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$EVWUDFW� The competitive binding of rare earth elements (REE) to humic acid (HA) and 

carbonates was studied experimentally at various pH and alkalinity values by combining 

Ultrafiltration and Inductively Coupled Plasma Mass Spectrometry techniques. The results show 

that the REE species occur as binary humate or carbonate complexes but not as ternary REE-

carbonate-humate as previously proposed. The results also reveal the strong pH and alkalinity 

dependence of the competition as well as the existence of a systematic fractionation across the 

REE series. Specifically, carbonate complexation is at a maximum at pH 10 and increase with 

increasing alkalinity and with the atomic number of the REE (LuCO3 >> LaCO3). Modelling of 

the data using Model VI and recently published stability constants for complexation of REE by 

humic acid well reproduced the experimental data, confirming the ability of Model VI to 

accurately determine REE speciation in natural waters. This modelling also confirms the 

reliability of recently published stability constants. This work shed more light not only on the 

competition between carbonates and HA for REE complexation but also on the reliability of 

WHAM 6 and Model VI for calculating the speciation of REE with organic matter in alkaline 

organic rich-water. 

 �
.H\�ZRUGV� Rare earth elements, humic acid, carbonates, binding, speciation, ultrafiltration 
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���,QWURGXFWLRQ�
 

The hydrochemical behavior of Rare Earth Elements (REE) is strongly influenced by 

their solution speciation [1, 2]. Due to the complexation of REE by a large variety of ligands, 

only a small fraction of each REE occurs as free hydrated ions (Ln3+ - Ln as lanthanide) in 

circumneutral waters. In circumneutral waters, REE are mostly bound to humic substances (HM) 

such as fulvic acids (FA) and humic acids (HA) [3-5]. By contrast, in alkaline waters with high 

carbonates concentrations, REE complexation is generally dominated by carbonate complexes as 

LnCO3
+ and Ln(CO3)2

- [2, 5]. However, competition reactions between carbonates and organic 

matter for REE complexation have not yet been experimentally constrained. At present, accurate 

models of REE chemistry in natural waters are only dependent on experimentally determined (i) 

REE carbonates complexation constants [6-12] and (ii) REE humic substances constants [13-15]. 

However, since there is no experimental data about the competition between carbonates and 

organic matter for REE complexation, an important piece of information is missing. 

Previous studies [5, 16-18] based on speciation calculation of some REE (e.g., La3+, Eu3+, 

Lu3+)  concluded that organic complexes dominate for intermediate pH range (from pH 4 to 8) 

whereas carbonate complexes (Ln(CO3)2
-) are the predominant species at alkaline pH (> 8). 

However, as discussed by these authors themselves, speciation calculations may underestimate 

the LnHM complexes, especially at alkaline pH (> 8). They suggest that this could have 

significant effects on ternary inorganic-colloid-HM-Ln interactions [17, 19, 20]. They also 

suggested that Ln speciation would be dominated by interactions with humic material. The lack 

of experimental data regarding LnHM interactions at neutral-to-alkaline pH leads to 

extrapolation and the speciation results obtained for alkaline waters should be regarded with 

caution [18]. Takahashi et al. [21] calculated speciation of Ce3+, Eu3+ and Lu3+ in solution in the 

presence of humic acid. Hydroxide carbonates and humate complexes were considered. Unlike 

the studies above, their results suggest that LnHA complexes should be predominant in a wide 
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pH range (from pH 3 to 10.5), and even more at higher HA concentrations. Ln(CO3)2
- should be 

dominant at pH higher than 10.5. These observations are further illustrated by a new study 

considering Model VI fitted complexation constants between REE and HA. Model VI calculated 

high proportions of light REE (LREE) complexed with organic matter under alkaline pH 

conditions [15]. Comparison of REE speciation model calculations, taking into account organic 

ligands, shows strong differences between each model regarding the competition between humic 

substances and carbonates for REE complexation.  

In order to assess humic acid and carbonates competition for REE at alkaline pH, batch 

equilibration experiments with REE, Aldrich HA and carbonates were performed simultaneously 

for the 14 naturally occurring REE. This new dataset was obtained using an experimental method 

which combines an ultrafiltration technique and Inductively Coupled Plasma Mass Spectrometry. 

These experiments were designed to elucidate the pH range where REE-humate complexes 

would be dominant in natural organic-rich waters for various alkalinity concentrations and test 

whether significant formation of ternary complexes can take place in such conditions. Moreover, 

Humic Ion Binding Model VI included in WHAM 6 - a model that does not considered ternary 

surface complexes - was used to model the binding of lanthanides to humic substances [22]. This 

study should also evidence the ability of the newly determined HA-REE binding constants [15] 

to accurately predict the speciation of REE in alkaline waters.  

  

���0DWHULDOV�DQG�0HWKRGV�

�
2.1. Experimental Binding of Rare Earth Elements by Humic Acid and Carbonates 

  

All chemicals used were of analytical grade, and all the experimental solutions were 

prepared with doubly deionized water (MilliQ system, Millipore™). Complexes were prepared in 

polyethylene containers previously soaked in 10 % Ultrapure HNO3 for 48 h at 60 °C, then rinsed 
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with MilliQ water for 24 h at 60 °C to remove all possible REE contamination sources. Synthetic 

REE solutions were prepared from nitrate REE standards (10 ppm, Accu Trace™ Reference 

Standard). All experiments were carried out at room temperature, i.e. 20 °C ± 2.  

 

�������+XPLF�DFLG�
 

Purified humate, referred to below as HA (humic acid), was obtained from Aldrich™ 

humic acid (Aldrich™, H1, 675-2) following the protocol described by Vermeer et al. [23]. HA 

sample was freeze-dried and stored in a glass container at room temperature. HA obtained was 

ash free and in its protonated form, with the following elemental composition (in weight 

percent): C = 55.8 %, O = 38.9 %, H = 4.6 %, N = 0.6 %. REE concentrations in HA were below 

the detection limit of ICP-MS method (i.e. below 1 ppt). HA has a mean molecular weight of 23 

kDa [23]. Prior to use, the freeze-dried humate was resuspended overnight in an 0.001 mol L-1 

NaCl electrolyte solution at pH = 10, to ensure complete dissolution of the sample [24, 25]. 

 

�������([SHULPHQWDO�VHW�XS��
 

REE complexation with HA and carbonates was investigated using a standard batch 

equilibration technique. 100 mL of solutions were prepared with 50 ppb of each REE (e.g., 360 

nmol L-1 La to 286 nmol L-1 Lu), 5 mg L-1 of HA and various concentration of NaHCO3 (from 

10-3 to 10-2 mol L-1) in a 10-3 mol L-1 NaCl-solution. Prior to addition of NaHCO3, the pH of the 

solution was approximately 4. The initial hydroxide concentration was negligible and 

concentration of LnOH2+ was therefore minimal. After addition of NaHCO3, pH was adjusted to 

the tested pH range, from 6 to 11 by adding NaOH (4 mol L-1). The pH was measured with a 

combined Radiometer Red Rod electrode. The electrode was calibrated with WTW™ 

standard solutions (pH 4, 7 and 10). The accuracy of the pH measurement was ± 
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0.05 pH unit. Experimental solutions were stirred for 48 h (the equilibrium time was 

determined from preliminary kinetic experiments) to allow equilibration and partitioning of REE 

between the aqueous solution and the humate suspension. Aliquots of 10 mL were sampled 

twice: at the beginning of the experiment; and after 48 h at equilibrium state. REE complexed by 

the HA were separated from the remaining inorganic REE by ultrafiltration. Ultrafiltrations were 

carried out by centrifugating the 10 mL solution samples through 15 mL centrifugal tubes 

equipped with permeable membranes of 5 kDa pore size (Millipore Amicon Ultra-15). All 

centrifugal filter devices used were washed and rinsed with 0.1 mol L-1 HCl and MilliQ water 

two times before use in order to minimize contamination. Centrifugations were performed using 

a Jouan G4.12 centrifuge with swinging bucket rotor at 3000 g for 30 minutes. This allowed the 

REE-HA complexes to be quantitatively separated from inorganic REE species. The selectivity 

of the 5 kDa membrane regards to the REE-HA complexes was verified by monitoring the 

Dissolved Organic Carbon (DOC) contents of the ultrafiltrates. Results show that the latter were 

systematically lower or equal to blank values (below 0.1 ppm). Possible adsorption of inorganic 

REE species onto the membrane or onto cell walls was also monitored. Inorganic REE solutions 

of given REE concentration were ultrafiltrated several times. Results showed that between 98.91 

(for Ho) and 99.98 % (for Yb) of the REE present in solution were recovered in the ultrafiltrates, 

demonstrating that none REE were adsorbed either on the membranes or on the walls of the cell 

devices. 

Amount of REE complexed with HA correspond to the difference between the initial REE 

concentration and the remaining REE concentration into the < 5 kDa ultrafiltrates. REE 

concentrations were determined by using an Agilent Technologies™ HP4500 ICP-MS instrument. 

Quantitative analyses were performed using a conventional external calibration procedure. Three 

external standard solutions with REE concentrations similar to the analyzed samples were 

prepared from a multi-REE standard solution (Accu Trace™ Reference, 10 mg L-1, USA). Indium 

was added to all samples as an internal standard at a concentration of 0.87 µmol L-1 (100 ppb) to 
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correct for instrumental drift and possible matrix effects. Indium was also added to the external 

standard solutions. Calibration curves were calculated from measured REE/indium intensity 

ratios. The instrumental error on REE analysis in our laboratory as established from repeated 

analyses of multi-REE standard solution (Accu Trace™ Reference, USA) and of the SLRS-4 

water standard is below ± 2 % [4, 25]. Chemical blanks of individual REE were all lower than 

detection limit (1 ppt), which is negligible since they are three to four orders of magnitude lower 

than the concentrations measured in the synthetic solutions used for the complexation 

experiments. DOC concentrations were determined using a Shimadzu 5000 TOC analyzer. The 

accuracy of DOC concentration measurements is estimated at ± 5 % as determined by repeated 

analyses of freshly prepared standard solutions (potassium biphtalate). Carbonates concentrations 

were determined by potentiometric titrations (HCl 0.1 mol L-1), with Gran method analysis. The 

uncertainty is better than 5 %.  

In order to check that no retention of REE or carbonates occurs inside the membrane 

during ultrafiltration, mass balance calculations were performed. The initial concentration of 

each element is compared with the sum of each element concentration in the ultrafiltrate and in 

the retentate. In the presented experiments, mass balanced calculations show that > 98 % of the 

REE and > 95 % of the carbonates and DOC were recovered. Moreover, in order to verify that no 

precipitation occurs, samples were filtrated at 0.2 µm before ultrafiltration. Concentrations of 

REE, HA and carbonates were systematically identical within analytical uncertainties in the 0.2 

µm filtrates and the raw samples. 

 

2.2. WHAM 6 and Humic Ion Binding Model VI 

�
WHAM 6 (version 6.0.10), incorporating Humic Ion Binding Model VI (Model VI), was 

used to calculate REE speciation in the batch experiments. Model VI has been described in detail 

by Tipping [22]. The model is a discrete binding site model in which binding is modified by 
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electrostatic interactions. There is an empirical relation between the net humic charge and an 

electrostatic interaction factor. The discrete binding sites are represented by two types of sites 

(types A and B), and within each type of site there are four different sites present in equal 

amounts. The two types of sites are described by intrinsic proton binding constants (pKA and 

pKB��DQG�VSUHDGV�RI�WKH�YDOXHV�� S.A�DQG� S.B) within each type of sites. There are nA (mol g-

1) A-type sites (associated with carboxylic type groups) and nB = nA/2 (mol g-1) B-type of sites 

(often associated with phenolic type groups). Metal binding occurs at single proton binding sites 

or by bidentate complexation between pairs of sites depending on a proximity factor that defines 

whether pairs of proton binding groups are close enough to form bidentate sites. Type A and 

Type B sites have separate intrinsic binding constants (log KMA and log KMB), together associated 

ZLWK�D�SDUDPHWHU�� /.1, defining the spreads of values around the medians. A further parameter, 

/.2, takes into account a small number of stronger sites. By considering results from many 

GDWDVHWV��D�XQLYHUVDO�DYHUDJH�YDOXH�RI� /.1 is obtained, and a correlation established between log 

KMB and log KMA [22]. Then, a single adjustable parameter (log KMA) is necessary to fully 

describe metal binding. Generic parameters for HA are presented in Table 1. WHAM 6 databases 

were modified and included new log KMA for REE complexation with humic acid [15] and well-

accepted, infinite dilution (25°C) stability constants for REE carbonates complexes [11]. 

 

���([SHULPHQWDO�5HVXOWV�

�
Experimental data are reported for three REE (La, Eu and Lu) in Table 2 and illustrated in 

Fig. 1. Competition between HA and carbonates for REE complexation is examined by 

considering the mass fraction inorganic REE species as a function of pH. The complementary 

fraction is made up of REE organic complexes. Based on speciation calculations of the inorganic 

fraction using WHAM 6, REE were shown to consist mostly of carbonate complexes. In these 

experimental conditions (see section 2.1), hydroxide and free species are only present at very low 
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concentrations (as regards to speciation calculations < 0.2 % and < 3.8 % of the inorganic 

fraction for La, respectively). Two REE-carbonate complexation reactions are considered in Fig. 

1 and described by the following equations: 

Ln3+ + CO3
2-  LnCO3

+       [1] 

Ln3+ + 2 CO3
2-  Ln(CO3)2

-       [2] 

whereas humic complexation are described by the following equation: 

 Ln3+ + HA- �LnHA2+        [3] 

 

As shown in Figure 1, LnCO3
+ and Ln(CO3)2

- concentrations depend strongly on the pH- 

and the carbonate content. LnCO3
+ concentrations decrease with pH increase whereas Ln(CO3)2

- 

concentrations increase while pH increases. Moreover, Ln(CO3)2
- and LnCO3

+ concentrations 

increase with the solution alkalinity. The slight "bump" in the pH range 8-8.5 corresponds to the 

competitive reaction between mono- (Eq. [1]) and di- (Eq. [2]) carbonato-complexation 

reactions. This "bump" is more significant for LREE than for heavy REE (HREE), a result 

consistent with the difference in complexation constants of LREE- and HREE-carbonate 

complexes [11]. Thus, a fractionation is apparent between LREE and HREE regarding their 

complexation to carbonate. Let’s consider for example a pH 10 value of alkalinity 10-2 mol L-1 

and the results observed under these conditions. Only 15 % of La is bound to carbonate whereas 

30 % of Eu and up to 60 % of Lu are bound to carbonate. Moreover, carbonate concentrations 

were systematically identical in the ultrafiltrates and in the initial batches (within the uncertainty 

of the measures). Calculation considering that 1:1:2 ternary complexes could be formed were 

performed and further demonstrate that no carbonate was bound to HA in our experiments (Ln 

concentrations are several order of magnitude higher than maximum CO3
2- concentration 

variation between ultrafiltrates and initial batches). Consequently, no additional interactions 
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between metal (Ln3+), ligand (CO3
2-) and surface (HA) occurred demonstrating that ternary 

surface complexes did not develop.  

 

���'LVFXVVLRQ�
 

4.1. Lack of evidence of ternary complexe formation 

�
A common question when dealing with metal (M) speciation in systems containing humic 

substances (HS) such as HA and inorganic ligands (L) such as carbonate is, whether or not, 

ternary complexe (M-HA-Lm with m corresponding to the ligand stoechiometry), can form.  

Information about ternary complex formation in the literature is scarce, especially 

concerning REE. Even if such a mechanism was suggested for REE (e.g., [17]), only a few 

experimental studies brought direct evidence for possible formation of such complexes [19, 20]. 

Dierckx et al. [19] provided evidence for mixed-ligand complex formation of Eu3+ with humic 

acid and inorganic ligands (i.e., CO3
2-). However, the interpretation of Dierckx et al. [19] left 

some open questions, as they observed formation of either M-HA or M-HA-L�  complexes 

formed across the whole range of L concentrations, without observing the formation of M-HA-L �  

complexes. These observations are unusual with respect to common experiences found with 

inorganic ligands and oxide-based surfaces (e.g., [26]). Moreover, Glaus et al. [27, 28] have 

shown that the formation of mixed-ligand-humic complexes is rather weak as compared to the 

formation of simple ligand-complexes with inorganic ligands. Ternary-humic complexes appear 

thus less important than predicted by the data of Dierckx et al. [19].  

A possible explanation for the absence of ternary complex formation in the present work 

might be the electrostatic repulsion between the negatively charged HA and Ln-CO3. Due to the 

polyelectrolyte character of HA, this repulsion is stronger than that occurring between low-

molecular weights ligands. Schindler [26] reported that ternary complexes with SiO2 and TiO2 
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surfaces are rather weak. Both surfaces are negatively charged at the pH of Schindler’s 

experiments and can therefore be considered as analogues to HS. Ternary surface complexes are 

thus not as important as previously stated and do not need to be considered in REE speciation 

calculation in systems dominated by organic and alkaline water. 

 

4.2. Competition between humic acid and carbonates for REE complexation  

 

In order to further constrain the competition between humic acid and carbonates for REE 

complexation, calculation using Model VI in WHAM 6 were performed. Calculations were 

conducted using Model VI in which a new determined log KMA dataset for HA-REE 

complexation was integrated [15]. These log KMA values were estimated from REE complexation 

by HA experiments without any competing effect. The log KMA values range from 2.58 ± 0.16 

(for La) to 2.65 ± 0.15 (for Eu); these latter being slightly higher than the one estimated by Lead 

et al. [18] (2.36 ± 0.13). These calculations only considered trivalent REE species. Speciation 

calculations are illustrated on Figs. 1.2a, b and c for La, Eu and Lu, respectively, for the three 

experimental conditions (i.e. increasing alkalinity and pH). In particular, Model VI reproduced 

quite well the observed dependence of the proportion of carbonate complexes with pH and 

alkalinity. However, the observed experimental "bump" is not modelled by Model VI. This is due 

to the fact that only Ln complexation with two CO3
2- is predicted whereas Ln complexation with 

a single CO3
2- is overwhelmed by competition with HA (Fig. 1.2). Comparison between 

experimental and calculated values evidences that Model VI slightly underpredicts (0 to 11 %) 

REE complexation by carbonate (Figs. 1.2a, b and c). Root mean square error (rmse) values 

represent the sum of the squares of the difference between observed and calculated values. As 

indicated by the rmse systematically below 0.06 (Fig. 1.2), fits can be considered of good quality, 

even if rmse values increase when competition between HA and carbonates is more developed 



 12

(i.e., for alkalinity of 10-2 mol L-1). Overall, it is clear that LREE to Middle REE (MREE) are 

strongly bound to HA whereas HREE are more shared between HA and carbonate fractions.  

More in detail, pH is a crucial parameter affecting binding, since it regulates competition 

between HA and carbonates. Carbonate complexation mostly affects REE speciation in alkaline 

waters (pH above 8.5). These observations validate both the use of Model VI [22] and of 

the log KMA (REE-HA) dataset determined by Pourret et al. [15] to confidently predict REE 

speciation in natural alkaline waters. As stated by Tipping [22], an important issue in increasing 

WHAM and Model VI capacity to perform chemical speciation calculations for field situations is 

whether significant formation of ternary complexes takes place. Simulations on some trace 

metals may have indeed significantly underestimated the extent of metal binding as compared to 

observation especially when binding occurs through the formation of ternary complexes [29]. As 

evidenced by experimental results, none ternary surface complexation occurs between REE, HA 

and carbonate. WHAM 6 is thus applicable to calculate REE speciation in natural water even if it 

does not take into account ternary surface complexation. This study combined with a previous 

one [30] now covers a wide range of natural conditions and shows that WHAM and Model VI 

are reliable in calculating the speciation of REE with organic matter in acidic and circumneutral 

DOC-rich ground- and river waters [30] and in alkaline organic rich-water (this study). These 

results suggest that dissolved organic complexes of the REE are more important than carbonates 

complexes for LREE to MREE and as important for HREE in World Rivers. As previously 

suggested by Tang and Johannesson [5], the role played by organic material to complex REE 

increases our understanding of REE cycling in the hydrosphere. This also questions the fact that 

carbonate complexes could dominate the REE cycle in circumneutral pH-low carbonate 

concentrations fresh waters. 

 

���&RQFOXVLRQV�
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Experimental studies of HA and carbonate competition for REE complexation were carried 

out for the 14 naturally REE simultaneously. Experimental method combines an ultrafiltration 

technique and ICP-MS to determine REE concentrations in the different pools. Competition 

between HA and carbonates for REE complexation is pH- and carbonate concentration-

dependent. There is no evidence of any ternary surface complex as previously proposed (e.g., 

[19]). These experiments elucidate the pH range where humate complexes could be the dominant 

species of REE(III) in natural organic-rich waters, for various alkalinity concentrations. 

Carbonates are the only REE predominant species for HREE at higher alkalinity concentrations, 

above pH 8.5. A fractionation develops between LREE and HREE relative to REE complexation 

to carbonates, especially at higher alkalinity. Modelling calculations were performed with Model 

VI [22]. Calculations were consistent with experimental result, namely the pH- and carbonate 

concentration-dependence. The results show the influence of the competitive reactions between 

carbonates and HA for REE complexation at alkaline pH. All these observations allow 

validating the log KMA (REE-HA) dataset [15] that can be, therefore, used with confidence to 

predict REE speciation in natural alkaline waters. They also evidence the reliability of WHAM 6 

and Model VI in calculating the speciation of REE with organic matter in alkaline organic rich-

water, as ternary surface complexes do not need to be modelled. Overall, the results of this study 

suggest that further considerations about organic matter should be taken into account especially 

at alkaline pH in organic-rich waters.  
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Table 1. Model VI parameters for humic acid [22]. 

 

Table 2. Proportion of Ln species in the ultrafiltrate. 

 

Fig. 1. Proportion of inorganic species for (a) La, (b) Eu and (c) Lu (experimental concentrations: 

50 ppb of each REE, 5 mg L-1 of HA and alkalinity of 10-2 mol L-1). Squares represent 

experimental data points (proportion of species in the ultrafiltrate), whereas solid lines represent 

modelled total inorganic species, dash lines modelled LnCO3
+ and dot lines modelled Ln(CO3)2

- 

(see text for details). 

 

Fig. 2. Comparison between Model VI calculations and experiments. Proportion of lanthanides 

bound to carbonates as a function of pH for various alkalinities: (a) La, (b) Eu and (c) Lu. 

 



 19

 
Parameter Description Values 
nA Amount of type A sites (mol g-1) 3.3 10-3  
nB Amount of type B sites (mol g-1) 0.5 x nA 
pKA Intrinsic proton dissociation constant for type A sites 4.1  
pKB Intrinsic proton dissociation constant for type B sites 8.8  
¨S.A Distribution terms that modifies pKA 2.1  
¨S.B Distribution terms that modifies pKB 3.6 
log KMA Intrinsic equilibrium constant for metal binding at type A sites From experimental data [15] 

log KMB Intrinsic equilibrium constant for metal binding at type B sites 3.39 log KMA -1.15 
¨/.1 Distribution term that modifies log KMA 2.8 (REE) 
¨/.2 Distribution term that modifies the strengths of bidentate and tridentate sites 0.55 log KNH3 = 0.29 (REE) 
P Electrostatic parameter -330 
Ksel Selectivity coefficient for counterion accumulation 1 
M Molecular weight 15000 Da 
r Molecular radius 1.72 nm 

 

Table 1.  



 

 

Alkalinity: 10-3 mol L-1 Alkalinity: 5 10-3 mol L-1 Alkalinity: 10-2 mol L-1 
pH La Eu Lu pH La Eu Lu pH La Eu Lu 

6.64 0.36 0.44 0.67 6.81 2.83 3.55 6.02 7 3.55 6.81 21.76 
7.02 0.37 0.5 0.68 7.37 3.92 5.28 10.95 7.48 7.25 11.7 30.89 
7.09 0.53 0.64 0.85 8.05 5.71 8.17 14.8 8.11 6.29 11.93 31.63 
7.45 0.43 0.51 0.7 8.6 3.68 6.95 18.42 8.71 5.61 15.73 42.77 
8.26 0.5 0.57 0.71 9.1 5.41 10.58 26.16 9.03 8.39 21.35 50.42 
9.03 0.43 0.47 0.55 9.58 10.86 18.04 33.13 9.53 11.37 27.21 57.76 
9.84 0.29 0.25 0.25 10.04 5.46 13.43 31.58 10.04 13.56 30.77 59.5 

10.49 0.55 0.62 0.77 10.57 5.08 6.86 10.81 10.5 12.01 23.98 51.16 
 
Table 2.  
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