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[1] Fractional flow models introduced by Barker (1988) have been increasingly popular
as means of interpreting nonclassical drawdown curves obtained from well tests.
Fractional flow models are intrinsically isotropic scaling models depending to first
order on two exponents n and dw expressing the dimension of the structure available to
flow and the flow slowdown, respectively. We study the fractional flow induced either
by geometrically scaling structures such as Sierpinski- and percolation-like fractal
media or by hydraulically scaling media such as long-range continuous correlated media.
First, percolation and Sierpinski structures have two well-separated dw values in the
range [2.6, 3] and [1.9, 2.5], respectively. The bottlenecks, characteristic of percolation,
induce a more anomalous transport (larger dw values) than the impervious zones
present at all scales of Sierpinskis. Second, the realization-based values of n and dw
depend both on global and on local characteristics like the fractal dimension and the
permeability around the well, respectively. Finally, solving the inverse problem on
anomalous transient well test responses consists in comparing the (n, dw) realization-based
values with field data. Indeed, well tests performed from a unique pumping well
must be taken as realization-based results. For the site of Ploemeur (Brittany, France),
from which n and dw have been previously determined (Le Borgne et al., 2004),
the only consistent model is given by the continuous multifractals. However, the
values obtained from continuous multifractals cover most of the (n, dw) plane, and
realization-based results are not selective in terms of model. So this should be replaced
by the comparison of (n, dw) values averaged over different pumping well locations,
which however requires a significantly larger quantity of field tests.

Citation: de Dreuzy, J.-R., and P. Davy (2007), Relation between fractional flow models and fractal or long-range 2-D permeability

fields, Water Resour. Res., 43, W04431, doi:10.1029/2006WR005236.

1. Introduction

[2] In the last 15 years, interest has increased in fractional
flow models, both for interpreting well tests and for repre-
senting the medium heterogeneity using models specified
by a very limited number of parameters (three or four
parameters in practice). Fractional flow models originate
from field and theoretical studies. Field data have shown
nonstandard drawdown responses and, at the same time,
theoretical works have postulated the existence of fractional
flow models generalizing the classical one-, two-, and three-
dimensional models. Fractional flow models have been
found to explain some observed nonstandard drawdown
responses to well tests.
[3] Neither the field nor the theoretical studies on frac-

tional flow models provide clear indications on the under-
lying medium heterogeneity that produce such nonstandard
behaviors. No systematic relationship between the medium

heterogeneity and the fractional flow models has been estab-
lished, whether practically or theoretically. Consequently,
although this class of models appears to be more efficient
than others in fitting pumping tests in heterogeneous
aquifers [Le Borgne et al., 2004], the absence of a physical
understanding of the model parameters makes the generali-
zation of the fitting results to a larger geological system, and
even to different pumping geometries, questionable.
[4] The relationship between heterogeneity and nonstan-

dard drawdown response for a particular media has been
searched for both in the physics literature in the frame-
work of anomalous diffusion characterization [Havlin and
Ben-Avraham, 1987] and in the hydrogeology literature.
However, no systematic relationship has been investi-
gated. The heterogeneity types inducing a nonstandard flow
response should include a scaling dependence of their physi-
cal properties. Starting from this argument, three types of
structures can be tested based on the scaling of the geomet-
rical structure, the scaling of the permeability structure, or
both. The geometrically scaling structure corresponds to
fractals, i.e., to structures displaying holes at all scales of
the medium. In this paper, holes designate impervious zones.
The hydraulically scaling structures correspond to conti-
nuous media with long-range correlations. This paper deals
with these two cases of geometric or hydraulic structures.
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[5] The remainder of this paper is organized as follows.
In sections 2 and 3, we provide the theoretical and field
arguments for fractional flow models. In sections 4 and 5,
we give the relationship between heterogeneity and draw-
down responses in several fractal media and in long-range
continuous correlated media. We synthesize the largest
possible number of geometrical and hydraulic exponents.
These results come from both the bibliography and the
transient flow simulations performed for this study. Finally,
in section 6, we compare the abovementioned results with
field data.

2. Theoretical Fundamentals About Fractional
Flow Models

2.1. Generalized Equations and Hydraulic Exponents

[6] Fractional flow models have been theoretically pro-
posed as a generalization of one-, two-, and three-dimensional
homogeneous media in order to interpret well tests in frac-
tured media [Barker, 1988]. Their main parameter is the flow
dimension n ranging from 1 to 3. n generalizes the Euclidean
dimension to which it is equal for models of integral dimen-
sion. Their equation writes:

S
@h

@t
¼ 1

rn�1
� @
@r

rn�1 � K � @h
@r

� �
; ð1Þ

with S and K the generalized storage and permeability
coefficients, respectively. With the head equal to zero
everywhere for t = 0 and to infinity at whatever t, the
general solution of this equation is as follows:

h r; tð Þ ¼ hr rð Þ � G n

2
� 1;

tc rð Þ
t

� �
; ð2Þ

where hr(r) is a time-independent function, G is the comple-
mentary incomplete gamma function and tc scales as r2.
Solution (2) yields for long times (t > tc) a general power
law or logarithmic dependence on time h0(t) of the
drawdown at the well (head at the injection point). For a
constant-rate pumping test, the drawdown at the well is a
power law of characteristic exponent 1 � n/2 for n 6¼ 2
(h0(t) � t1�n/2) and the classical logarithmic function of
Theis [1935] for n = 2 (h0(t) � ln(t)). The characteristic
exponent can take all values in the range [�0.5, 0.5] and
thus provides a means of interpreting a wide range of field
flow tests (see section 3).
[7] Diffusion in Barker’s generalized radial flow model

always remains normal because the mean square radius of
diffusion R2(t) scales linearly with time t. This is shown by a
simple dimensional analysis of equation (1). It means that
the ‘‘speed’’ of diffusion measured by the diffusion coeffi-
cient D = R2/2t remains constant. Barker’s generalized
radial flow models have been further generalized by Acuna
and Yortsos [1995] referring to works by O’Shaughnessy
and Procaccia [1985] to account for the anomalously slow
diffusion observed in fractal media and caused by the
presence of holes at all scales of the medium. The fractal
dimension df and the anomalous diffusion dw are both taken
into account. dw is asymptotically defined from the mean

square radius of diffusionR2(t) by [Havlin and Ben-Avraham,
1987]:

R2 tð Þ � D � t2=dw ; ð3Þ

where D is the generalized diffusion coefficient and dw is
equal to 2 for homogeneous media whatever the Euclidean
embedding dimension and greater than 2 for anomalously
slow diffusion. The simplest diffusion equation accounting
for both the fractal dimension and the anomalous diffusion
writes [O’Shaughnessy and Procaccia, 1985]:

S
@h

@t
¼ 1

rdf�1
� @
@r

rdfþ1�dw � K � @h
@r

� �
; ð4Þ

with S and K the generalized storage and permeability coef-
ficients, respectively. Several other equations have been later
proposed, and the existence as well as the exact form of the
diffusion equation remains an open question [Roman, 2004].
However, for constant-rate pumping tests, the head at the
well always scales as h0(t) � t1�df /dw. Compared to Barker’s
model, the hydraulic dimension n is related to dw and df by:

n ¼ 2 � df
dw

: ð5Þ

[8] In a normal diffusion (dw = 2), n is equal to df, so n
has often been mistaken for the fractal dimension. In fact,
because n is proportional to df (5), a denser medium having
a larger fractal dimension df has a larger flow dimension.
However, n is also inversely proportional to dw, showing
that the slowdown of diffusion due to a lack of connectivity
reduces the flow dimension. As n and dw are scaling
exponents, it is implicitly assumed that the scalings of
R2(t) and h0(t) are consistent over several orders of magni-
tude. This should not be confused with a medium under-
going a transition of dimension at a given scale [Barker,
1988]. Such transition models have especially been proposed
for fracturedmedia. The flow dimension increases from 1 to 3
when flow is localized around the well in one-dimensional
structures, farther from the well in two-dimensional planes
and possibly in full three-dimensional networks at larger
scales. When drawdown is observed over a limited time
range, the transition of dimension can be mistaken for the
nonintegral flow dimension.

2.2. Relationship Between Exponents

[9] There is a full analogy between the classical flow equa-
tion and the diffusion equation as long as the relationship
between hydraulic head and flow remains linear [Havlin and
Ben-Avraham, 1987]. The diffusion equation governs the
probability P(r, t) of finding a diffusing particle at time t
and position r. Its counterpart in the flow equation is the head
h(r, t). Practically, the pulse test gives a good example to
express this analogy. Performing a pulse test at a given well is
analogous to injecting a pulse of particles at the initial time at
the well position. The counterpart of the drawdown at the
well h0(t) in the physics of diffusion is the probability for a
particle to return to its injection position at time t.
[10] The analogy between flow and diffusion equations

leads to a relationship between the diffusion and the
hydraulic conductivity known as the relation of Einstein
[Havlin and Ben-Avraham, 1987]. In electric terms, the
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conductivity s is proportional to the apparent diffusivity
Dapp(R) = R2/t multiplied by the density of charge carrier n:

s � n � Dapp: ð6Þ

From the analogy between electricity and fluid mechanics,
s is equivalent to K and n is equivalent to the density of the
support. These quantities scale with length R asKðRÞ � R�~m,
Dapp(R) = R2�dw, and n(R) � Rdf�d, where ~m is the exponent
of the permeability scaling and d is the embedding Eucli-
dean dimension. Equation (6) leads to the following rela-
tionship between the two hydraulic exponents ~m and dw:

dw ¼ 2� d þ df þ ~m: ð7Þ

[11] The transient exponent (more typically called anom-
alous diffusion exponent) dw can be theoretically derived
from the steady state exponent ~m. While hydraulic expo-
nents can be universally interrelated by equation (7), there is
no general way of getting the hydraulic exponents from the
geometrical exponents [Stauffer and Aharony, 1992]. Such a
relationship was the object of the conjecture of Alexander
and Orbach [1982]. It hypothesized that the so-called
spectral dimension ds (equal to n in equation (5)) is an
invariant for fractals:

ds ¼ n ¼ 2
df

dw
¼ 4

3
ð8Þ

[12] Numerical simulations on the Sierpinski gasket and
on percolation clusters first supported this conjecture and
later discarded it [Grassberger, 1999]. However, it explains
that n values are clustered around 4/3 for a broad range of
two-dimensional systems including percolation clusters and
Sierpinski gaskets.

3. Field Relevance of Fractional Flow Models

3.1. Practical Determination of n and dw
[13] h0(t) and R2(t) can be practically determined from

field tests as it was done with the crystalline aquifer in
Ploemeur (France) [Le Borgne et al., 2004]. h0(t) is directly
the head variation at the injection well. R2(t) is more difficult
to obtain because it supposes the knowledge of the diffusion
front in the medium. It can, however, be derived from the
drawdown observation at several points. Fitting the draw-
down at a piezometer at a distance r from the injection well
with function (2) yields a characteristic time tc(r), which is the
reciprocal function of R2(t). As a result, tc scales as the square
of r in Barker’s model and generalizes to tc(r) � rdw with
anomalous diffusion. The scaling of tc as a function of r is
best determined when the drawdown has been observed
over the widest possible range of distances from the well.
The piezometer network should cover the widest possible
range of distances from the well. Fitting tc(r) against r in a
bi-logarithmic graph gives dw. For sufficiently long well
tests, h0(t) and tc(r) are defined over orders of magnitude,
and provided that h0(t) and tc(r) are consistent power laws,
their exponents are equal to �n/2 and dw, respectively.

3.2. A Review of n Exponents Provided by Field
Well Tests

[14] The Generalized Radial Flow model has been most
generally assessed on drawdowns at the well and at distant

piezometers but without determination of tc(r). This kind
of analysis leads to the generalized flow dimension n. The
n value gives a first indication of the relevance of fractional
flow models. Characteristic n values in tested fields are
summed up in Table 1. Exponent n is consistently determined
over 1 to 3.7 orders of magnitude and ranges from 0.2 to
2.5. Most of the exponents larger than 2 are obtained from
packer tests in intervals ranging from 2 to 10 m and for
restricted investigation times (less than 24 h) [Kuusela-
Lahtinen et al., 2003]. In such tests, the active well interval
is punctual (zero-dimensional) with respect to the three-
dimensional medium. The test yields a sampling at early
time of a space of dimensions 2 to 3 corresponding to a space
between a plane and a volume. For fields where several
piezometers have been observed, values of the flow dimen-
sion n are more often clustered around a given value [Acuna
et al., 1992;Hamm and Bidaux, 1996; Le Borgne et al., 2004;
Leveinen, 2000] than dispersed [Acuna et al., 1992; Bangoy
et al., 1992]. In the study of Bangoy et al. [1992], the time
range is the smallest and may not be wide enough to get
consistent tendencies leading to dispersed n values. In the
tests reported from the Geysers geothermal field by Acuna
et al. [1992], values of n are obtained in three different
wells contrary to the other reported tests, for which values
are obtained from different piezometers. For tests per-
formed from a given full well and that are long enough
to yield consistent power law drawdown signals, values of
n obtained in the well and in the distant piezometers are
clustered around a given value. The dimension n ranges
between 0.94 and 2.32 with most of the values between 1.4
and 1.75. As expected when pumping in the whole well
and except for the 2.32 value, all n values are lower than 2.
Finally, the table does not show any difference between
sedimentary and crystalline rocks. The dimension could be
more influenced by the nature, density, and organization of
fractures that require more geophysical characterization.

3.3. Exponent dw in the Ploemeur Site

[15] Exponent dw is more difficult to derive as it requires
the existence of piezometer drawdowns at different distances
from the pumped wells. This experiment has been completed
in the field site of Ploemeur (Brittany, France) where pie-
zometers are gradually disposed from 4 to 300 m from the
pumped well [Le Borgne et al., 2004]. Results show that the
anomalous diffusion exponent dw is significantly larger than
2 and contained in the interval [2.5, 3.8] with a most probable
value at 2.8, depending on the fitted n value.
[16] These results obtained in different sites show first

that the classical homogeneous two-dimensional interpreta-
tion of Theis [1935] for which n = 2 and dw = 2 fails to fit
the previously mentioned data. Second, h0(t) and tc(r) are
consistent power laws of which exponents lead to n and dw
characterizing the time evolution of the drawdown and the
diffusion rate of the well test-induced perturbation.

4. Flow and Anomalous Diffusion Exponents n
and dw in Fractal Media

[17] Among the wide spectra of existing fractals, the most
commonly used for porous media are Sierpinski- and
percolation-like structures [Acuna and Yortsos, 1995;
Berkowitz and Balberg, 1993]. We have used both
numerical simulations and results from the bibliography
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to synthesize the largest possible number of geometrical
and hydraulic exponents (results are synthesized in (Table 2).
When numerical simulations are necessary, the fractal di-
mension is determined by the box counting method [Feder,
1988]. The hydraulic dimensions n and dw are determined by
simulating transient flow with an injection point at the grid
center and constant heads on the borders. A head pulse is
imposed at the initial time. The flow equation is discretized
with a finite volume scheme integrated in the time domain
with a backward differentiation method, i.e., a multistep
scheme in time [Hindmarsh, 1983]. The anomalous diffusion
exponent dw is deduced from the power law fit of the square
radius of diffusion R2(t) of the drawdown. The hydraulic
dimension is the power law exponent derived from the power
law fit of the drawdown at the injection point. Fits are taken in
a well-bounded time range from the exit time of the injection
link to the exit time of the system. The exit time of the
injection link is the time at which the mean radius of diffusionffiffiffiffiffiffiffiffiffiffi

R2 tð Þ
p

is equal to the scale of the mesh link that contains the
well. The exit time of the system is the time at which 1% of
the injected flow has crossed the borders. In practice, it means
that signals are fitted after diffusion has left the link of the
well and before diffusion has reached the system borders. The
system size is generally taken as 44 = 256 or 35 = 243. First,
we validate the numerical method on annular media. We
check that the scale-dependent permeability K(r) � r�q

induces an anomalous diffusion exponent dw = 2 + q
whatever q in [�0.5, 1.0]. Second, we validate the numerical
procedures on classical percolation and on the Sierpinski
gasket. For the classical off lattice infinite cluster at perco-
lation threshold and L = 50 (Figure 5a), we find numeri-
cally dw = 2.96 instead of dw = 2.86 over 50 realizations

and n = 1.3 as expected. For the Sierpinski gasket (Figure 1b),
we find the expected value of the exponents with a precision
of 0.05 for a size of 256.

4.1. Sierpinski Structures

4.1.1. Sierpinski Definition and Generation
[18] The first type of complex objects that we explore are

derived from Sierpinskis, whose main feature is the pres-
ence of holes at all scales of the medium. The classical
Sierpinski is the Sierpinski gasket. Its construction relies on
triangle patterns. At the first construction stage, a solid
equilateral triangle is divided into four smaller triangles,
from which the middle triangle is removed (the gray pattern
in Figure 1a shows the outcome of the first generation step).
This algorithm is repeated iteratively through scales. At
each stage, the middle triangle of the remaining triangles is
removed. Figure 1a is the result of generation at the sixth
iteration. All structural and hydraulic exponents can be
analytically calculated [Havlin and Ben-Avraham, 1987]:
df = ln(3)/ln(2)� 1.585, dw = ln(5)/ln(2)� 2.322, and n = 2 �
ln(3)/ln(5) � 1.365. Relation (5) between n, dw, and df is
verified and n is close to 4/3 of the conjecture of Alexander
and Orbach. The same generation principle can be applied
to a square pattern, where one of the four smaller squares
is removed and the process is iterated through scales
(Figure 1b). Exponents are equal to those of the Sierpinski
gasket, showing that the exponents are not sensitive to the
details of the pattern but to the scale invariant, which is the
number of divisions ndiv.
[19] Based on the principle of keeping a constant rate of

voids through scales, the Sierpinski gasket can be extended
to what we call the ‘‘generalized Sierpinskis’’ (Figure 1c).

Table 1. Power Law Exponents n Determined in Different Sites From Time Chronicles of Duration Varying From 1.7 to 3.7 Orders of

Magnitude

Localization Geology
Interpretation

Duration Range

Number of
Orders of
Magnitude n Reference

‘‘Fractured Reservoir in
Western Venezuela’’

[1 hr, 150 hr] 2.15 1.38 [Acuna et al., 1992]

‘‘Geysers Geothermal Field’’ Shear zone in a graywacke
reservoir rock

[7 min, 5 � 102 min] 1.85 1.2
[10 min, 5 � 104 min] 3.7 1.7
[10 min, 104 min] 3 2.32

‘‘Naturally Fractured
Reservoirs’’

[0.2 hr, 50 hr] 2.4 1.72

‘‘Monterey Formation’’ Fractures in brecciated chert
and dolomite

[2, 200] (normalized time) 2 0.94

Pocheon (South Korea) Biotite granite and granitic
gneiss of Precambrian age

[0.3 hr, 24 hr] 1.9 1.45 [Hamm and Bidaux,
1996]

Ploemeur (Brittany, France) Densely fractured pegmatite
at the contact between
granite and micaschist

[0.1 hr, 102 hr] 3 1.6 [Le Borgne et al., 2004]
[1 hr, 103 hr]

Leppävirta (South-Central
Finland)

Fracture zone in a magmatic
gneiss

[0.5 hr, 10 hr] � 1.3 1.45–1.5 [Leveinen, 2000]

Romuvaara (Finland)a Low-conductivity crystalline
rock

[0.1 hr, 1 hr] 1 < 2 (10%) [Kuusela-Lahtinen
et al., 2003]2 (50%)

2–2.5 (40%)
Pyrenean Granite Hercynian granitic basement

composed of granodiorites
and monzogranites

[1 hr, 25 hr] 1 to 2 0.76, 1.26, 1.40,
1.34, 1.36

[Bangoy et al., 1992]

Southern France Carbonate
Aquifer

Subhorizontal joints in which
significant karstification
has been observed

[0.01 hr, 1 hr] 1 to 2 0.2, 0.5, 0.58,
0.62, 0.76, 0.9,
1.04, 1.14

[Bangoy et al., 1992]

Bloemfontein (South Africa) Fractured mudstones and
sandstones

[2 min, 5 � 102 min] 1.7 1.75 [Riemann et al., 2002]
[10 min, 9 � 102 min] 1.95 1.85

aTests were preformed between packers leaving a 2-m and 10-m open tested zone.
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The initial square is divided into ndiv
2 smaller squares out of

which a proportion p is retained and (1 � p) is removed.
Figure 1c is the result of a five-step generation process with
a division into ndiv

2 = 32 smaller squares and a proportion of
retained squares p = 7/9. As opposed to the Sierpinski
pattern in Figure 1b, the initial pattern is not exactly
replicated through scales, as the removed squares are chosen
randomly in each larger square. The main issue of the
generalized Sierpinskis is that they become disconnected as
the number of generation steps increases. In the example
of Figure 1c, after the first generation step (gray pattern),
both the right and left borders and the bottom and top
borders of the structure are connected. However, after the
fifth generation step (solid black pattern), no connected
path between the right and left borders and between the
bottom and top borders can be observed (diagonal neigh-
boring meshes being disconnected). On average, the pro-
bability of connection for p = 0.8 and ndiv = 3 decreases
from 0.46 to 0.27 for a number of generation steps
increasing from 3 to 5. Even by imposing a low perme-
ability to their void space, the transient response of the
disconnected Sierpinskis still remains normal, being dom-

inated by these critical flow regions of low permeability.
As a result, only the connected generalized Sierpinskis are
retained among all the generated ones. Such connected
structures are obtained with a small void probability (1 � p)
and with a restricted number of generation steps. In practice,
p 	 0.6 and the system size is around 250.
[20] To ensure connectivity, the ‘‘generalized Sierpinskis’’

are transformed into Sierpinski lattices (Figure 1d) [Doughty
and Karasaki, 2002]. The fundamental pattern of a Sierpinski
lattice is the pattern of a generalized Sierpinski with
additional vertical and horizontal fully crossing links.
These links are placed at the border of the smaller squares
and are underlined by the dark gray dashed line in Figure 1d.
Whatever the probability of occupation and the number of
iterations, the four edges of the structure are connected. At
this point, two issues should be addressed. First, the pattern
is not necessarily connected between the grid border and the
grid center, which will be used for the injection point.
Second, even after several generation steps, the structure
keeps a high degree of central symmetry around the grid
center. To solve these issues, the studied system of size L is
extracted from a larger Sierpinski lattice of size ndiv � L.

Figure 1. Examples of Sierpinski structures. (a) Classical two-dimensional Sierpinski gaskets. (b) Gene-
ralized Sierpinski corresponding to the Sierpinski gasket (Figure 1a). (c) Generalized Sierpinski.
(d) Sierpinski lattice. Figures 1c and 1d were both generated with a 9-square pattern (ndiv = 3) and an
occupation probability of 0.8. Fractal dimension df is 1.8 and 1.9 for Figures 1c and 1d, respectively.
Gray color is the superimposition of the outcome of the first step of the recursive generation.

Table 2. Exponents n and dw for Different Models

Medium Type Details df dw n Reference

Homogeneous 2 2 2 [Theis, 1935]
Barker ? 2 1 
 n 
 3 [Barker, 1988]
Sierpinski Gasket 1.585 2.322 1.365 [O’Shaughnessy and

Procaccia, 1985]
Generalized [1.55, 2] [2, 2.45] [1, 2] This study
Lattice [1, 2] [1.9, 2.5] [1, 2] This study

Percolation Cluster at threshold 1.896 2.878 1.318 [Grassberger, 1999;
Porto et al., 1997]

Backbone at threshold 1.643 2.626 1.251 [Grassberger, 1999]
Continuum Percolation

(Cluster at Threshold)
p(K) � K�a with 0 < a < 1 1.896 1:896þ 0:75

�max 1:3; 1=ð1� aÞÞð
[1.318, 0] [Kogut and Straley, 1979;

Matcha et al., 1986;
Stenull and Janssen,
2001]

Correlated Percolation at
Threshold

hK(r)K(r + R)i � R�a 0 
 a 
 2 1.896 [2.29, 2.878] [1.25, 1.66] [Prakash et al., 1992]

hK(r)K(r + R)i � RH 0 
 H 
 1 1.896 [2.73, 2.878] [1.251, 1.39] [Sahimi, 1996]

Fractional Brownian Motion Performed on lnK 0 < H < 0.5 2 [2, 2.45] ? [Saadatfar and Sahimi,
2002]

Continuous Multifractals hK(r)K(r + R)i � R�a 0 
 a 
 1 2 [1.5, 2.75] [1.5, 2.75] [de Dreuzy et al., 2004]
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Practically, the extracted domain is centered on the injec-
tion point randomly chosen on the structure in the larger
domain. The injection point is drawn uniformly in the
centered square of size L of the larger domain.
[21] Both generalized Sierpinskis and Sierpinski lattices

are parameterized by the probability of occupation p 2 [0, 1]
and the number of divisions ndiv. Practically, the initial square
is divided into 4, 9, or 16 smaller squares (ndiv 2 [2, 4]). We
define the system size L as the ratio of the domain size to
the resolution scale. L is directly linked to the number of
generation steps by L = ndiv

g , where g is the number of
generation steps. In the simulations, L = 243 or 256 as
previously stated.
4.1.2. Fractal Dimension
[22] For the generalized Sierpinskis, the fractal dimension

df characterizes the increase in massM as a function of scale
L such as M � Ldf. As rescaling of the system size by a
factor of ndiv induces a rescaling of mass by a factor of
p � ndivd , the fractal dimension is as follows:

df ¼
ln p � n2div
� �
ln ndivð Þ ¼ 2þ ln pð Þ

ln ndivð Þ : ð9Þ

[23] We validated this analytical result by numerical simu-
lations whatever ndiv and p. For ndiv = 4, Figure 2 shows a
good agreement between analytical and theoretical results.
The connected generalized Sierpinskis (stars in Figure 2)
have, on average, a smaller fractal dimension. In fact,
connectivity forces the mass to concentrate around more
linear structures of smaller fractal dimension. On the
contrary, Sierpinski lattices have, on average, larger fractal
dimensions because of the addition of links to the gene-
ralized Sierpinskis. The fractal dimension of the structure
for ndiv = 4 does not converge to 1 but to 1.15 when p
tends to zero because the structure is not a simple crossing
line but three equally spaced horizontal and vertical lines.
The entropy and correlation dimensions corresponding to
the second- and third-order dimensions of the structure
give identical results as the fractal dimension, thus suppor-
ting the intuitive assessment that the structure is a pure
fractal. We note that the difference in fractal dimensions
between the Sierpinski lattices and the analytical result of
equation (9) is significant and larger than the difference
observed by Doughty and Karasaki [2002].
4.1.3. Flow and Anomalous Diffusion Exponents
n and dw
[24] We simulate pulse tests in the connected generalized

Sierpinskis and the Sierpinski lattices, which consists in a
head pulse injected at the initial time. Examples from a single
realization of square radius of diffusion R2(t) (Figures 3a
and 3b) and drawdown at the injection point h0(t) (Figures 3c
and 3d) are compared with the evolution of the structure’s
mass M(r) (Figures 3e and 3f). M(r) is obtained by counting
the number of occupied meshes in a shell of radius r. It
scales statistically as M(r) � rdf�1 for a structure of
dimension df. The power law exponents of R2(t) and h0(t),
2/dw and �n/2, respectively, are given by the scales on the
right of Figures 3a, 3b and 3c, 3d. They display large
variations of 0.2 and 0.5 units, respectively. These varia-
tions are partly correlated with the evolution of M(r). For
example, the increase in the slope of h0(t) for the Sierpinski
lattice of df = 1.78 (squares and solid curves in Figure 3c)

can be interpreted as an increase in structure dimensionality
consistent with the slope increase of M(r) (Figure 3e). Still,
the evolution of M(r) does not explain all the variations of
R2(t) and h0(t) exponents. On the contrary, for the general-
ized Sierpinski (black stars and curves of Figures 3b and
3d), the power law slope of M(r) in Figure 3f is roughly
constant, whereas the exponents of R2(t) and h0(t) still vary,
probably because of a lack of connectivity. This is consis-
tent with the evidence that M(r) does not capture connec-
tivity effects, and thus cannot explain all the hydraulic
exponent variability. Although locally large, the exponent
variations do not show systematic tendencies nor trivial
changes in dimension like a transition of dimension between
one and two [Barker, 1988]. On the contrary, linear fits
performed over the whole time range give good approx-
imations of R2(t) and h0(t) (Figures 3a–3d). Similar oscil-
lations are also observed in Sierpinski carpets and are
attributed to the existence of holes within the medium
acting as ‘‘internal boundaries’’ [Sellers and Barker,
2005]. As particles move away from the boundaries, they
speed up until they are influenced by another internal
boundary.
[25] According to this methodology, we systematically

determine exponents n and dw on each realization of
connected generalized Sierpinskis and Sierpinski lattices
for different values of the occupation probability p
(Figure 4). n and dw do not depend on the system size.
We check with ndiv = 2 that the mean and distribution of n
and dw are similar for the system sizes L = 128 and L = 256.
[26] For the connected generalized Sierpinskis, dw and n

evolve monotonously with df in a similar way whatever ndiv.
A decrease in fractal dimension df induces a nearly linear
increase in dw and decrease in n such as dw = 4 � df ± 0.1
and n = 2 � (df � 2) ± 0.1 for df 2 [1.6, 2]. We also find a
large standard deviation of 0.2 of the exponents around their
mean value. A similar variability is obtained for Sierpinski
carpets, for which the generation pattern is kept unchanged

Figure 2. Fractal dimensions df for the generalized
Sierpinskis, connected generalized Sierpinskis, and Sier-
pinski lattices. These structures were generated with ndiv = 4,
g = 4, and L = 256. Error bars for the Sierpinski lattices have
been obtained from 100 realizations. Fractal dimensions have
been computed by the box counting method.
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at each generation scale [Dasgupta et al., 1999], as opposed
to the generalized Sierpinskis for which the generation
pattern is modified through scale (Figure 1c). The drawback
of the Sierpinski carpets is their high degree of regularity
stemming from the repetition of the same identical pattern at
each generation scale. For the Sierpinski carpets, the ano-
malous diffusion exponent ranges from a lower bound given
by Kim et al. [1993] to the value obtained for loopless
structures 1 + df [Havlin and Ben-Avraham, 1987]. An
example of Sierpinski carpet generated with ndiv = 7 and p =
30/49 corresponding to df = 2.748 gives indeed dw dimen-
sions in the interval [2.194, 2.746] [Dasgupta et al., 1999].

[27] For the Sierpinski lattices, the anomalous diffusion
exponent dw and the hydraulic dimension n depend both on
the fractal dimension and on the order of the link on which
lies the injection point (orders are identified by numbers or
letters in Figures 4c and 4d). The order of a link identifies
the step of the cascade process at which a link is generated.
The order o of a link is related to its length l by:

o ¼ 1þ log L=lð Þ
log ndivð Þ ; ð10Þ

where L is the system size. Orders range from 1 for links
that cross the whole (l = L) system to ndiv + 1 for the

Figure 3. Examples of R2(t) normalized by the system size L (a and b), h0(t) in bi-logarithmic graphs
(c and d) and the mass evolution M(r) as a function of the distance from the well r (e and f) for two
Sierpinski lattices (a, c, e) and one generalized Sierpinski (b, d, f). The derivatives of the curve are also
shown and measured by the scale on the right.
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smallest links. The anomalous diffusion exponent dw
increases when the fractal dimension decreases for 1.25 <
df 
 2 (Figure 4a) as well as when the order increases
(Figure 4c). Hydraulic dimensions n are clustered around
the mean tendency n = df and display a maximum for orders
3 or 4 (Figure 4d). For the Sierpinski lattices, the results
of Doughty and Karasaki [2002] (dashed gray curve in
Figure 4b) are almost exactly equal to the one we have
found for the Sierpinski lattices generated with the injec-
tion point on a first-order link. We note that the number of
divisions ndiv is a parameter of secondary importance as
both dw and n take close values for ndiv equal to 3 and 4.
[28] Introducing the order o leads to a more precise char-

acterization of exponents n and dw rendered by a decrease
in their variability roughly by a factor of 2. Expressed as
df and o, dw and n variabilities are, on average, around
0.15 and 0.1.
[29] Both for generalized Sierpinskis and Sierpinski lat-

tices, the smaller the fractal dimension, the more anomalous

the diffusion due to the increasing proportion of holes. For
Sierpinski lattices, when the fractal dimension is lower than
1.25, structures become almost linear leading to a normal
diffusion identified by the trivial dimension dw = 2. For
Sierpinski lattices, the nature of diffusion is also controlled
by the order of the injection link: the higher the order, the
more anomalous the diffusion. To interpret this result, we
first notice that the diffusing drawdown generally goes
through links of decreasing orders to reach the borders. If
the fluid is injected in a low-order link, the diffusing
drawdown remains in the network of low-order links, which
forms a quasi-regular grid. The diffusion scaling is thus not
supposed to depart from the normal diffusion model with
dw = 2. Now if the fluid is injected in a high-order link, the
diffusing drawdown will explore a complex system ranging
from the high-order injection link to the low-order links
that reach boundaries. The diffusion is slowed down by this
complex geometry and we obtain the abnormal diffusion
exponent dw > 2, as expected.

Figure 4. Anomalous diffusion and hydraulic exponents dw and n for the generalized Sierpinskis (solid
symbols) and for the Sierpinski lattices. Solid lines are averages over all realizations whatever the order,
whereas points identified by numbers stand for given orders of the injection point. These results were
established from a total of 40,000 realizations.
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[30] Note that relation (5) between n, df, and dw is
verified neither on the mean exponents nor on the exponents
taken individually. We suspect that this discrepancy results
from local effects around the injection points that are taken
into account in dw and n, but not in df that is an average
measurement. Instead of df, we use a local measurement,
which is the power law exponent dN of the structure density
M(r) counted on shells of evolving radii centered on the
injection point. By replacing df by dN in equation (5), we
find a much better relation between n and dw, such as

n ¼ ð0:9� 0:1Þ � 2dN
dw

: ð11Þ

From this relation, n is directly proportional to dN and the
maximum of the hydraulic dimension n for orders 3 or 4
results from the existence of a maximum for dN. Quali-
tatively, for intermediary orders around 3–4, the average
dN value is maximum because the structure close to the
injection point is similar to the structure away from it. For
other orders, the structure close to the injection point is
either sparser or denser, inducing at some point a drop in
the scaling increase. Interpreting n as the dimension of the
hydraulically accessible space, n is larger than the fractal
dimension for intermediate orders 3 to 4 and lower for
extreme orders.
[31] These results show that the hydraulic exponents n

and dw depend on a global as well as on a local character-
istic, i.e., the fractal dimension df, and the order o, respec-
tively. Both characteristics are important. Should the order
be ignored, the exponents averaged over all simulations
(black and red lines in Figure 4) do not give a good
description of the exponent variability as displayed when
accounting for the order of the injection link (numbers and
letters in Figure 4).

4.2. Percolation-Type Structures

[32] The second type of complex objects that we explore
is percolation-type clusters, whose scaling properties are
well known. Percolation has often been chosen as a frame-
work for studies of flow in heterogeneous media [Berkowitz
and Balberg, 1993]. For a system of small sticks, the
percolation threshold is classically reached by randomly
adding sticks until the connection between a set of prede-
fined geometrical borders is achieved. The connecting
structure, called the infinite cluster, is a fractal of dimension
df = 91/48 � 1.896 in two dimensions [Stauffer and
Aharony, 1992] (Figure 5a). The major part of the infinite
cluster is contained in the dead ends, defined as the part of
the structure that cannot carry any fluid. Removing the
dangling ends from the infinite cluster leads to the back-
bone, which is also a fractal of smaller dimension dfb =
1.643. The backbone is made up of a succession of red links
and blobs (Figure 5b). If one of the red links is removed, the
system becomes disconnected. The number of red links nrl
scales as nrl � L�0.75. Both the infinite cluster and the
backbone at threshold are interesting because they are well-
defined fractals of precisely characterized internal structure.
The hydraulic exponents n and dw are consistently derived
either directly or from Einstein’s relation (7) for both the
infinite cluster and the backbone. For the infinite cluster
dw = 2.878 and n = 1.318, and for the backbone dw = 2.626
and n = 1.251.

[33] From this classical structure, percolation has been
extended independently in two directions, to account first
for sticks of different permeabilities and then for correla-
tions between sticks. These two extensions are called
continuum percolation and correlated percolation, respec-
tively. Continuum percolation structures are obtained first
by generating a classical infinite cluster at threshold and
thereafter by imposing a permeability to each stick drawn
in a power law distribution such as p(K) � K�a where 0 <
a < 1. The fractal dimension remains that of the infinite
cluster of classical percolation df � 1.896. The permeability
scaling exponent ~m is consistently determined by variation
calculus [Kogut and Straley, 1979], by decomposition on
the Links and Nodes model [Matcha et al., 1986], and by
renormalization group analysis [Stenull and Janssen, 2001].
It leads from Einstein’s relation (7) to dw = max(2.878,
1.896 + 1/[1.33 � (1 � a)]). n can be obtained directly from
equation (5). Thus, for a values smaller than ac = 0.23,
transport exponents are equal to those of the classical
percolation infinite cluster. Concerning a values larger than
ac, the larger the a value, the greater the probability of
generating low-permeability links. The latter create in the
system more bottlenecks, thus inducing higher values of the
anomalous diffusion exponent dw.
[34] Correlated percolation systems are obtained with

long-range correlations of the site occupation probability
such as C(R) = hK(r) � K(r + R)i = f(l) � R�(2 � l) with 0 

l 
 2 [Prakash et al., 1992]. The uncorrelated case corres-
ponds to l = 0. The fractal dimension of the infinite cluster
remains equal to that of the classical percolation infinite
cluster, i.e., df = 1.896. The fractal dimension of the
backbone, however, increases with increasing correlation
and becomes equal to the infinite cluster fractal dimension
when l ! 2. Thus the backbone becomes increasingly
compact as l increases. The anomalous diffusion exponent
is directly computed and found to vary in the range [2.29,
2.878] for l 2 [0, 1.75] [Prakash et al., 1992]. The
dispersion of the exponent values is very limited.
[35] Comparison between continuum and correlated per-

colations shows that for continuum percolation, diffusion is
slowed down by the increase in heterogeneity when com-
pared to the classical percolation theory case (dw 	 2.878),
whereas for correlated percolation, structures are more
compact and diffusion is sped up (dw 
 2.878). A structure

Figure 5. Infinite cluster and backbone at percolation
threshold. The backbone was obtained by imposing im-
pervious conditions to the vertical system sides. The line
thickness of the backbone links is a function of a vertically
imposed head gradient.
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cumulating correlations and permeability distribution has
been studied based on a truncated fractional Brownian
motion (fBm) [Sahimi and Mukhopadhyay, 1996]. A three-
dimensional fBm is first generated and the permeability
values are proportional to its two-dimensional projection.
The smallest permeabilities are removed until the percola-
tion threshold is reached. The fBm is parameterized by the
Hurst exponent H 2 [0, 1] leading to highly correlated
structures persistent for H > 0.5 and nonpersistent for H <
0.5. For H = 0.2 and 0.8, permeability values are distributed
over 1 and 2 orders of magnitude, respectively. The resulting
structure is not stationary and its correlations are different
from that of Prakash et al. [1992]. In fact, the Fourier power
spectrum of the truncated fBm and correlated percolation are
power laws of characteristic exponents equal to�(2 + 2H) 2
[�4,�2] and to�l 2 [�2, 0], respectively. Close results are
found on the infinite cluster and backbone fractal dimen-
sions. The fractal dimension of the infinite cluster is difficult
to compute exactly between its classical values of 1.896 and
2. The backbone fractal dimension gradually increases to
the infinite cluster dimension, showing that the structures
become increasingly compact. The anomalous diffusion
exponent is obtained from the permeability scaling exponent
~m by Einstein’s relation (7). dw spans a narrow range [2.73,
2.878], which could be due to the counteracting effects of
the correlation and permeability distribution previously
underlined in the comparison between the two cases of
continuum and correlated percolations.

4.3. Discussion

[36] Whatever the structure (Sierpinski- or percolation-
like), dw and n can be defined over the whole time range.
The range of exponent values from the percolation structure
is narrower than that from the Sierpinskis, reflecting their
smaller diversity in terms of fractal dimension. In fact, the
fractal dimension of percolation-like structures is restricted
to their values obtained for the backbone and the infinite
cluster.
[37] The anomalous diffusion exponents dw of Sierpinski-

like structures are contained in the range [1.9, 2.5], whereas
most of the dw values for percolation-like structures are
larger than 2.878, except for more compact correlated
percolation structures. Sierpinski and percolation structures
are in fact geometrically very different. The salient feature
of Sierpinskis is the presence of holes at all scales, whereas
flow in percolation structures is controlled by critical bonds
that are the singly connected red bonds in classical perco-
lation and that generalize to bonds of very low permeability
in continuum percolation [Charlaix et al., 1987]. Critical
links acting as bottlenecks thus induce a more anomalous
transport than holes.
[38] As regards percolation and Sierpinski-like structures,

dw values between 1.9 and 2.5 are indicative of a Sierpinski-
like structure, whereas dw values larger than 2.86 rather
reveal a percolation-like structure. Different structures can
explain dw values larger than 2.86. The first one is the
permeability heterogeneity of the structure as in the typical
case of continuum percolation. The second one is an
increase in the density of critical bonds. For example, the
extreme case of the Péano curve, for which all links are
critical, has an anomalous diffusion exponent dw = 4 in two
dimensions. The third one is an increase in the Euclidean

dimension. In three dimensions, the Sierpinski gasket and
the percolation infinite cluster have anomalous diffusion
exponents equal to 2.58 and 3.8, respectively, which are in
fact larger than their two-dimensional counterparts 2.322
and 2.878, respectively.
[39] For all structures except the Sierpinski lattices, the

hydraulic dimension n can be notably different from the
fractal dimension, as shown by equations (5) and (11).
The flow dimension can be derived from the anomalous
diffusion exponent dw and the fractal dimension df by
equation (5). For Sierpinski lattices, dw and n are found to
depend both on the general fractal dimension df and on local
conditions that are adequately quantified by the order of the
injection link. As a consequence, relation (5) between df, dw,
and n does not hold and is replaced by relation (11) relating
exponents n and dw to exponent dN. dN represents the scaling
of the mass from the injection point.

5. Flow and Anomalous Diffusion Exponents in
Continuous Heterogeneous Media

[40] Fractal media are the first types of media studied for
fractional flow because of their scale-dependent geometrical
structure. From the same idea, continuous media could
induce a fractional flow signal provided that their perme-
ability field displays scale-dependent correlations. First, we
verify that classically lognormally correlated media do not
induce any fractional flow. In fact, the drawdown observa-
tions are found to be well accounted for by the classical
interpretation framework of Theis in two dimensions [Meier
et al., 1998; Walker and Roberts, 2003]. This is confirmed
by the numerical results of Figure 6 showing that linear
fitting of R2(t) and h0(t) leads to a good representation.

Figure 6. Square root of R2 normalized by half the system
size (L/2) and h0 against time in a bi-logarithmic graph for
an exponentially correlated lognormal random field. The
correlation length x is equal to 1/32 of the system size L,
L = 256, and the lognormal variance is 3. R2 and h0 have
been fitted by linear functions (R2(t) � t and h0(t) � 1/t) in
the time range for which the radius of diffusion is larger
than the correlation length x. The time range begins at the
dashed vertical line. By calculating directly dw on 100
realizations for a lognormal variance of 2, we found that the
average value of dw is 2.1, in fact close to 2, and the
standard deviation of the dw values remains limited to 0.15.
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[41] Second, we look at long-range correlated media. The
anomalous diffusion exponent dw is computed on systems
for which correlations are generated by a fractional Brow-
nian motion [Saadatfar and Sahimi, 2002]. Like in the
correlated percolation case, the fractional Brownian motion
is generated in three dimensions and is projected in the two-
dimensional plane. It is characterized by the Hurst exponent
H. When the permeability field K follows the fBm statistics,
dw remains equal to 2 whatever H [Saadatfar and Sahimi,
2002]. However, when the logarithm of K follows the fBm
statistics (lnK fBm), diffusion is normal when H > 0.5 and
anomalously slow when H 
 0.5. When H > 0.5, the
highest permeability values form a compact structure domi-
nating diffusion and inducing a normal diffusion. When
H 
 0.5, dw = 2.45, 2.25, and 2.06 for H = 0.1, 0.3, and 0.5,
respectively [Saadatfar and Sahimi, 2002]. Anomalous
diffusion is due to the presence of islands of very low
permeability that slow down diffusion. This is consistent
with the note on the difficulty of fitting a Theis model for a
lnK fBm with H = 0.25 byMeier et al. [1998]. For H = 0.25,
Walker et al. [2006] found a mean exponent n of 2 but a
large standard deviation increasing with time, which could
explain their slightly different result for the mean of n.
Addition of large anisotropy to lnK fBm removes the
anomalous diffusion in the direction perpendicular to the
medium stratification [Saadatfar and Sahimi, 2002]. Finally,
the deletion of 10% of the lowest permeability induces
log-periodic oscillations in time of the exponent value,
thus impeding a consistent exponent definition. Similar
oscillations are also observed in Sierpinski carpets and are
attributed to the existence of holes within the medium
acting as ‘‘internal boundaries’’ [Sellers and Barker,
2005]. As particles move away from the boundaries, they
speed up until they are influenced by another internal
boundary.
[42] Other continuous long-range correlation systems are

‘‘continuous’’ multifractals having a support of fractal
dimension (i.e., the zeroth-order dimension) equal to the
embedding Euclidean dimension. dw and n are computed on
‘‘continuous’’ multifractals generated by a multiplicative
cascade process parameterized by the correlation dimension
(second-order dimension) D2 (1
 D2 
 2) [de Dreuzy et al.,
2004]. The Fourier spectrum of these structures is a power
law of slope �D2 2 [�2, �1] larger than that of the
previous fBm equal to �(2 + 2H) 2 [�4, �2]. Long-range
correlations are thus less present in multifractals than in
fBms. For such media, the anomalous diffusion exponent
dw and the hydraulic dimension n averaged over a large
number of realizations are always equal to 2 whatever the
correlation dimension D2. However, the exponent varia-
bility is large, as dw values range from 0.5 to 3. dw and n
strongly depend on a local property, i.e., the permeability
at the injection point Kin. In fact, because of the long-
range correlations, the permeability at the injection point is
linked to the permeability scaling of K(r) � r�q0 and
through it to exponent dw leading to:

dw ¼ 4� D2 þ q0 with q0 ¼
log10

Kunit=Kin
ð Þ

log10
lmin=Lð Þ ; ð12Þ

where Kunit and lmin are the permeability and length
references, respectively [de Dreuzy et al., 2004]. The

hydraulic dimension is given by relation (5). These results
underline three points. First, depending on the permeability
scaling from the well, diffusion can be either anomalously
slow (dw > 2) or anomalously fast (dw < 2). For a given
configuration, diffusion may be anomalously fast and dw
values lower than 2 can be found. Second, when dw < 2, the
hydraulic dimension n is larger than the Euclidean
dimension 2, showing again the difference between the
hydraulic dimension and the fractal dimension (here equal
to 2). The hydraulic exponents n and dw depend on a local
as well as on a global characteristic, i.e., the permeability at
the injection point and the correlation dimension, respec-
tively. Expressing n and dw as a function of D2 and Kin

yields a standard deviation of n and dw around 0.4, which is
twice smaller than when expressing n and dw as a sole
function of D2.
[43] By comparing the exponents of these different struc-

tures, we conclude that long-range correlated continuous
permeability fields can induce anomalous diffusion beha-
viors as long as they are not too much correlated, more
precisely, if the power law exponent of their Fourier
spectrum is larger than �2.

6. Discussion

[44] In sections 4 and 5, we have obtained exponents n
and dw on fractal and continuous multifractal structures. It is
a kind of direct problem for the transient flow equation. The
corresponding inverse problem consists in deriving geomet-
rical and hydraulic structures from n and dw values. The
inverse problem is typically posed in field studies where
nontrivial n and dw values are observed. These values
cannot be directly used to specify a larger model or to
make predictions with other well configurations. The
underlying geometrical and hydraulic information could
however be used. The comparison between n and dw field
data and numerical or theoretical values should account for
the field specificities. First, a given field corresponds to a
single realization and second, well tests are generally
performed from a unique well location. These specificities
are echoed in the numerical results of sections 4 and 5. n
and dw can be quite different in two different realizations
with the same fixed parameters, and n and dw are sensitive
to the location of the well within the structure. Field data
should thus be compared to single realization values rather
than to averages. The exponent variability appears to be as
important as the mean tendency.
[45] We display in the (n, dw) graphs of Figures 7a and 7b

the exponent coverage obtained for the range of fractal and
continuous multifractals studied in sections 4 and 5. The
variability is calculated for most Sierpinskis and continuous
multifractals. The realization-based values found for Sier-
pinski, percolation-like, and continuous structures cover
large zones in the (n, dw) graph. For percolation-like
structures, average (n, dw) data are clustered around the
curve dw = 3.9/n. For Sierpinski structures, average (n, dw)
data cover a large band below dw = 2.5. For continuous
multifractals, values obtained on a realization basis lie
between the two thin dashed lines, the mean value being
represented by the thin black line. Because of the large
exponent variability (around 0.8) due to the large range of
possible permeability scalings from the well, continuous
multifractals cover most of the (n, dw) plane. When com-
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pared to a realization basis, almost all (n, dw) data could be
modeled by continuous multifractals.
[46] We compare these results to the Ploemeur field data

obtained from a test performed at a given well. Figure 7
shows the most probable exponent value obtained in Ploe-
meur (n = 1.5, dw = 2.8) and the uncertainty (thin rectangle).
None of the studied two-dimensional fractal structures is
relevant for the site of Ploemeur (Figure 7a). The only
overlap among the presented models concerns the conti-
nuous multifractal (Figure 7b). We characterize more pre-
cisely the multifractals consistent with the most probable
value dw = 2.8. Equation (12) leads to the following relation
between D2 and q0: 4 � D2 + q0 = 2.8. From a unique well
test, the global parameter (D2) and the local one (q0) cannot
be separated. The global characteristic D2 could be
extracted from the local characteristic q0 by performing
several well tests from different wells as well as observa-
tions on distant piezometers. The comparison based on
averages is much more selective in terms of model. How-
ever, extracting average (n, dw) values from field data
requires performing well tests from different wells and
observing drawdowns on distant piezometers.
[47] On the basis of the available data, continuous multi-

fractals may not be the only model able to fit the Ploemeur

data. Other heterogeneity types leading to the same range of
(n, dw) values should have, on average, large dw values while
keeping n values between 1.5 and 2. Three-dimensional
structures would give large dw and df values leading to n
values below 2 as for example (n = 1.55, dw = 2.58) for the
three-dimensional Sierpinski gasket and (n = 1.33, dw = 3.8)
for the three-dimensional percolation cluster. Note, however,
that we are not necessarily wide of the mark with two-
dimensional structures since a great number of aquifers are
thin layers that could be assimilated to two-dimensional
plane. In Ploemeur, from which the hydraulic exponents
have been carefully derived, the main flow zone is a contact
zone between a granitic pluton and a micaschist formation.
This is the reason why we make the comparison between the
Ploemeur results and this study, although we acknowledge
for possible three-dimensional effects that would make the
comparison irrelevant.
[48] This study addresses an important issue to interpret

field data, which is the contribution of local effects that
makes single realization-based scaling exponents different
from their average value. Indeed, as for most of natural data,
the well tests performed in Ploemeur have all been per-
formed from the same well. The results obtained from the
continuous multifractals emphasize the contribution of local

Figure 7. Diagram n–dw for the different structures using the Ploemeur data. The cross is placed at the
most probable value and the embedding rectangle stands for the imprecision. ‘‘AO conjecture’’ is the
abbreviation for the Alexander and Orbach conjecture.
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effects that lead to large range of (n, dw) values. Displaying
only average values of the synthetic exponents would have
led to the erroneous interpretation of an absence of overlap.

7. Conclusion

[49] Originally, fractional flowmodelshavebeenexpressed
as generalized differential flow equations depending on two
exponents: the hydraulic dimension n and the anomalous
diffusion exponent dw. Beyond the consistency of these
equations and the anomalous drawdown signals, the under-
lying heterogeneity is barely known. Because fractional
flow models are intrinsically scaling models, we tested
two kinds of scaling media: fractals and continuous long-
ranged correlated continuous media. These media display
anomalous behaviors consistent with those postulated by
fractional flow models, i.e., a hydraulic dimension n differ-
ent from the integers 1, 2, and 3, and an anomalous
diffusion exponent dw different from 2. First, we note that
the hydraulic dimension is notably different from the fractal
dimension as also shown by relation (5). Second, for
fractals, the anomalous diffusion exponent dw of Sierpinski
structures are in the range [2, 2.5], whereas for the perco-
lation cluster at threshold, they are generally larger than 2.8.
The bottlenecks typical of the percolation cluster induce
higher slowdowns than the holes typical of Sierpinskis.
Third, for Sierpinski lattices (Figure 2d) and multifractal
continuous structures, exponents n and dw are conditioned
both by the fractal and correlation dimensions and by some
local properties of the structure around the injection point.
Because n and dw depend on local properties, we propose
first to derive them on several points of the field and second
to obtain their underlying average characteristic, being in
this case the fractal dimension or the correlation dimension.
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