s. (d)–(f) The same as for (a)–(c), but obtained after stacking 2 yr of data. The group velocities measured on the EGF of positive,
reversed negative and symmetric times are similar across the entire period band.

suggests that the group velocity can only be measured between
0.014 and 0.030 Hz. We then filtered the raw data in two frequency
bands of 0.004–0.016 Hz and 0.016–0.032 Hz, and we processed the
data in the two frequency bands separately. Figs 3(c) and (d) show
that the signal-to-noise ratio is much higher in each frequency band,
both for the correlograms and for the group velocities. In the fol-
lowing, we therefore processed the data in the two frequency bands
separately.

2.2.3 Group-velocity automatic selection and error estimation

To select reliable group velocities as a function of frequency as auto-
matically as possible, we used the statistical approach of Schimmel
et al. (2015). For each interstation path, the reference group veloc-
ity, Vref, is measured from the EGF obtained from the stack of 2 yr
of data. We then randomly select 20 subsets of data corresponding
to 70 per cent of the total data. For each subset, the group velocity
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1226 A. Haned et al.

Figure 3. (a) EGF obtained in the frequency band of 0.004–0.032 Hz using the PCPWS method on 2 yr (2010–2011) of noise recorded by station BKNI (GE
network, Indonesia) and PET (IU network, Russia). (b) Energy diagram computed for the Rayleigh wave train between the dashed red lines in (a). The group
velocity can be measured only between 0.014 and 0.030 Hz (black line and error bars). (c) and (d) show the EGF computed on filtered data in the frequency
band of 0.004–0.016 Hz and 0.016–0.032 Hz, respectively. (e) Corresponding energy diagrams. The group velocity can be measured without ambiguity across
the entire frequency range.

is measured and compared to Vref. We only keep group velocities in
the frequency range where at least 75 per cent of the measurements
are consistent.

In the frequency range of accurate measurement, the measure-
ment error depends on the sharpness of the S-transform maximum
as a function of frequency. Therefore, the error associated with each
measurement is set to correspond to 95 per cent of the normalized
maximum amplitude at each frequency. This approximates empir-
ically the frequency-dependent uncertainty of the group velocity

maximum, which is plotted in Figs 3(b) and (e) as the black lines
around the maximum.

3 DATA

We selected stations from the global networks of GEOSCOPE (G),
GSN (IU, II) and GEOFON (GE). We also added some stations from
the MEDNET, CDSN and Algerian (ADSN) networks to complete
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Figure 4. EGFs as a function of distance and time. Rayleigh waves and body waves with a high signal-to-noise ratios are clearly visible.

the global Earth coverage. The first selection of the stations was per-
formed to remove stations with instrumental problems. In total, we
used 2 yr (2010–2011) of data from 149 stations that corresponds to
8440 paths with interstation distances between 500 and 13000 km.
We applied the automatic PCPWS method, and also checked each

measurement manually. We obtained reliable group-velocity mea-
surements along 6797 paths, which corresponded to 80 per cent of
the paths.

Fig. 4 shows the EGF as a function of distance in the frequency
range of 0.004–0.016 Hz, and we can clearly identify the Rayleigh
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Figure 5. (a) Geographical map with the stations (red triangles) and interstation paths (grey lines) used in the inversion. (b) Group-velocity measurements
(blue) as a function of frequency. The PREM group velocity is plotted for comparison (green).

wave train with a high signal-to-noise ratio. We can also identify
several body-wave phases. Body waves have been previously ob-
served on noise EGFs at short distances and high frequencies (e.g.
Schimmel et al. 2011). They were also observed at teleseismic dis-
tances by Nishida (2013), who stacked 8 yr of data filtered between
5 and 40 mHz recorded by 650 stations, and by Boué et al. (2013),
who used 1 yr of data recorded by 339 stations and filtered data in
the period band of 10–40 mHz. Nevertheless, these observations are
still rare. Here, body waves are clearly visible on the hodochrones
obtained by plotting the 6797 EGFs binned over 20 km in distance
and 3 s in time, and without further pre-processing. These body
waves are not used in this study, but they are clearly visible due to
the high signal-to-noise ratio of our EGFs.

Fig. 5(a) shows the station locations and path distributions and
Fig. 5(b) shows the 6797 measured group velocities as a function of

frequency. The preliminary reference earth model (PREM) group
velocity is plotted for comparison, and it can be seen that our global
group velocities cluster around the average model. We observe that
the group-velocity variability is larger at short periods than at long
periods, which is expected because the strong lateral heterogeneities
in the crust mostly affect short-period group velocities. We then
selected 12 frequencies to describe the entire frequency range, and
we obtained a set of 81 564 group-velocity measurements.

4 T O M O G R A P H I C M O D E L

We followed the classical approach in surface wave tomography
to build the 3-D model of the S-wave velocity in two steps but an
original trans-dimensional inversion scheme is used in the second
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step. The first step, called regionalisation, inverts the path average
group velocities to obtain 2-D maps of local group velocities. This
is applied to data sets that separately correspond to each period.
The second step combines the group-velocity maps corresponding
to different periods and inverts them separately at each gridpoint,
to obtain the local S-wave velocity as a function of depth. These
local models are then recombined to obtain the 3-D S-wave velocity
model.

4.1 Group-velocity maps

We apply here the method of Montagner (1986), which uses smooth
local basis functions and the continuous inverse formalism of
Tarantola & Valette (1982) to obtain local group velocities. The
a-priori group-velocity error and correlation length between neigh-
bouring points are introduced through a Gaussian a-priori covari-
ance function. Both a-priori parameters are determined empirically
by considering simultaneously the variance reduction and χ2 cri-
teria (e.g. Sebai et al. 2006), and we selected a correlation length
of 800 km and a-priori model error of 0.1 km s−1. We used the
code of Debayle & Sambridge (2004), which proposes efficient
parametrisation of the model based on Voronoi cells, and enables
the optimisation of the matrix sizes as a function of the path cov-
erage. The forward problem computes great-circle arcs to trace the
rays along the interstation paths.

The a-posteriori errors on the group-velocity maps, which de-
pend on the measurement quality and the path coverage, are
computed using the a-posteriori covariance matrix (Tarantola &
Nercessian 1984), and they are used for the group-velocity inversion
versus depth. We also estimated the resolution of the group-velocity
maps with synthetic tests (Appendix A). Anomalies of 2000 km
width are well recovered between latitudes of 72◦N and 54◦S, and
anomalies of 3000 km width are well recovered between latitudes
of 81◦N and 54◦S. At higher latitudes, the resolution decreases due
to the lack of stations.

Fig. 6 shows the group-velocity perturbation maps for the four
periods of 30, 100, 170 and 235 s that are obtained from the intersta-
tion measurements of Fig. 5. We observe large velocity variations
at short periods, and smaller variations at longer periods. At the
short period (i.e. 30 s), we clearly see the ocean–continent differ-
ence, with slower velocity beneath continents and faster velocity
beneath oceans. These variations are related to the difference in
the crustal thickness between oceans and continents. Indeed, the
continental crust is thicker than the global average crust, and there-
fore short-period group-velocity perturbations are slower beneath
continents. At the 100-s period, we observe fast velocities beneath
cratons and slow velocities beneath ridges. These features persist at
the longer period (i.e. 170 s), although the velocity anomaly ampli-
tude decreases, such that at the 235 s period, the correlation with
surface tectonics disappears. Large-scale structures obtained in this
study are consistent with the group-velocity maps obtained from
earthquake surface wave data (e.g. Ekström 2011).The Pearson cor-
relation (eq. A1) between these two models is between 0.80 and
0.85 in the period range of 40–200 s.

4.2 S-wave velocity model

The global group-velocity maps and corresponding uncertainties
are then inverted to obtain the tomographic S-wave velocity model.
We use a trans-dimensional inversion technique, which automati-
cally adapts the model parametrization to the group-velocity uncer-

tainty (e.g. Sambridge et al. 2013). The inversion is performed for
each location on a grid of 2◦ × 2◦ in latitude and longitude. The
a-priori earth model is composed of the local crust1.0 model (Laske
et al. 2013) and the PREM model, where the 220 km discontinu-
ity is smoothed. We checked that when crust2.0 or crust1.0 are
used, the model does not change our tomographic images signif-
icantly. The trans-dimensional inversion is a composition of two
nested loops: the inner loop computes for a given spline basis the
optimum model weight coefficients and the outer loop determines
the optimum spline basis. The inversion scheme is presented in
Appendix B.

To determine the resolution of the inversion versus depth, syn-
thetic tests are presented in Appendix A. These show that two
delta-like anomalies (positive or negative) separated by 90 km are
recovered in the depth range of 50–250 km. The inverted model
smoothing effect increases with depth due to the different sensitiv-
ity of the Rayleigh wave fundamental mode with depth.

S-wave velocity maps are shown in Fig. 7 for the selected depths
of 80, 140 and 200 km. This model is hereafter called the HUM2
model. At shallow depth, the model correlates well with surface
tectonics; that is, at 80 km in depth, the mid-ocean ridges have slow
signatures, whereas the cratons and thick lithosphere are associated
with fast anomalies. The island of Madagascar is clearly identi-
fied as a shallow fast anomaly structure that disappears at 140 km.
At 140 km depth, slow anomalies beneath oceans become more
uniform as they correspond to the asthenosphere. At this depth, cra-
tons beneath all of the continents are still visible as fast anomalies,
except beneath India where the Dharwar craton fast signature has
disappeared.

Fig. 8 shows that the Dharwar craton is less than 100 km thick,
which is consistent with receiver function results (Kumar et al.
2007). For comparison, the West African craton is faster than the
PREM model, at least down to 200 km. Beneath the Afar plume
(Fig. 8), we resolve a strong slow anomaly that is visible down
to at least 200 km in depth as expected for a deep plume origin
(Davaille et al. 2005). In comparison, the slow anomaly beneath
the Cape Verde plume is much weaker and in agreement with the
joint seismic-geodynamic model (Forte et al. 2010), and also with
Davaille et al. (2005), who suggested that Cape Verde is a small
secondary plume that originated 30–40 Ma ago at the top of a
large thermochemical plume that was visible from the bottom of
the mantle to the transition zone.

4.3 Discussion

We compared our HUM2 model with three published global mod-
els: the model from Nishida et al. (2009), which is the only other
model that was derived solely from hum data (hereafter called
NMK2009), and two global models derived from earthquake data:
model DR2012 from Debayle & Ricard (2012) and model SAVANI
from Auer et al. (2014). For more details, the reader is addressed to
Appendix A2. The Pearson correlation between our HUM2 model
and the NMK2009 model is only about 0.65 in the depth range
of 70–280 km, and it decreases at shallower depth, down to 0.40
(Fig. A2). This low correlation is also observed between the models
NMK2009 and DR2012 or SAVANI, and can be explained in two
ways. First, the NMK2009 model is derived from limited data, and
therefore its lateral resolution is lower than for the other models.
Then, they used long period hum data (periods larger than 110 s),
which cannot resolve shallow structures.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/204/2/1222/597037 by guest on 20 February 2022



1230 A. Haned et al.

Figure 6. Group-velocity maps for periods of 30 s (a), 100 s (b), 170 s (c) and 235 s (d).

Correlation between our HUM2 model and the DR2012 or SA-
VANI models is much higher, at about 0.90, between 70 and
200 km in depth (Fig. A2). This high correlation can be confirmed
by visual comparisons of the models, and their large-scale struc-
tures are similar for all three models. Nevertheless, in some areas,
such as the subduction zone beneath South America, the HUM2

model has poorer resolution, due to the limited number of sta-
tions used in that area. This area is better resolved by the two
other models, due to the large numbers of subduction earthquakes.
On the other hand, features such as the island of Madagascar or
the east European craton, are better resolved by the HUM2 model
due to the different path coverage of our model (Fig. 7), which
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Figure 7. S-wave velocity maps at 80, 140 and 200 km in depth. Velocity perturbations are in per cent with respect to the average model shown in Fig. 8.

is only related to station locations and not to station-earthquake
locations.

At shallow depths (≤70 km), the correlation with the SAVANI
model remains high (0.70–0.75), although correlation with the
DR2012 model decreases down to 0.40. At shallow depths, the main
difference between these models is related to the shallow-layer cor-
rection. All three models use crust2.0 or crust1.0 shallow models,
and the main issue is how crustal correction is implemented. In
this study, the crust1.0 model is horizontally smoothed and used as
the a-priori model in each gridpoint, without being inverted. Then,
beneath Tibet, where the crust thickness is 75 km in the crust1.0
model, our model shows a fast mantle anomaly at 80 km in depth,
whereas the DR2012 and SAVANI models show slow anomalies.
Their slow anomalies are related to the vertical smoothing of the
crust. Deeper than 140 and 200 km in depth, all three of the models
show a fast anomaly beneath Tibet.

We also compared the models at the four locations shown in Fig. 8.
All four of these models show consistent fast anomalies beneath
cratons and slow anomalies beneath hotspots. But the amplitudes
and depths of the velocity anomaly differ (Fig. A3). For example,

in West Africa, the HUM2 model is similar to the SAVANI model
between 50 and 100 km in depth and closer to the deeper DR2012.
Beneath Dharwar craton, the minimum velocity is shallower (about
150 km) in model HUM2 than in models SAVANI and DR2012,
where it is close to 200 km.

Despite some of the differences discussed above, the high cor-
relation between tomographic models derived from earthquake and
noise data confirms that hum data can provide accurate information
on the earth structure. Earthquake and hum data provide different
path coverage, and therefore they are complementary data sets and
they should be inverted jointly to improve the Earth models.

5 C O N C LU S I O N S

We applied the new PCPWS method based on the analytical sig-
nal developed by Schimmel et al. (2011) to derive a new global
tomographic model of the upper mantle from the hum recorded
worldwide in the period band 30–250 s.

We first computed the phase correlograms between station pairs
to extract the phase-coherent signals. We stacked the correlograms
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Figure 8. S-wave velocity as a function of depth for two cratons (red, West
Africa; green, Dharwar) and two hotspots (blue, Afar, purple, Cape Verde).
The a-priori reference model is plotted in light blue and the global averages
model obtained after inversion is plotted in black.

using the time–frequency phase-weighted stack method to build-up
the EGFs. Group velocities were then automatically computed using
a resampling method to select robust measurements. We tested the
stability of the group-velocity measurements as a function of the
amount of stacked data and the frequency. Less data are required at
high frequency than at low frequency, and it is necessary to stack
2 yr of hum to obtain robust measurements in the entire frequency
band of 0.004–0.032 Hz. We further show that it is necessary to
process data in separate frequency bands, as 0.004–0.016 Hz and
0.016–0.032 Hz, to obtain reliable group-velocity measurements in
the entire frequency band. Comparing the PCPWS (Schimmel et al.
2011) and CCS (Bensen et al. 2007) methods, we show that the
PCPWS method enables faster convergence towards higher signal-
to-noise ratio EGFs.

We selected 149 good-quality broad-band stations from the global
networks and obtained 6797 group-velocity curves that corre-
sponded to paths between 500 and 13000 km. We only rejected
measurements along 20 per cent of the paths for which no conver-
gence toward the EGF could be achieved. The selected EGFs show
high signal-to-noise ratios, and both Rayleigh waves and body waves
can be clearly identified.

The group velocities were regionalized and then inverted, to ob-
tain the 3-D S-wave velocity model using a simulated annealing
method in which the number and shape of the splines that describe
the model vary. This new S-wave velocity tomographic model is
well correlated with models derived from earthquakes in most ar-
eas, although in India, the Dharwar craton is shallower than in other
published models.

This model will be improved in the future by using more stations,
and in particular, ocean-bottom stations. Earthquakes and ambient
noise provide independent data sets and path coverage, and therefore
are complementary to investigate the structure of the Earth.
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A P P E N D I X A : S Y N T H E T I C T E S T S A N D
T O M O G R A P H I C M O D E L C O M PA R I S O N

To estimate the resolution of our tomographic model, we performed
several synthetic tests. We also compared our model with three
published models and quantified the differences.

A1 Synthetic tests

In this section, we present the synthetic tests. As the inversion is
separated into two steps, we checked the lateral and vertical reso-
lutions separately. The lateral resolution is estimated with synthetic
tests of group-velocity regionalisation. The vertical resolution is
tested with synthetic tests of group-velocity inversion versus depth,
to retrieve the S-wave velocity.

We used checkerboard tests to investigate the model lateral res-
olution. We constructed synthetic group-velocity maps for the real
path coverage. The inversion was performed with the same cor-
relation length (800 km) and a-priori errors, as for the real data.
The resolution is considered good when the checkerboard image is
reconstructed. Figs A1(a) and (b) show that anomalies of 2000 km
width are well recovered for latitudes between 72◦N and 54◦S. At
higher latitudes, the resolution decreases due to the absence of seis-
mic stations. Figs A1(c) and (d) show that anomalies of 3000 km
width are well recovered between 81◦N and 54◦S.

We then tested the local group-velocity inversion versus depth to
retrieve the S-wave velocity model. Figs A1(e)–(h) show four syn-
thetic tests with two delta-like anomalies separated by 100 km. We
compare the case of two positive (e) and two negative (f) anoma-
lies and one positive and one negative anomaly (g) and (h). We
observe that the two anomalies are recovered and well separated in
all four cases. The inversion can resolve two anomalies separated
by 100 km in the depth range of 50–300 km with a smoothing ef-
fect that increases with depth. This vertical smoothing effect is due
partly to the smoothing parameters of the inversion, and mostly to
the different sensitivities of the surface waves with depth.

A2 Tomographic model comparison

We compared our HUM2 model with three published S-wave ve-
locity models. We selected the SV velocity model of Nishida et al.
(2009), which is the only other tomographic model derived solely
from hum data. It is here called NMK2009. They computed cross-
correlations between 54 stations and stacked 17 yr of correlograms.
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Figure A1. Synthetic tests to estimate the horizontal (a)–(d) and vertical (e)–(h) resolution. Synthetic group-velocity model with positive and negative
anomalies of 2000 km (a) and 3000 km (c) width. Inverted group-velocity map (b) and (d) corresponding to maps (a) and (b), respectively. Anomalies of
2000 km width are well recovered except at high latitude. (e)–(h) show synthetic (blue) and inverted (red) S-wave velocity models. The two delta-like anomalies
are separated by 90 km, and they are well recovered.

Their model is derived from 906 R1 trains and 777 R2 trains of
Rayleigh wave phase velocity measurements in the period band of
120–375 s. The two other models are obtained from earthquake
data. One model is the global upper-mantle SV velocity model of
Debayle & Ricard (2012), here called DR2012, which is derived
from 375 000 Rayleigh waveform seismograms. They used funda-
mental and higher Rayleigh mode phase velocity measurements.
The other model is from Auer et al. (2014), here called SAVANI,
which is a radially anisotropic S velocity model based on published
data sets of surface wave phase velocities and body-wave travel-
times.

We computed the Pearson’s correlation between the four models
as a function of depth as follows:

r =
∑

i (xi − x̄)(yi − ȳ)√∑
i (xi − x̄)2

√∑
i (yi − ȳ)2

(A1)

where xi and yi are velocity model perturbations at location (latitude,
longitude) i for model A and B, respectively, and x̄ and ȳ are
the means of xi and yi. Fig. A2 shows the correlation between all
four of these models. The correlation between our HUM2 model
and DR2012 and SAVANI is high, at about 0.90 between 80 and

Figure A2. Pearson correlations between our model (HUM2), and the three
published models: NMK2009 from Nishida et al. (2009), DR2012 from
Debayle & Ricard (2012) and SAVANI from Auer et al. (2014), as a function
of depth.
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Figure A3. S-wave velocity as a function of depth at four locations: Afar, the West Africa craton, the Dharwad craton and Cape Verde. Five models are plotted
for comparison: our model (HUM2) as reference with uncertainties, and the three published models: NMK2009 from Nishida et al. (2009) in light blue,
DR2012 from Debayle & Ricard (2012) in green and SAVANI from Auer et al. (2014) in dark blue. The PREM Vs model is plotted in black.

200 km in depth. Correlation between HUM2 and NMK2009 is
much lower, at 0.6, but similar to the correlation between SAVANI
and NMK2009, which is 0.7. This might be due to the lower reso-
lution of NMK2009, which is derived from a smaller data set than
the other models.

Below 80 km and above 220 km, correlations between all of the
models decrease. At shallow depths, this might be due to crustal
correction that might be differently implemented. At large depth
(deeper than 200 km), models HUM2, SAVANI and DR2012 have
different sensitivities due to the different seismic phases measured
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(fundamental mode, higher modes and/or body waves), which can
explain the decrease in the correlation. Our model is only derived
from the fundamental mode Rayleigh waves, and it progressively
loses resolution below 200 km in depth.

Fig. A3 shows a comparison of S-wave velocity models as a
function of depth for two cratons and two hotspots.

A P P E N D I X B : S - WAV E V E L O C I T Y
T R A N S - D I M E N S I O NA L I N V E R S I O N

This appendix describes the group-velocity inversion to retrieve the
local S-wave velocity model.

For a given S-wave velocity model, synthetic group velocities,
Usyn(T), as a function of periods, T, are computed following Saito
(1988). The sphericity of the Earth and the frequency dependence
of the S-wave velocity model are taken into account using the Earth
flattening transformation (Biswas & Knopoff 1970) and eq. (3) of
Dziewonski & Anderson (1981), respectively.

The S-wave velocity model to be retrieved is represented as a
weighted sum of B-spline basis functions defined as follows:

VS(z) = V 0
S (z) +

M−1∑
m=0

Vm Nm,2(z), (B1)

where Nm, 2(z) is the mth non-uniform quadratic B-spline basis func-
tion (De Boor 1978), M is the number of B-spline basis functions,
Vm are weight coefficients, V 0

S (z) is the a priori reference Earth
model that is composed of the crust2.0 model (Laske et al. 2013)
and the PREM with smoothed 220 km discontinuity. Whenever
the crust2.0 is thinner than the PREM crust, the PREM upper-
most mantle structure is extrapolated up to the bottom of the new
crust.

The trans-dimensional inversion is a composition of two nested
loops: for a given spline basis {Nm, 2}, the inner loop computes
the optimum model weight coefficients (Vm) and the outer loop
determines the optimum spline basis.

The inner loop uses the simulated annealing optimization algo-
rithm (Press 2007, chap. 10.9) to minimize the misfit function:

χ 2
d = 1

N

N∑
n=1

[
Uobs(Tn) − Usyn(Tn)

]2
/σ 2

d (Tn), (B2)

where Uobs and Usyn are the measured and synthetic group velocities,
Tn is the period, σ d is the measurement error and N is the number
of periods.

The outer loop uses the golden section search in one dimension
(Press 2007, chapter 10.1) to minimize the expression (χ 2

d + χ 2
m)/2

as a function of the number of splines M, where χ2
d is the result of

inner-loop minimization of eq. (B2) and χ 2
m is the model variance

quantity defined as:

χ 2
m = 1

M

M−1∑
m=0

σ 2
m/
2, (B3)

where 
 is the a-priori model variance that acts as a regularisation
parameter. We compute σ 2

m as the diagonal elements of the model
covariance matrix Cm, as estimated by (Menke 2012):

Cm = G−gCd G−gT , (B4)

Figure B1. (a) Misfit χ2
d and model variance χ2

m as functions of spline basis.
The integer values of parameter M correspond to the number of splines in
the bases and Mopt is the selected spline basis. (b) and (c) Spline bases for
M = 2.3 and M = 3.7, respectively.

where Cd is the data covariance matrix with diagonal elements
σ 2

d (Tn), G is the partial derivative matrix of the group veloc-
ity Usyn(Tn) with respect to the spline weight Vm, that is, Gmn =
∂Usyn(Tn)/∂Vm and ‘-g’ indicates the generalized inverse.

The number of splines M in the outer loop minimization can be
considered as continuous. This depends on the number of knots P
as follows: M = P − 3. P is calculated as the depth range of the
model divided by the variable interval between the knots. We start
from equidistant knots, the normalized depths of which are called
x, and convert these through the transformation y(x) = bx + (1 −
b)xa. The new knot depths are now condensed to the top of the
model. Figs B1(b) and (c) show two examples of B-spline bases
for M = 2.3 and M = 3.7, respectively, and their corresponding
knots (blue points). The functions χ 2

d and χ 2
m as a function of the

number of splines M are shown in Fig. B1(a), by the green and
blue lines, respectively. This illustrates a trade-off between fitting
the dispersion curves and model uncertainty. The best compromise
between these is for the optimal number of splines M = Mopt. It
was found by trial and error that optimal values for the parameters
a and b can be assigned arbitrarily in the intervals of 3 < a < 4,
0.2 < b < 0.4.
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