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Abstract 

The Alban Hills volcanic region (20 km south of Rome, in the Roman Province) emitted a 

large volume of potassic magmas (> 280 km3) during the Quaternary. Chemical interactions 

between ascending magmas and the ~7000-8000-m-thick sedimentary carbonate basement are 

documented by abundant high temperature skarn xenoliths in the eruptive products and have 

been frequently corroborated by geochemical surveys. In this paper we characterize the effect 

of carbonate assimilation on phase relationships at 200 MPa and 1150-1050°C by 

experimental petrology. Calcite and dolomite addition promotes the crystallization of Ca-rich 

pyroxene and Mg-rich olivine respectively, and addition of both carbonates results in the 

desilication of the melt. Furthermore, carbonate assimilation liberates a large quantity of CO2-

rich fluid. A comparison of experimental versus natural mineral, glass and bulk rock 

compositions suggests large variations in the degree of carbonate assimilation for the different 

Alban Hills eruptions. A maximum of 15 wt% assimilation is suggested by some melt 

inclusion and clinopyroxene compositions; however, most of the natural data indicate 

assimilation of between 3 and 12 wt% carbonate. Current high CO2 emissions in this area 

most likely indicate that such an assimilation process still occurs at depth. We calculate that a 

magma intruding into the carbonate basement with a rate of ~1-2•106 m3/year, estimated by 

geophysical studies, and assimilating 3-12wt% of host rocks would release an amount of CO2 

matching the current yearly emissions at the Alban Hills. Our results strongly suggest that 

present CO2 emissions in this region are the shallow manifestation of hot mafic magma 

intrusion in the carbonate-hosted reservoir at 5-6 km depth, with important consequences for 

the present-day volcanic hazard evaluation in this densely populated and historical area. 
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Introduction 
 

Central-Southern Italy is a complex geodynamic province characterized by large-scale 

extensional tectonism associated with the eastward migration of the Apennine Chain and the 

opening of the Tyrrhenian Sea (Turco and Zuppetta, 1998 and references therein; Barberi et 

al., 1994; Peccerillo, 2005 and references therein). The extension-related Quaternary 

volcanism consists of numerous active, dormant, and extinct volcanoes that produced a 

relatively important volume of alkaline rocks (Peccerillo, 2005). Among them, the Roman 

Magmatic Province was active from 800 to 20 ka and probably represents the largest known 

center of potassic magmatism (Peccerillo, 2005). The erupted products, dominantly composed 

of pyroclastic deposits, amount to a volume of 900 km3 over an area of ~6400 km2 (Giordano 

et al., 2006; Peccerillo, 2005). Four volcanic centers, from north to south Mts. Vulsini, Mt. 

Vico, Mts. Sabatini and Alban Hills, are all characterized by large multiple calderas and are 

emplaced on a thick Mesozoic-Cenozoic carbonate sedimentary pile, identified at depths 

between 1 and ca. 7-8 km (Barberi et al., 1994; Parotto and Praturlon, 2004; Gaeta et al., 

2006). All magmas emitted in the Roman Magmatic Province are potassium rich (K2O/Na2O 

between 1 and 10), consistently with a metasomatized phlogopite-rich mantle source 

(Conticelli, 1998; Peccerillo, 1999; Elkins-Tanton and Grove, 2003; Peccerillo, 2005). Large 

variations in the degree of silica-saturation of the volcanic products are also acknowledged 

(Nappi et al., 1995; Kamenetsky et al., 1995; Trigila et al., 1995; Perini et al., 2000; 

Peccerillo, 2005; Gaeta et al., 2006): the erupted compositions range between quartz 

normative (trachy-basalt to trachyte) and strongly silica-undersaturated (tephrite / foidite to 

phonolite), with the most silica-undersaturated magmas belonging to the Alban Hills volcanic 

center. Figure 1 shows the bulk rock compositions of Alban Hills, Vulsini and Vico eruptive 

products in a Total Alkali versus Silica (TAS) diagram. Although large variations are evident 

in both silica and alkali contents for the three volcanic centers, the silica poorest compositions 

were clearly erupted at the Alban Hills.  

At the Alban Hills, the magmatic reservoir that fed the largest past eruptive events (e.g. 

Trigoria-Tor de Cenci and Villa Senni eruptions) was interpreted to be located in or at the 

base (~3-6 km depth) of the carbonate sequence (Freda et al., 1997; Palladino et al., 2001; 

Giordano et al., 2006). Despite the absence of volcanic activity younger than 19 ka (Voltaggio 

and Barbieri, 1995), the Alban Hills system is considered as quiescent on the basis of 

geophysical studies that indicate a low-velocity region more than 5 km beneath the youngest 

craters, shallower frequent seismic activity and significant volcano uplift (Amato and 
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Chiarabba, 1995; Chiarabba et al., 1997; Feuillet et al., 2004; Marra et al., 2004). Moreover, 

the region is currently characterized by important CO2 emissions of deep origin (Chiodini and 

Frondini, 2001; Carapezza et al., 2003; Gambardella et al., 2004), as is most of Central-

Southern Italy (Gambardella et al., 2004; Chiodini et al., 2004). This CO2 is directly 

discharged from several gas vents (23-25°C, Hooker et al., 1985; Minissale, 2004) and 

dissolved in shallow ground waters, sometimes reaching strong CO2 over-saturation and 

generating sudden gaseous emissions with elevated gas hazard, such as in 1995 (Chiodini and 

Frondini, 2001). In all, CO2 discharged by the Alban Hills region was estimated > 4.2*109 

mol/year over an area of 1500 km2 (Chiodini and Frondini, 2001; Gambardella et al., 2004). 

Zones with high CO2 fluxes are generally centered above structural highs and faults within the 

sedimentary basement (Chiodini and Frondini, 2001). CO2 origin is still debated in the 

absence of recent volcanic activity: deep magma degassing, metamorphic decarbonation of 

limestone and mantle degassing and have been proposed (Chiodini and Frondini, 2001; 

Gambardella et al., 2004; Chiodini et al., 2004). He and C isotopic compositions of the gases 

emitted by several gas vents suggest a magmatic contribution for He and a dominant CO2 

contribution from the decarbonation of sedimentary limestone (Hooker et al., 1985; 

Giggenbach et al., 1988; Chiodini and Frondini, 2001). The δ13C of the emitted CO2 ranges 

from -3.5 to +0.9 ‰ vs. PDB, strongly deviating from mantle signatures (δ13C: 4-7 ‰, 

Deines, 2002; Hekinian et al 2000 and references therein). The most positive δ13C values of 

the emitted CO2 are associated to the highest 3He/4He ratios of the volcanic district: 

R/Ra=1.54 (Chiodini and Frondini, 2001 and references therein).  

Important interactions between the carbonate host rocks and the magmas are documented by 

abundant, high temperature, calcic skarn xenoliths found in the volcanic products (Federico et 

al., 1994; Trigila et al., 1995; Peccerillo, 2005) and by the coexistence of magmatic (leucite 

and clinopyroxene) and skarn (garnet, vesuvianite, wollastonite, spinel) minerals within the 

wall rock/magma chamber interface (Federico and Peccerillo, 2002; Dallai et al., 2004). The 

oxygen isotopic composition of magmatic minerals has been shown to record such large scale 

interaction. Indeed, the high δ18O measured in leucite, sanidine and, to a lesser extent, in 

clinopyroxene most likely reveals magma contamination by sedimentary carbonate in the 

upper crust (Turi and Taylor, 1976; Dallai et al., 2004; Peccerillo, 2005). The degree of 

assimilation remains, however, difficult to evaluate because a major part of the oxygen 

deriving from the carbonate escapes as CO2 during the assimilation. Moreover, most workers 

concluded that any crustal assimilation (and limestone assimilation above all) would 
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essentially lead to a dilution of trace elements in the magma, since Roman mafic magmas are 

considerably more enriched in incompatible elements than the local crustal rocks (Peccerillo 

2005 and references therein). A quantitative assessment of carbonate assimilation is therefore 

difficult using classical geochemical tracers (Conticelli, 1998; Peccerillo, 2005). First order 

attempts to quantify the degree of assimilation were approximated by mass balance 

calculations on major elements during crystal fractionation + assimilation and suggested that 

an assimilation of 3 to 5 wt% calcite to would be consistent with the liquid line of descent at 

the Alban Hills (Gaeta et al., 2006). 

With this paper, we intend to quantify the degree of carbonate assimilation that occurred at 

depth in the Alban Hills plumbing system and to assess the contribution of this process to the 

current important CO2 emissions in this area. At first, an experimental study is presented to 

quantify the importance of the carbonate assimilation process at the Alban Hills, using phase 

relationships and liquid line of descent as an indicator of the degree of assimilation. Then, we 

estimate the quantity of CO2 liberated by carbonate assimilation in the plumbing system of the 

Alban Hills and compare it to the measured current CO2 fluxes (Chiodini and Frondini, 2001; 

Gambardella et al., 2004). We finally propose a prospective view of the Alban Hills plumbing 

system integrating geophysical, geochemical and petrological constraints with important 

implications for the present-day volcanic hazard evaluation in this densely populated and 

historical area.  

 

2. Experimental Methods 
 

In contrast to previous experimental studies on the petrology of the Alban Hills magmas 

(Trigila et al., 1995; Freda et al., 1997), which investigated the effect of gaseous CO2 on 

phase relationships, our experiments were performed on mixtures of a mafic end-member 

with carbonates and therefore also illustrate the effect of CaO and MgO addition to the 

magma. 

A mafic lava, AH7a, has been used as starting composition. This rock was collected in a lava 

flow of the Alban Hills (Mt. Mellone) and has been dated at 308 ka (Gaeta et al., 2006). 

According to Gaeta et al. (2006) it represents the most primitive magmatic liquid found at 

Alban Hills, on the basis of its high MgO content and low Na2O content. Rock powders of 

AH7a were first melted in air at 1350°C for 3 hours. Then the recovered glass was hydrated in 

an internally heated pressure vessel (IHPV) at 200 MPa, 1250°C, for 5 hours. One wt% of 

water was initially loaded in the capsule but the recovered glass contained more water (Table 
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1) due to hydrogen incorporation during the hydrothermal treatment (Gaillard et al., 2003). 

Starting from this primitive hydrous melt, we investigated the consequence of different 

degrees of carbonate assimilation on phase relationships. The hydrous glass was therefore 

mixed with variable amounts of Ca carbonate (Carrara Marble) and Ca, Mg carbonate 

(dolomite); the amount of added carbonates ranged between 0 and 18 wt% of the 

experimental charge. For selected experiments, an additional amount of water (1.5wt%) was 

introduced within the experimental assemblage. Arc-welded Au80Pd20 capsules were used to 

avoid Fe loss. The experiments lasted 24 hours and were performed in internally heated 

pressure vessels at 200 MPa, consistently with the estimated depth of crustal magma storage 

beneath the Alban Hills (Chiarabba et al., 1997; Freda et al., 1997; Feuillet et al., 2004; 

Giordano et al., 2006). The experimental temperatures were 1150, 1125, 1100 and 1075°C, 

nearly covering the entire course of magma crystallization from near-liquidus to near-solidus. 

In order to maintain highly oxidizing conditions during the experiments, the autoclave was 

pressurized with pure Argon. A Ni-Pd redox sensor placed in experiment #1100 measured 

redox conditions around 2 log units above the nickel-nickel oxide buffer. After rapid drop 

quench, the samples were polished and examined by optical microscope and scanning 

electron microscope. Phase compositions of the experimental samples were analyzed by an 

SX 50 electron microprobe. Conditions used were 15 kV, 6 nA, 10 sec on peak and 5 sec on 

background. Selected samples were analyzed by Karl Fisher titration to determine their water 

content (Table 1) and then used as internal standards, together with the dry starting glass, to 

evaluate the water contents of the other samples from the total of the microprobe analysis 

(Devine et al., 1995, analytical error ~ 0.6 wt% H2O).  

Mass balance calculations were performed to compute phase proportions (glass, minerals and 

fluid phase) in the experimental charges, taking into account the compositions of the starting 

mixtures (including H2O and CO2), the residual melt (included dissolved H2O) and the 

mineral phases (Table 1 and 2). The amount of dissolved CO2 in carbonate-added glasses was 

arbitrarily fixed at 0.2 wt%, based on accepted solubility models (Newman and Lowernstern, 

2002; Papale et al, 2006), considering that variations up to 0.6 wt% in the CO2 content of the 

glasses have been tested to have a negligible effect on the mass balance calculations. Indeed, 

the most important source of error in our calculation is the water content in the glass, which 

propagated through the mass balance equations, gives us an averaged uncertainty of ±1 wt% 

on the fluid phase proportion and of ±5 wt% on the fluid phase composition. Therefore, to 

improve the estimation of H2O amounts dissolved in the glass and fluid phase abundances, we 
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introduced in the mass balance calculations a relationship between H2O wt% in the glass and XH2O 

in the gas based on the solubility model of Newman & Lowernstern (2002). 

 

3. Results: phase relationships and evolution of the residual liquid 
 

Phase proportions and glass composition of each experimental sample are listed in Table 1, 

together with the experimental conditions and the composition of the starting glass. In 

carbonate-free conditions, all the samples are water-undersaturated and no fluid phase is 

observed. The liquidus temperature for the investigated composition with 1.7 wt% water is ~ 

1150°C, in view of the very low crystal content observed in the samples 1150/1 and in 

agreement with the results of Trigila et al. (1995) for a similar composition at comparable 

experimental conditions. At 1100 and 1075°C, we estimated by mass balance an average 

crystal content of ~36 and 60 wt%, respectively. The clinopyroxene (cpx) is present over the 

entire crystallization range, however, substantial variations in its composition are observed 

from 1150 to 1075°C (Table 2). High temperature cpx is Si-Mg-rich and Al-Fe-poor. With 

decreasing temperature, cpx becomes Al-richer and Si-poorer. Leucite and phlogopite appear 

at lower temperatures: 1100 and 1075°C, respectively.  

In carbonate-bearing charges, we did not observe any immiscible carbonate-rich phase. All 

the calcium and magnesium were incorporated in the magma (silicate) and CO2 was 

dominantly incorporated into the fluid component. Carbonate addition considerably increases 

the crystallization of the melt and the stability fields of cpx and leucite. The latter appears at 

1150°C for 10wt% CaCO3 added (#1150/5). Globally, the CaO content of cpx increases from 

22 to 25wt% as Ca-carbonate is added up to ~15 wt%. We also noted a strong increase in the 

ferric iron content in cpx (calculated after Lindsley, 1983) with addition of carbonate. As for 

carbonate free-conditions, high temperature cpx is Si-Mg-rich and becomes Al-Fe-richer as 

fractionation proceeds. Olivine is only observed in experimental charges doped in dolomite 

(1150/3; 1125/2; 1100/4; 1075/5). These olivine crystals are Mg- and Ca-rich (Table 2). 

Phlogopite crystallization is also generally promoted by dolomite addition. The addition of 

extra water (1.5 wt%) reduces the degree of crystallization and, in particular, the leucite 

stability field (see #1100/5;1075/6;1125/3). A fluid phase appears in the form of abundant 

bubbles with a few weight percent of carbonate addition, and reaches values > 9 wt% when 

~18 wt% of carbonate is added. 

The silica content of the residual liquid decreases with carbonate addition as illustrated in the 

TAS diagram in Fig.2a. In this projection, the effects of Ca and Mg-carbonate on the residual 
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liquid composition are very similar. This figure shows that the AH7a composition 

(SiO2~48wt%; Na2O+K2O~9wt%) with no carbonate addition evolves toward liquids with 

higher silica and alkali contents (at 1075°C: SiO2 ~ 52wt% and Na2O+K2O ~ 14wt%), 

whereas the same starting composition assimilating carbonate evolves toward residual liquids 

substantially poorer in silica with similar alkali contents (at 1075°C and 15 wt% calcite: SiO2 

~ 41wt% and Na2O+K2O ~ 14wt%). Carbonate addition triggers the mafic composition AH7a 

to fractionate toward strongly silica undersaturated foiditic compositions whereas a carbonate-

free parental magma would generate phonolitic residual liquid. 

The CaO contents of the residual liquids in near-liquidus experiments (#1150) strongly 

increase with calcite addition. In contrast, at lower temperature most of the calcium liberated 

by the dissolution of calcite is incorporated into the Ca-rich cpx. The CaO content of the 

residual liquid exceeds 15wt% only in the experimental charges with more than 10wt% of 

calcite addition. Figure 3a illustrates this relative CaO enrichment in the liquid. This diagram 

shows that the effect of cpx crystallization upon cooling is to decrease both the MgO content 

and the CaO/Al2O3 ratio of the residual liquid. With addition of Ca-carbonate, the CaO/Al2O3 

ratio shows less decrease during crystallization, remaining almost constant when 14-18 wt% 

of carbonate is added. Compared to Figure 2a, this projection shows how calcite and dolomite 

addition have contrasting effects on the residual liquid composition, in which the residual 

liquids of dolomite-doped charges (grey dots) are richer in MgO and much less enriched in 

CaO than the liquids of calcite-doped experiments (black dots). 

 

4. Discussion 
 

4.1. Mechanisms of carbonate assimilation 
 

The added carbonates are completely consumed by reactions that modify the melt 

compositions, produce a CO2-rich fluid phase, and result in precipitation of cpx, and olivine 

(in dolomite-doped experiments). Calcite is dominantly assimilated following the general 

reaction: 

CaCO3 + 2 SiO2 + MgO => CaMgSi2O6 + CO2     (1) 

While the magnesite end-member reacts with the silicate via: 

2 MgCO3 + SiO2 => Mg2SiO4 + 2CO2       (2) 

Reaction (1) is deduced from the calcium-rich cpx analyzed in calcite doped charges and 

reaction (2) is supported by Mg-rich olivine only observed in dolomite doped experiments 

(See Table 2). Assimilation of dolomite involves both reactions (1) and (2) to produce cpx 
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and olivine. In both mechanisms (1) and (2), carbonate assimilation results in the diminution 

of magmatic SiO2 as we observed in our experimental charges (Table 1; Figure 2). The 

desilication of the residual liquid is therefore the most important geochemical consequence of 

carbonate assimilation.  

 

4.2. Carbonate vs. CO2 effect 
 

In the literature on Alban Hills magmatic processes, high CO2 fugacity or high CO2/H2O ratio 

during magma formation and differentiation are often mentioned as responsible for the 

observed liquid line of descent (Freda et al., 1997; Palladino et al., 2001; Peccerillo, 2005). 

The CO2 effect, however, substantially differs from the effect of carbonate assimilation that 

we describe above. Hereafter, we briefly clarify this crucial distinction. 

Trigila et al. (1995) and Freda et al. (1997) presented experimental data on the effect of CO2 

on phase equilibrium relationships for an Alban Hills mafic composition relatively similar to 

ours. In both cases, the experiments were performed at pressures of 1 atm, 200 and 400 MPa, 

with temperatures ranging between 1015 and 1230°C and fluid phase compositions varying 

from pure water to pure CO2. CO2 was added as Ag2CO3, in contrast to our study where Ca—

Mg carbonate were added. Their experimental results of CO2-rich experiments show that the 

crystallization of cpx and leucite controls the liquid line of descent, similar to our findings. 

However, except for a few runs in Trigila et al (1995), their experiments showed that 

crystallization of the magma induces an enrichment in silica and alkalis similarly to our 

experiments in which no carbonate was added (Fig. 2a). The main effect of carbonate 

assimilation shown by our experiments is an important decrease in the silica content of the 

residual liquid, coupled with an increase in the alkali content during crystallization due to 

both reaction (1) and (2) (Fig.2a). Furthermore, the desilication of the residual liquid (reaction 

(1) and (2)) occurs for very low carbonate additions (<3 wt%). Hereafter we identify evidence 

of carbonate contamination in the magmatic product of the Alban Hills, essentially on the 

basis of the degree of silica-depletion during magmatic differentiation.  

 

4.3. Quantitative assessment of limestone assimilation 
 

Cpx and leucite, often accompanied by oxides, were the main crystallizing phases in the 

experimental charges, while plagioclase was never observed, in agreement with the reported 

mineralogical assemblages of Alban Hills lavas (Trigila et al., 1995). Figure 2 compares in a 

TAS projection the compositions of the experimental residual liquid to the bulk rocks and 
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glass inclusions from the Alban Hills available in the literature, compiled according to their 

age (see figure caption). Figures 2b and 2c distinguish eruptive products from the post-caldera 

(<350 ka, according to De Rita et al., 1988; Giordano et al., 2006) and the pre-caldera (>350 

ka) periods, respectively. Crystallization of the AH7a composition in the absence of added 

carbonate reproduces a very minor portion of the observed compositional variation among 

natural samples. In contrast, AH7a crystallization with variable degrees of carbonate 

assimilation (up to 14-18 wt%) produces residual liquids covering the whole compositional 

range of Alban Hills eruptive products erupted before and after the major collapse of the 

caldera. Most of the natural compositions are consistent with assimilation of 3 and 12 wt% 

carbonate, however a few compositions fall into the fields consistent with no assimilation and 

with 14-18 wt % assimilation (Fig. 2b, 2c). In Figure 3, the same compositions as in Figure 2 

are plotted in a CaO/Al2O3 vs. MgO diagram, which illustrates the chemical evolution of the 

residual liquids during crystallization and highlights Ca and Mg-enrichment due to carbonate 

assimilation. High temperature liquids plot in the MgO-rich part of the diagram. Upon 

cooling, cpx crystallization forces the liquid to evolve toward Al-rich and Mg-Ca-poor 

compositions. Calcite addition limits the decrease of the CaO/Al2O3 ratio in the residual liquid 

with cpx crystallization. Dolomite addition has a much slighter effect on the CaO/Al2O3 ratio, 

while substantially increasing the MgO content of the residual liquids. As in Figure 2, the 

Alban Hills compositional range reported in Figures 3b and 3c cannot be solely explained by 

crystal fractionation from the AH7a composition. The range of CaO/Al2O3 ratio displayed by 

natural composition reveals that the magmas have undergone an extremely variable amount of 

carbonate assimilation, up to > 9 wt% of Ca-carbonate. The comparison between Figures 2 

and 3 gives important information about the assimilation process. Bulk-rock and melt 

compositions consistent with the highest degree of assimilation in the TAS plots are also 

consistent with the highest degree of assimilation in the CaO/Al2O3 vs. MgO diagrams. 

However, the assimilation degrees observed in Figure 2 are generally higher than in Figure 3, 

indicating important contributions from dolomite assimilation (probably up to half of the total 

input), which has an important effect on the desilication of the residual liquid, but a negligible 

one on its CaO/Al2O3 ratio. The highest degrees of assimilation are associated with two melt 

inclusion compositions entrapped in cpx phenocrysts with SiO2 ~42wt%, Na2O+K2O ~11wt% 

and CaO/Al2O3 ratios of ~0.8, similarly to the liquid that we obtained by adding 14.5wt% of 

calcite to AH7a (Tab.1, sample 1125/1). It is interesting to note that the extent of assimilation 

suggested by Figures 2 and 3 did not substantially change between the pre- and post-caldera 

periods. In both cases, extremely variable amounts of assimilation can be deduced from 



 10

different eruptive events and, sometimes, within a single event. For example, the Villa Senni 

eruptive event (labeled VSEU~360 ka), a major phase of the Alban Hills activity, consists of 

lower and upper flow units separated by lithic breccias (Freda et al., 1997). The time interval 

between the two flows is not precisely known (Giordano et al., 2006). The upper flow unit is 

more primitive (Mg-richer) and its fractionation trend indicates a negligible degree of 

carbonate assimilation and follows our residual liquid compositions obtained when less than 

3% carbonate is added (Fig. 2b and 3b). Freda et al. (1997) obtained a similar differentiation 

trend in their experiments with CO2-H2O mixtures. In contrast, the lower flow unit that shows 

a more fractionated composition apparently assimilated up to 7wt% CaCO3. Both bulk rock 

(closed circles) and melt inclusion (open circles) compositions are consistent with this 

interpretation (Fig. 2b and 3b). This heterogeneity in the degree of assimilation is probably a 

feature of carbonate-magma interactions, as suggested by field studies. Barnes et al. (2005) 

studied a 466 Ma (Barnes et al., 2006) years old magmatic intrusion in carbonate and silicate 

rocks, outcropping in Norway, where massive carbonate assimilation is revealed by the 

crystallization of Ca-rich pyroxene and by the desilication of the magma, similarly to reaction 

(1). Such an assimilation process is described over a several kilometers wide zone, which 

shows extreme heterogeneities in terms of bulk rock compositions, but similar mineral 

compositions and assemblages (Barnes et al., 2003, 2005). Indeed, dioritic (weak 

assimilation), syenitic and monzonitic (important assimilation) rocks coexist in the form of 

sheets within the magmatic complex. Mutual intrusive relationships are also commonplace as 

evidence of magma mingling. Magma emplacement most probably consisted of repeated 

injection of hundreds of subhorizontal sheet-like bodies (Barnes et al., 2003; Barnes et al., 

2006) that experienced different degrees of assimilation. We propose that limestone 

assimilation occurred similarly in the plumbing system of the Alban Hills, producing 

compositionally inhomogeneous and not well mixed magmas in the reservoir prior to the 

eruption.  

Selected compositions of cpx and olivine are shown in Table 2 and compared to natural cpx 

and olivine from the Alban Hills. The experimental cpx varies greatly from high Mg, Si 

contents and low Fe, Al contents at high temperature to low Mg, Si contents and high Al, Fe 

contents at low temperature. The amount of carbonate added in the charge correlates well with 

the CaO content of experimental cpx, although CaO variations are restricted between 22 and 

25 wt%. In Figure 4, the CaO content of natural and experimental clinopyroxenes is plotted 

against their Mg# (MgO/(MgO+FeO)). Upon cooling, the experimental cpx tends to become 

less magnesium-rich and less calcium-rich, for a given amount of carbonate addition. In 
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natural cpx, the CaO content is variable at high Mg#, but it remains always extremely high 

with decreasing Mg#, suggesting that calcite assimilation up to 15 wt% mainly occurs at high 

temperature (1100-1150°C). Only for few natural cpx the silica and alkali contents of the 

hosting rock are available (Aurisicchio et al., 1988) and suggest a good agreement between 

whole rock and cpx compositions in terms of assimilation degree. Cpx compositions 

compatible with 0wt% carbonate assimilation crystallized in silica-rich (>47 wt%), alkali-

poor (Na2O+K2O < 9wt%) rocks, also compatible with no carbonate assimilation. In contrast, 

cpx compositions compatible with significant carbonate assimilation (~10 wt%) crystallized 

in silica-poor (<43 wt%), alkali-rich (Na2O+K2O > 9wt%) rocks, also compatible with high 

degrees of carbonate assimilation.  High temperature experiments doped with dolomite 

crystallize Mg-rich and Ca-rich olivines similar to those analyzed in ejecta from Alban Hills 

(Table 2). In these ejecta, Federico et al. (1994) reported olivine with FeO down to 3.7 wt%, 

CaO up to 1wt% and very low NiO contents that do not indicate a mantle origin. Federico et 

al. (1994) proposed that such olivine could derive from high temperature reaction between the 

magma and the calcareous-dolomitic sequences below Alban Hills, as effectively confirmed 

by our experimental data. 

The chemical variability displayed by natural products in Fig. 2 and 3 cannot be reproduced 

solely by the crystallization of the mineralogical assemblages observed in Alban Hills lavas 

(mainly Cpx and leucite). Indeed such a closed system crystallization cannot account for the 

important desilication of the melt (from 48-50 wt% down to 42-44 wt%) concurrent with CaO 

and alkali increase. Only an addition of Ca-Mg carbonate to the mafic magma can explain 

these features. Moreover, cpx and olivine compositions also suggest Mg and Ca-enrichments 

(Fig. 4) occurring when the high temperature magma (1100-1150°C) comes into contacts with 

the carbonate rocks. Altogether, it appears that important carbonate-magma exchanges are 

required to explain compositional and mineralogical variations at the Alban Hills. The 

frequent occurrence of high temperature skarns (Federico et al., 1994; Trigila et al., 1995; 

Peccerillo, 2005) and the high δ18O measured in cpx by Dallai et al. (2004) are further 

evidence of the carbonate assimilation process. We conclude that the magmatic trends at the 

Alban Hills can be experimentally reproduced from the AH7a composition assimilating up to 

12-15 wt% of carbonate in which the dolomitic component represents an important fraction of 

the assimilated rocks. However, the possibility that the AH7a lava already results from partial 

assimilation of carbonate has to be considered. In a parallel study, Iacono Marziano and 

Gaillard (2006) have shown that a phono-tephritic liquid relatively similar to AH7a can derive 

from a trachybasalt with SiO2 ~51 wt% that assimilated ~9wt% of carbonates. Although 
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magma compositions more primitive and silica-richer than the AH7a one have not been 

observed at the Alban Hills, trachybasaltic compositions with higher SiO2 contents have been 

described at Mts. Vulsini (Kamenetsky et al., 1995, Fig.1). Considering that the Roman 

Province magmatic products have been proposed to derive from a common mafic source on 

the basis of isotopes and trace element signatures (Peccerillo 2005 and references therein), the 

existence of a more primitive composition at the Alban Hills similar to the relatively SiO2-

rich trachybasalt from Mt. Vulsini cannot be excluded. This would imply that the carbonate 

assimilation process in the Alban Hills plumbing system is more intense than what we 

estimate with our experiments. Carbonate assimilation degrees could therefore be 

significantly higher than 15 wt%. Indeed the fields shown in Figures 2, 3, and 4 are specific to 

the starting composition AH7a. Presumably, carbonate assimilation in some other starting 

material will result in similar types of fields, but displaced according to the original bulk 

composition. 

The other volcanic centers of the Roman Province emitted generally silica-richer 

compositions than the Alban Hills (Fig.1) with different mineral assemblages (mainly cpx, 

olivine and plagioclase phenocrysts in the mafic rocks; Peccerillo, 2005), suggesting lower 

degrees of interaction with the carbonate rocks. The trachybasaltic magmas from Mt. Vulsini 

mostly differentiated into trachytes (Fig. 1), as expected from close system fractionation 

(Iacono Marziano and Gaillard, 2006). However, Figure 1 also shows the existence at Mts. 

Vulsini of phonolitic compositions and tephritic-foiditic compositions comparable to the ones 

of the Alban Hills in terms of silica and alkali contents. This probably implies that variable 

carbonate assimilation by trachybasaltic primitive magmas also occurred at Mts. Vulsini. 

 

 

4.4. Origin of CO2 emissions and volcanic hazard at the Alban Hills 
 

Considering a maximum CO2 solubility in the melt of 0.5 wt% at 200 MPa from solubility 

data relevant to our compositions (Thibault and Holloway, 1994), 10wt% of carbonate 

assimilation would imply that ~ 5 wt% of the Alban Hills magma consisted of CO2-rich fluid 

phase. However, as discussed above, the degree of carbonate assimilation at this volcanic 

center was probably inhomogeneous in space and time giving a variable production of CO2 up 

to ~7 wt% (corresponding to 15 wt% of assimilated CaCO3). Such high fluid contents in the 

magma reservoir undoubtedly affected both the magma ascent and the eruptive dynamics 

(Huppert and Woods, 2002). Indeed, high CO2 content has been proposed to be at the origin 
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of the highly energetic eruptions at the Alban Hills (Palladino et al., 2001). An important 

question to evaluate is to what extent the CO2 produced by assimilation coexists with, or 

rapidly separates from the magma, subsequently generating important degassing events. 

Presently, the Alban Hills region is characterized by large CO2 emissions. This CO2 is 

dominantly dissolved into shallow groundwaters and sometimes directly released into the 

atmosphere by localized gas vents. Chiodini and Frondini (2001) estimated a continuous CO2 

injection into the aquifers exceeding 4.2•109 mol/year and a gas flow rate of 0.6•109 mol/year 

from the two largest gas vents. The carbon isotopic signature (δ13C between -3.5 and +0.9 ‰ 

vs. PDB) of the gases released by the vents (Chiodini and Frondini, 2001 and references 

therein) is consistent with an important contribution from marine carbonates (δ13C of 

Apenninic carbonates: 2.2 ± 0.66 ‰, Chiodini et al., 2004). Concurrently, the helium isotopic 

ratio of the emitted gases (R/Ra: 0.94-1.54) is very close to the magmatic values measured in 

fluid inclusions in olivine and cpx phenocrysts from Alban Hills eruptive products (Martelli et 

al., 2004) and suggests the presence of a mantle-derived magmatic component (Chiodini and 

Frondini, 2001 and references therein; Martelli et al., 2004). Gas emissions in the Central-

Southern Italy are generally considered to derive from degassing of a mantle source (Chiodini 

et al., 2000, 2004) metasomatized by the addition of subducted crustal material (Peccerillo, 

1999). Nevertheless, the geochemical signature of released gases at the Alban Hills is also 

compatible with magmatic assimilation and decarbonation of limestone at crustal depth: the 

released gasses would inherit their helium isotopic signature from the parental magma, while 

their δ13C would be controlled by the assimilated limestone. Carbon isotopic fractionation 

between the melt and the fluid phases remains difficult to quantify in the absence of 

consistent experimental data in basaltic compositions (Mattey, 1991 and references therein). 

To quantify the amount of CO2 produced by magmatic assimilation of limestone and 

dolostone at the Alban Hills, we assume that: 1) the rate of CO2 released at depth by 

assimilation equals the rate of CO2 emission at surface (steady state transfer); 2) the rate of 

CO2 production at depth is directly proportional to the rate of primitive magma currently 

injected into the carbonate host rocks times the degree of assimilation. Figure 5 shows how 

increasing degrees of assimilation generate increasing amounts of CO2 for a given magma 

intrusion rate into the sedimentary carbonate. Based on the well-documented uplift of the 

Alban Hills region from 1951 to 1994, Chiarabba et al. (1997) and, more recently, Feuillet et 

al. (2004) estimated that the corresponding volume of the magma emplaced during this time 

interval at a depth of ~ 5-6 km would be of ~40-94•106 m3 depending on the geometry of the 
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reservoir considered for their modeling (sill, sphere, dike). This corresponds to a yearly 

volume of ~1-2•106 m3 of magma injected in the reservoir during the 44-year period. 

Considering such a rate of primitive magma replenishment within a carbonate hosted 

reservoir and an assimilation of 3-12 wt% carbonate, as deduced from our experimental data, 

we calculate an amount of produced CO2 of 0.8-6.2•109 mol/year at depth. This value matches 

accurately the total CO2 emissions at surface that have been measured to be 4.8•109 mol/year 

in the Alban Hills area (Chiodini and Frondini, 2001). We therefore suggest here, on the basis 

of the quantitative agreement between petrology, gas geochemistry and geophysics, that CO2 

emissions at the Alban Hills mainly result from assimilation of sedimentary carbonate during 

the emplacement of a mafic magma at 5-6 km depth.  

It is noteworthy that the magma injection rate  for the Alban Hills chamber is comparable to 

the average intrusion rate estimated for Mt. Vesuvius over the past 25 ka of eruptive activity 

(~2•106 m3/year, Rosi et al., 1987). This suggests that the Alban Hills plumbing system is still 

active and that an important volume of magma can be stored in the shallow carbonate 

reservoir. Moreover, Panza et al. (2007) recently proposed that the mantle source of the Alban 

Hills magmas could still be productive because S-waves are slowed at depths between 60 and 

120 km, suggesting the possible presence of molten material. The conjunction of such 

evidence requires a careful re-evaluation of the volcanic hazards in this historical and densely 

populated area. 

 

5. Concluding remarks 
 

An experimental investigation has quantified the amount of sedimentary carbonate 

assimilated by the Alban Hills magmas in their crustal plumbing system. The study showed 

that the liquid line of descent from the most primitive mafic composition recognized at Alban 

Hills requires 0 to 15wt% assimilation in order to explain the compositional range displayed 

by the eruptive products. Such assimilation explains the large variations in the degree of 

silica-undersaturation displayed by the magmatic products and corroborates previous 

geochemical studies revealing important contamination during magma ascent through, and 

storage within the carbonate crust. Estimated CO2 production as a consequence of 3-12 wt% 

of sidewall assimilation has been shown to match present-day emissions of CO2 in this 

volcanic area. CO2 degassing in Central-Southern Italy is a regional process that occurs also 

in non-volcanic areas. The recycling of sedimentary limestone via the Adriatic subduction and 

subsequent thermal decomposition of carbonates in the mantle has been proposed as the main 
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mechanism responsible for the regional CO2 emissions in Italy. Our work, however, shows 

that carbonate assimilation in the upper crust can represent an important supplementary 

mechanism of CO2 production that quantitatively explains important emissions from active 

volcanic zones. 
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Figure Captions: 

 

Figure 1 

Total Alkali versus Silica diagram of the volcanic products emitted at the Roman Province 

(after Peccerillo, 2005). For clarity, compositions emitted at Mts. Sabatini are not shown, 

they would plot between the fields of Vico and Alban Hills. 

 

Figure 2 

TAS diagram showing the experimental residual liquids obtained in this study (a), bulk rock 

and melt inclusion analyses of the Alban Hills eruptive products of the post (b) and pre-

caldera (c) periods (after Fornaseri et al., 1963; Trigila et al., 1995; Freda et al., 1997; 

Palladino et al., 2001; Marra et al., 2003; Gaeta et al., 2006; Giordano et al., 2006). The 

starting composition AH7a used in the experiments is indicated by a filled square (a, c). 

Calcite and dolomite doped experiments are distinguished by different colors (black and gray, 

respectively). Experimental glass compositions are regrouped as a function of the total 

amount of carbonate added in the experimental charges. The outlined fields are specific to the 

starting composition of the experiments and are also shown in (b) and (c). In (b) and (c) the 

small symbols represent the whole rock compositions, while the big, empty symbols represent 

the glass inclusion data. All data were normalized to 100% on an anhydrous basis. 

 

Figure 3 

MgO versus CaO/Al2O3 plot showing experimental residual liquids obtained in this study (a), 

bulk rock and melt inclusion analyses of the Alban Hills eruptive products of the post (b) and 

pre-caldera (c) periods (after Fornaseri et al., 1963; Trigila et al., 1995; Freda et al., 1997; 

Palladino et al., 2001; Marra et al., 2003; Gaeta et al., 2006; Giordano et al., 2006). The 

starting composition AH7a used in the experiments is indicated by a filled square (a, c). 

Calcite and dolomite doped experiments are distinguished by different colors (black and gray, 

respectively). Experimental glass compositions are regrouped as a function of the amount of 

calcite added in the experimental charges. The outlined fields are specific to the starting 

composition of the experiments and are also shown in (b) and (c).  In (b) and (c) the symbols 

are as in Figure 2, the small symbols represent the whole rock compositions, while the big, 

empty symbols represent the glass inclusion data. All data were normalized to 100% on an 

anhydrous basis. 
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Figure 4 

Experimental (black and gray filled circles) and natural (crosses) clinopyroxene compositions. 

Mg# = MgO/(MgO+FeO). Fe content is calculated as ferrous iron after Lindsley (1983) and 

CaO amount is normalized to 100%. The same procedure of calculation was followed for both 

natural and experimental pyroxene compositions. Traced fields group together the 

experimental clinopyroxene compositions resulting from similar additions of carbonate and 

are specific to the starting composition of the experiments. Natural cpx compositions are from 

Aurisicchio et al. (1988); Federico and Peccerillo (2002); Dallai et al. (2004); Gaeta et al. 

(2006). Three analyses of cpx from low SiO2, high alkali bulk rock compositions (Aurisicchio 

et al., 1988) are indicated by an ellipse, while two analyses from high SiO2, low alkali bulk 

rock compositions (Aurisicchio et al., 1988) are marked by a square. 

Figure 5 

Calculated CO2 emission rates as a function of the magma feeding rate for magmas containing 

2500 ppm of CO2 (solubility at 200 MPa, ref) or assimilating 3, 12 and 15 wt% of carbonates. 

CO2 emissions at the Alban Hills are also shown (Chiodini and Frondini, 2001): the 

intersection of this line with the calculated trends gives the magma feeding rate necessary to 

provide the measured CO2 fluxes. The magma feeding rates determined by Chiarabba et al. 

(1997) and Feuillet et al. (2004), by geophysical modeling (see text) are represented, showing 

a good agreement with the calculated magma feeding rate for 3-15 wt% assimilation. 
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Table 1: Experimental conditions, glass compositions and phase proportion.  
       
Temp/sample Starting glass 1150/1 1150/2 1150/3 1150/4 1150/5 1150/6* 
Added calcite wt% - - 3.6 - 7 10 10 
Added dolomite wt% - - - 6 - - - 
Glass composition        
SiO2 48.05 48.18 47.30 46.23 46.06 44.99 44.83 
TiO2 0.96 0.87 0.84 0.86 0.90 0.89 0.81 
Al2O3 14.60 14.50 14.19 14.45 14.34 15.00 13.63 
MgO 6.45 6.50 6.54 7.24 6.34 5.85 6.12 
FeO 7.85 7.20 7.13 7.10 7.52 7.07 7.43 
CaO 11.40 11.35 12.70 12.65 13.62 15.12 15.63 
Na2O 1.63 1.64 1.63 1.85 1.72 1.86 1.47 
K2O 7.30 7.40 7.45 7.46 7.31 7.07 7.09 
P2O5 0.51 0.65 0.63 0.67 0.69 0.73 0.60 
H2O 1.25** 1.7** 1.30 1.20 1.21 1.13 2.10 
wt % phases        
Glass  100 97.9 94.5 94.2 87.2 94.8 
Cpx  traces 0.4 1.6 2.8 6.7 - 
Leucite  - - traces 0 1.4 - 
Olivine  - - 0.8 - 0 - 
Oxides  - - - - - - 
Fluid  - 1.7 3.06 3 4.6 5.2 
* Extra water was added (1.5 wt%)       

** Karl Fischer Titration data (+/- 0.25 wt%) 
       
 
      

Temp/sample 1100/1 1100/2 1100/3 1100/4 1100/5* 1100/6 
Added calcite wt% - 2.7 5.2 - 5.2 9 
Added dolomite wt% - - - 4.9 - - 
Glass composition       
SiO2 49.25 46.98 44.96 45.92 46.24 44.62 
TiO2 0.92 0.92 1.03 0.75 0.81 0.86 
Al2O3 17.68 17.03 16.88 18.11 15.70 16.49 
MgO 3.91 3.70 3.41 4.36 4.70 3.04 
FeO 6.24 6.93 7.25 6.98 6.97 7.40 
CaO 7.33 9.53 10.69 8.13 10.89 13.18 
Na2O 2.78 2.34 3.69 3.56 1.99 2.95 
K2O 9.00 9.70 9.05 9.13 8.85 8.93 
P2O5 0.92 0.90 1.00 1.10 0.70 0.82 
H2O 1.97 1.67 1.75 1.78 2.96 1.39 
wt % phases       
Glass 64 59.4 42.3 38.5 77.9 48.7 
Cpx 25.60 30.5 38 38.5 17.2 34.2 
Leucite 7.90 7.7 16.1 17.4 0 11.8 
Olivine - - - 1 - - 
Oxides 2.50 1.1 1.1 1.9 0.7 0.9 
Fluid - 1.3 2.6 2.8 4.2 4.4 

All experiments were performed at 200 MPa +/-10. All compositions are normalized to 100%. 
Water was determined using the “by difference method” on the microprobe analyses (+/-0.6 
wt%), or by KFT when specified. Phase proportions were determined using mass balance 
calculations. Cpx: clinopyroxene; Leuc.: Leucite; Ol.: Olivine; Ox.: Oxides. 
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Table 1: Continued. 
 

Temp/sample 1075/1 1075/2 1075/3 1075/4 1075/5 1075/6* 
Added calcite wt% - 5 9.3 15 - 6.2 
Added dolomite wt% - - - - 12 4.8 
Glass composition       
SiO2 50.22 47.56 43.98 40.60 44.58 44.58 
TiO2 0.76 0.84 0.87 0.95 0.85 0.85 
Al2O3 18.53 18.82 16.86 14.98 15.22 18.31 
MgO 2.44 2.20 2.69 2.62 3.81 3.39 
FeO 4.56 4.87 6.24 6.18 5.98 5.42 
CaO 5.12 9.00 11.85 17.26 15.22 9.72 
Na2O 3.80 4.00 4.78 4.52 4.35 2.63 
K2O 9.75 9.19 9.76 9.51 7.61 11.69 
P2O5 1.17 1.32 1.01 1.72 0.48 0.70 
H2O 3.66 2.20 1.77 1.46 1.58 2.41 
wt % phases       
Glass 39.4 30.7 30.1 33.9 33.2 43.5 
Cpx 39.3 43.2 45.3 43.2 34.9 42 
Leucite 16.6 20.1 17.9 14.4 17.8 6.6 
Olivine - - - - 3.2 trace 
Oxides 4 3 1.8 1.2 3 0.8 
Fluid 0 2.9 4.8 6.85 6.89 6.92 
Contain also Phlog. - Mel. Mel., ap., phlog. Ap., phlog - 

Phlog.: Phlogopite; Mel.: Melilite; Ap.: Apatite 
 
Temp/sample 1125/1 1125/2 1125/3* 
Added calcite wt% 14.5 - 8.2 
Added dolomite wt% - 14 10 
Glass composition    
SiO2 38.98 41.40 42.02 
TiO2 0.95 1.04 0.82 
Al2O3 15.80 16.92 15.26 
MgO 4.21 5.69 6.71 
FeO 8.43 7.25 6.15 
CaO 17.91 11.90 14.86 
Na2O 3.04 3.91 1.95 
K2O 7.90 9.01 9.41 
P2O5 1.07 1.27 0.79 
H2O 1.38 1.30 1.73 
wt % phases    
Glass 46.2 53.2 63.9 
Cpx 34 29 24 
Leucite 13 7.75 0 
Olivine - - - 
Oxides 0 0.5 1.8 
Fluid 6.8 7.04 9.28 
Contain also  Phlog. 
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Table 2 : Selected analyses of natural and experimental cpx and olivine.  
 

         
Phase Cpx Cpx Cpx Cpx Cpx Cpx Ol Ol 

Experimental crystals 
Temp./sample 1150/1 1150/4 1100/1 1100/4 1075/1 1075/3 1150/3 1100/4 
SiO2  53.04 51.69 47.30 45.60 47.09 45.07 41.47 40.97 
TiO2  0.43 0.41 0.96 1.08 0.91 1.17 - - 
Al2O3 2.01 3.05 6.26 7.22 8.10 9.73 0.05 0.04 
Cr2O3 0.40 0.38 0.04 0.07 - - 0.10 - 
MgO   17.49 16.44 13.68 12.06 12.15 10.14 51.84 50.21 
FeO   2.21 2.33 6.99 8.09 8.30 8.92 5.28 7.60 
MnO   - 0.08 0.42 0.14 - - 0.25 0.29 
CaO   24.10 25.15 23.26 24.63 22.89 24.47 0.96 0.83 
Na2O  0.11 0.14 0.32 0.34 0.20 0.15 - - 
K2O   0.10 0.14 0.51 0.46 0.15 0.10 - - 
P2O5 0.10 0.20 0.26 0.30 0.20 0.25 - - 
F     - 0.22 - - - - - - 
NiO   0.07 0.02 - - - - 0.04 0.07 
Total 99.71 99.93 100.12 99.59 99.46 99.31 99.34 99.81 

Natural crystals 
Sample name AH-3/4 Ca20d AH17 UFU2 AH1da AH3-1 BD CA14 
Author Gaeta Dallai Dallai Gaeta Dallai Dallai Federico Federico 
Age Ka 69 366 <70 366 204 <70 <60 <60 
SiO2 53.12 51.50 48.23 46.77 46.23 45.75 41.73 40.85 
TiO2 0.30 0.50 0.96 1.07 1.40 1.34 - - 
Al2O3 2.17 2.57 5.59 6.19 8.13 7.99 - - 
Cr2O3 - 0.19 0.10 - 0.11 0.05 - 0.02 
MgO 17.36 15.91 13.56 12.17 12.03 10.92 53.25 49.22 
FeO 2.84 3.76 6.84 9.12 8.31 9.36 3.70 8.15 
MnO 0.10 0.08 0.08 0.15 0.10 0.18 0.24 0.96 
CaO 23.95 25.05 24.44 24.26 23.31 24.16 1.07 0.80 
Na2O 0.16 0.45 0.18 0.26 0.35 0.26 - - 
K2O - - 0.02 - 0.01 - - - 
Total 99.38 98.62 99.77 98.81 99.73 99.18 99.13 100.92 

Gaeta: Gaeta et al., 2006; Dallai: Dallai et al., 2004; Federico: Federico et al., 1994. 
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Figure 2 
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Figure 3 
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