Laurent Arbaret 
  
Misha Bystricky 
  
Rémi 
  
  
  
  
  
Microstructures and rheology of hydrous synthetic magmatic suspensions deformed in torsion at high pressure

   

Microstructures and rheology of hydrous synthetic magmatic suspensions deformed in torsion at high

pressure.

Introduction

Magma transfer from a deep source to its final emplacement as an intrusion in the crust or lava after eruption at the surface is a mass and heat transport process that plays a major role in the chemical and physical differentiation of the Earth's lithosphere [e.g., [START_REF] Dingwell | Magma rheology, in Experiments at High Pressure and Applications to the Earth's Mantle[END_REF][START_REF] Petford | Rheology of granitic magmas during ascent and emplacement[END_REF]. Magma is regarded as a multiphase system with varying content of three components: a silicate melt (the liquid phase), crystals (the solid phase) and bubbles (the vapor phase). As magma gradually cools and crystallizes during transfer, the chemical properties of the melt, the average shape, size distribution and shape distribution of the crystals, and the proportion and composition of the three different components progressively change with considerable consequences for the rheological evolution of the magma [e.g., [START_REF] Dingwell | Magma rheology, in Experiments at High Pressure and Applications to the Earth's Mantle[END_REF]. Among these variables, crystal fraction ( s ) and water content in the melt are considered as key parameters controlling the rheology of crystallizing magma [START_REF] Petford | Rheology of granitic magmas during ascent and emplacement[END_REF]. The influence of water on the viscosity of hydrous silicic melts has been explored by many studies [e.g., [START_REF] Dingwell | The effect of water on the viscosity of a haplogranitic melt under P-T-X conditions relevant to silicic volcanism[END_REF][START_REF] Schulze | The influence of H 2 O on the viscosity of a haplogranitic melt[END_REF]. [START_REF] Dingwell | The effect of water on the viscosity of a haplogranitic melt under P-T-X conditions relevant to silicic volcanism[END_REF] have shown that the viscosity of haplogranitic melts decreases by several orders of magnitude in the presence of 0.5 wt % of water and continues to gradually decrease at higher water contents. By contrast, several rheological domains have been identified or proposed for magmatic suspensions during crystallization [START_REF] Arzi | Critical phenomena in the rheology of partially melted rocks[END_REF][START_REF] Van Der Molen | Experimental deformation of partially-melted granite[END_REF][START_REF] Nicolas | Kinematics in magmatic rocks with special reference to gabbros[END_REF][START_REF] Dingwell | Magma rheology, in Experiments at High Pressure and Applications to the Earth's Mantle[END_REF][START_REF] Fernandez | Relative rheological evolution of chemically contrasted coeval magmas: Example of the Tichka plutonic complex (Morocco)[END_REF][START_REF] Vigneresse | Rheological transitions during partial melting and crystallisation with application to felsic magma segregation and transfer[END_REF]. These domains are separated by rheological and/or structural thresholds [START_REF] Vigneresse | Rheological transitions during partial melting and crystallisation with application to felsic magma segregation and transfer[END_REF][START_REF] Rosenberg | Experimental deformation of partially melted granite revisited: Implication for the continental crust[END_REF] whose limits in terms of solid fraction are vastly debated as they depend on many factors such as density and spatial organization of the solid phase [e.g., [START_REF] Saar | Numerical models of the onset of yield strength in crystal-melt suspensions[END_REF][START_REF] Rosenberg | Experimental deformation of partially melted granite revisited: Implication for the continental crust[END_REF].

During the early stages of crystallization, silicate melt behaves as a Newtonian fluid. The dynamic viscosity of crystal-bearing melt increases regularly with crystal fraction and obeys the Einstein-Roscoe model [START_REF] Roscoe | The viscosity of suspensions of rigid spheres[END_REF]. For these low to moderate solid fractions, magma transfer processes involve bulk simple shear deformation in most geological settings. In this domain, homogeneous structures in the magma develop mostly by rigid body rotation of the suspended crystals [START_REF] Fernandez | Theoretical and experimental study of fabrics developed by different shaped markers in two-dimensional simple shear[END_REF][START_REF] Ildefonse | Effect of mechanical interactions on the development of shape preferred orientations: A two-dimensional approach[END_REF]. The rigid rotation of an ellipsoidal solid body immersed in a viscous fluid submitted to simple shear deformation has been described by [START_REF] Jeffery | The motion of ellipsoidal particles immersed in a viscous fluid[END_REF] model. During shearing, the orientation of the long axis a follows an orbit with a period that depends on the aspect ratio r = a/b of the particle, with b the minor axis. It is now accepted from experiments on analogue materials that natural particles with shape symmetries higher than monoclinic closely follow the rotation behavior of an ellipsoid having the same aspect ratio r [START_REF] Willis | A kinematic model of preferred orientation[END_REF][START_REF] Arbaret | Effect of shape and orientation on rigid particle rotation and matrix deformation in simple shear flow[END_REF]. Therefore numerical simulations based on Jeffery's equations can model the shape preferred orientations (SPO) development of a wide range of natural magmatic crystals with homogeneous shapes submitted to homogeneous simple shear [START_REF] Fernandez | Theoretical and experimental study of fabrics developed by different shaped markers in two-dimensional simple shear[END_REF][START_REF] Ježek | The behaviour of rigid triaxial particles in viscous flows: Modelling of fabric evolution in a multiparticle system[END_REF]. Such simulations have established the existence of a cyclic shape fabric, and the resulting model has been extensively applied to magmatic fabrics [e.g., [START_REF] Arbaret | Analogue 3D simple shear experiments of magmatic biotite subfabric, in Granites: From Segregation of Melt to Emplacement Fabrics[END_REF]. However, experiments on shape fabric development in sheared suspensions of 2-D and 3-D analogue materials have shown that this theoretical cyclic behavior is hardly respected in practice. First, rigid body rotation deviates from theory because of perturbation of the shear flow in between neighboring crystals [START_REF] Ildefonse | Effect of mechanical interactions on the development of shape preferred orientations: A two-dimensional approach[END_REF][START_REF] Piazolo | The influence of matrix rheology and vorticity on fabric development of populations of rigid objects during plane strain deformation[END_REF]]. In addition, numerical simulations neglect possible contacts between crystals resulting from their relative motion during shearing. These mechanical interactions lead to the development of structural features such as transient tiling of crystals in viscous fluids with a solid fraction as low as s = 0.05 [START_REF] Fernandez | Theoretical and experimental study of fabrics developed by different shaped markers in two-dimensional simple shear[END_REF][START_REF] Arbaret | Shape fabrics of particles in low concentration suspensions: 2D analogue experiments and application to tiling in magma[END_REF], and stable clusters of particles for s > ~0.16 [START_REF] Ildefonse | Effect of mechanical interactions on the development of shape preferred orientations: A two-dimensional approach[END_REF]. Another essential factor that may result in the stabilization of shape fabrics in simple shear is the shape distribution of the particle population. Analogue experiments [START_REF] Arbaret | Analogue 3D simple shear experiments of magmatic biotite subfabric, in Granites: From Segregation of Melt to Emplacement Fabrics[END_REF][START_REF] Fernandez | 3D biotite shape fabric experiments under simple shear strain[END_REF]] and numerical simulations [START_REF] Ildefonse | Rigid particles in simple shear flow: Is their preferred orientation periodic or steady state?[END_REF] have demonstrated that in simple shear a viscous fluid containing a population of particles with varying shapes develops steady state SPO at large strains. This fabric is typically characterized by a mineral foliation and lineation nearly parallel to the shear plane and shear direction of the flow, respectively [START_REF] Arbaret | Analogue 3D simple shear experiments of magmatic biotite subfabric, in Granites: From Segregation of Melt to Emplacement Fabrics[END_REF]. Such results may also be expected for particle populations with lognormal shape distributions, as often found in natural igneous rocks [START_REF] Bindeman | Fragmentation phenomena in populations of magmatic crystals[END_REF]. This notion is fundamental for the shear flow determination in magmas from shape fabric distributions measured, for instance, by classical optical microscopy or by anisotropy of magnetic susceptibility [START_REF] Arbaret | Analogue 3D simple shear experiments of magmatic biotite subfabric, in Granites: From Segregation of Melt to Emplacement Fabrics[END_REF].

With increasing degree of crystallization, complex nonlinear rheologies develop. A rheological threshold defining a departure from Newtonian behavior has been proposed at s ~ 0.3-0.4 [e.g., [START_REF] Fernandez | Relative rheological evolution of chemically contrasted coeval magmas: Example of the Tichka plutonic complex (Morocco)[END_REF][START_REF] Lejeune | Rheology of crystal-bearing silicate melts: An experimental study at high viscosities[END_REF][START_REF] Saar | Numerical models of the onset of yield strength in crystal-melt suspensions[END_REF][START_REF] Bagdassarov | Transient phenomena in vesicular lava flows based on laboratory experiments with analogue materials[END_REF]. A linear viscoelastic (Bingham) rheology with the onset of a finite yield strength τ c was measured at higher solid fractions [START_REF] Pinkerton | Methods of determining the rheological properties of magmas at sub-liquidus temperatures[END_REF][START_REF] Bagdassarov | Viscoelasticity of crystal-and bubble-bearing rhyolite melt[END_REF] and at the ductile-brittle (or glass) transition [START_REF] Dingwell | The brittle-ductile transition in high-level granitic magmas: Material constraints[END_REF]. As deformation proceeds at these intermediate solid fractions, different microstructures develop in the magma that can in turn influence its rheology and possibly lead to strain localization. At large strains, SPOs of objects such as the crystals, septa, deformable enclaves or bubbles may develop homogeneously over the entire volume or change locally in orientation and intensity depending on the rheological properties of the magma. In turn, this structural evolution may affect the bulk rheological response of the magma. For instance, narrow shear zones resulting from strain localization by shear softening or local alignment of anisometric crystals forming S/C-like patterns at high solid fractions are two structures recognized to change the rheological behavior of the whole system [START_REF] Nicolas | Kinematics in magmatic rocks with special reference to gabbros[END_REF]. In addition, the existence of a mechanism for oriented crystallization during shearing is still debated [START_REF] Lofgren | Experimental studies on the dynamic crystallization of silicate melts[END_REF]. To investigate the interplay between the development of microstructures and rheology, large-strain experiments have typically been performed on monomineralic aggregates (e.g., calcite [START_REF] Casey | Texture of Solnhofen limestone deformed to high strains in torsion[END_REF], olivine [START_REF] Bystricky | High shear strain of olivine aggregates: Rheological and seismic consequences[END_REF], quartz [START_REF] Schmocker | Granular flow and Riedel band formation in water-rich quartz aggregates experimentally deformed in torsion[END_REF], magnesiowustite [START_REF] Heidelbach | Fabric evolution during high shear strain deformation of magnesiowüstite (Mg 0.8 Fe 0.2 O)[END_REF]) and recently on bimineralic assemblages [START_REF] Rybacki | Rheology of calcite-quartz aggregates deformed to large strain in torsion[END_REF][START_REF] Barnhoorn | Strain localization in bimineralic rocks: Experimental deformation of synthetic calcite-anhydrite aggregates[END_REF][START_REF] Bystricky | Large-strain deformation and strain partitioning in polyphase rocks: Dislocation creep of olivine-magnesiowüstite aggregates[END_REF][START_REF] Mecklenburgh | Deformation of olivine-spinel aggregates in the system (Mg,Ni) 2 GeO 4 deformed to high strain in torsion: Implications for upper mantle anisotropy[END_REF] in a high-pressure and high-temperature gas-medium torsion apparatus [START_REF] Paterson | Rock deformation tests to large shear strain in torsion[END_REF]. By contrast, most deformation experiments on partially molten rocks in the range 0.4 < s < 0.8 have been performed in compression and to low strains. These studies typically focused on the mechanical behavior of partially molten rocks ( s > 0.54) and the consequences for melt segregation and extraction [e.g., [START_REF] Arzi | Critical phenomena in the rheology of partially melted rocks[END_REF][START_REF] Van Der Molen | Experimental deformation of partially-melted granite[END_REF][START_REF] Paquet | Experimental deformation of partially melted granitic rocks at 600-900°C and 250 MPa confining pressure[END_REF][START_REF] Dell'angelo | Experimental deformation of partially melted granitic aggregates[END_REF][START_REF] Rutter | Experimental deformation of partially molten Westerly granite under fluid-absent conditions, with implications for the extraction of granitic magmas[END_REF]. Only [START_REF] Paterson | Interpreting magmatic fabrics patterns in plutons[END_REF] and [START_REF] Petford | Rheology of granitic magmas during ascent and emplacement[END_REF] with respect to plutonic rocks and [START_REF] Smith | Structural analysis of flow-related textures in lavas[END_REF] with respect to volcanic rocks have focused on the structural evolution of magmas during deformation to large strains by comparing field observations on fabrics and structures with existing rheological models.

In the late stages of crystallization, magmatic rocks are thought to undergo a transition from liquid to solid-like behavior that is associated with a large increase in viscosity of up to 4 orders of magnitude [START_REF] Rosenberg | Experimental deformation of partially melted granite revisited: Implication for the continental crust[END_REF]. Across this transition, the magma evolves from a viscous suspension whose rheology is controlled by the liquid, to an interconnected framework capable of transmitting deviatoric stresses [START_REF] Petford | Consolidation phenomena in sheared granitic magma: Effects of grain size and tortuosity[END_REF][START_REF] Petford | Rheology of granitic magmas during ascent and emplacement[END_REF][START_REF] Stickel | Fluid mechanics and rheology of dense suspensions[END_REF]. In his pioneering work, [START_REF] Arzi | Critical phenomena in the rheology of partially melted rocks[END_REF] observed this threshold at crystal fractions of s ~ 0.8, and defined it as the Rheological Critical Melt Percentage (RCMP). In later experimental studies, a similar transition was estimated at various crystal fractions between 0.4 and 0.9 [e.g., van der Molen and [START_REF] Van Der Molen | Experimental deformation of partially-melted granite[END_REF][START_REF] Lejeune | Rheology of crystal-bearing silicate melts: An experimental study at high viscosities[END_REF]. Along the same lines, a Particle Locking Threshold (PLT) was defined at about 0.7 < s < 0.9 by [START_REF] Vigneresse | Rheological transitions during partial melting and crystallisation with application to felsic magma segregation and transfer[END_REF]. Determining a precise value of the RCMP experimentally is difficult because it requires experiments on a well-controlled system over a large range of crystal fractions. As a result, the RCMP is still debated. The RCMP may in fact vary depending on melt viscosity, and shape, size distribution, and SPO of the solid fraction [START_REF] Dingwell | Magma rheology, in Experiments at High Pressure and Applications to the Earth's Mantle[END_REF][START_REF] Saar | Numerical models of the onset of yield strength in crystal-melt suspensions[END_REF]. Finally, an additional threshold called melt connectivity transition (MCT) was defined at s > ~0.93 by [START_REF] Rosenberg | Experimental deformation of partially melted granite revisited: Implication for the continental crust[END_REF], on the basis of their review of existing experimental data. This transition is characterized by an even greater viscosity contrast than the RCMP and may be due to the breakdown of melt interconnectivity, without any fundamental changes in the structure of the solid aggregate.

Partially molten granitic rocks were deformed at different solid fractions either by adding water at constant temperature [van der Molen and [START_REF] Van Der Molen | Experimental deformation of partially-melted granite[END_REF] or by increasing temperature [START_REF] Rutter | Experimental deformation of partially molten Westerly granite under fluid-absent conditions, with implications for the extraction of granitic magmas[END_REF]. An attempt to control melt fraction, composition and water content independently was made on synthetic aggregates of granitic composition [START_REF] Mecklenburgh | On the rheology of partially molten synthetic granite[END_REF]. Compression experiments were also performed on synthetic olivine aggregates in the presence of basaltic melt [e.g., Hirth andKohlstedt, 1995a, 1995b] and on a partially molten lherzolite [START_REF] Zimmerman | Rheological properties of partially molten lherzolite[END_REF]. Most such studies focused on measuring rheologies rather than on characterizing microstructures, with the exception of studies concentrating on melt topology in olivine melt samples ( s > 0.8) deformed in compression [e.g., [START_REF] Daines | Influence of deformation on melt topology in peridotites[END_REF][START_REF] Scott | The effect of large melt fraction on the deformation behavior of peridotite[END_REF] or in shear using a diagonal-cut assembly [START_REF] Holtzman | Melt segregation and strain partitioning: Implications for seismic anisotropy and mantle flow[END_REF][START_REF] Holtzman | Viscous energy dissipation and strain partitioning in partially molten rocks[END_REF][START_REF] Katz | The dynamics of melt and shear localization in partially molten aggregates[END_REF].

Overall, the viscosity of a crystallizing magma increases by as much as 14 orders of magnitude over its full range of crystallization (0 < s < 1), with many rheological thresholds that are still poorly constrained [START_REF] Rosenberg | Experimental deformation of partially melted granite revisited: Implication for the continental crust[END_REF]. Surprisingly little attention has been paid to the structures of experimentally deformed magmas, even though constraining the relationship between characteristic magmatic microstructures and the rheological behavior of magma over the entire range of crystallinity is fundamental to be able to model magma transfer processes and determine the rheological history of magmatic bodies from the observation of their preserved structures. In this contribution, we present our results on the development of microstructures in experimentally deformed magmatic suspensions. In order to focus on the effect of solid fraction on rheology and structural development, we have synthesized samples composed of a water-undersaturated aluminosilicate melt and various solid fractions of crushed alumina grains (0.00 < s < 0.76). These crystal melt mixtures were deformed in torsion at high pressure and high temperature in a Paterson gas-medium apparatus and deformed samples were analyzed by image analysis on polished sections. Particular attention was paid to the relationships between rheology measured during the deformation experiments and resulting microstructures, including shape fabrics of crystals and bubbles (when present), local SPO bands, and other microstructural heterogeneities resulting from strain localization in narrow zones. The results are discussed and compared with previous experiments on analogue materials and natural partially crystallized melts, and with numerical simulations. A general description is proposed for the rheological evolution of a crystallizing magma that links the development of characteristic microstructures in magmatic suspensions with changes in rheological behavior and in flow law parameters as a function of crystal fraction for 0.00 < s < 0.76.

Experimental Procedure

Sample Synthesis and Hydration Technique

[8] A single synthetic aluminosilicate melt was chosen for all experiments, in order to focus entirely on the effect of solid fraction on the deformation properties of a partially crystallized magma. A dry glass was synthesized by Schott AG, Germany, and has a haplogranitic composition (SiO 2 = 78.8, Al 2 O 3 = 12.4, Na 2 O = 4.6 and K 2 O = 4.2%, as measured by microprobe analysis [START_REF] Champallier | Experimental investigation of magma rheology at 300 MPa: From pure hydrous melt to 75 vol. % of crystals[END_REF]) close to the so-called HPG8 composition of [START_REF] Holtz | Effects of H 2 O on liquidus phase relations in the haplogranite system at 2 and 5 kbar[END_REF]. This composition was selected because its rheology and water solubility at our experimental conditions are well known [START_REF] Holtz | Effects of H 2 O on liquidus phase relations in the haplogranite system at 2 and 5 kbar[END_REF][START_REF] Schulze | The influence of H 2 O on the viscosity of a haplogranitic melt[END_REF][START_REF] Dingwell | The effect of water on the viscosity of a haplogranitic melt under P-T-X conditions relevant to silicic volcanism[END_REF]. The dry glass was crushed and the resulting powder (grain diameter Ø < 20 μm) was mixed with a solid phase consisting of crushed alumina crystals with a sieved fraction of 45 μm < Ø < 90 μm. Alumina was chosen to avoid any crystallization/dissolution and hydration of the grains during the timescale of the torsion experiments (≤12 hours), thus ensuring constant composition, solid fraction and water content within the melt during deformation [START_REF] Martel | Experimental fragmentation of crystal-and vesicle-bearing silicic melts[END_REF]. Five mixtures were prepared with different solid fractions s , namely, 0.16, 0.34, 0.54, 0.65 and 0.76 (Figure 1). The glass/solid mixtures were loaded with distilled water in a gold capsule (20 mm in diameter and 30 to 35 mm in length). The amount of added water was calculated to obtain 2.5 wt % in the melt, independently of solid fraction. As a reference, a hydrated crystal-free melt was prepared with the same procedure. The five HPG suspensions and the crystal-free hydrated glass were melted at 100 MPa and 1000°C for a minimum of 1 month, i.e., long enough to ensure homogenization of the water in the melt. The water content in synthesized samples was measured by FTIR and Karl Fisher Titration and is detailed by [START_REF] Champallier | Experimental investigation of magma rheology at 300 MPa: From pure hydrous melt to 75 vol. % of crystals[END_REF].

Deformation Experiments

[9] High-temperature high-pressure torsion experiments were performed in an internally heated gas-medium deformation apparatus (Paterson instrument, Australian Scientific Instruments) at ETH Zurich. The experimental setup and techniques are described in detail by [START_REF] Paterson | Rock deformation tests to large shear strain in torsion[END_REF]. Torsion experiments allow deformation to large strains in a geometry resembling simple shear and the determination of mechanical data as a function of strain under constant bulk strain rate.

[10] Cylindrical samples 11.8 to 14.9 mm in diameter, 5.0 to 11.5 mm in length, and with ends parallel to within 3 μm were cored and machined from the synthesized material. During deformation, each sample was held between alumina pistons and jacketed in copper. In two experiments at very high temperature, iron was used as jacketing material instead of copper. An inner sleeve consisting of a 25 μm thick platinum foil was always wrapped around the specimen to avoid any chemical reaction between melt and copper (or iron), and limit water loss during the experiment. Microprobe analyses on deformed samples show that water loss from the samples is negligible [START_REF] Champallier | Déformation expérimentale à haute température et haute pression de magmas partiellement cristallisés[END_REF]. All experiments were conducted at a confining pressure of 300 MPa and temperatures ranging from 475°C to 900°C using the torsional configuration [START_REF] Paterson | Rock deformation tests to large shear strain in torsion[END_REF]. Frequent temperature calibrations ensured thermal gradients within the samples of <1°C cm -1 . Samples were deformed at constant angular displacement rates corresponding to constant strain rates between 2.0 × 10 -5 and 2.1 × 10 -3 s -1 at the outer radii of the cylinders. The angular displacement rate was either held constant throughout the experiment, or was changed in steps in order to get additional mechanical data. Angular displacement was recorded with an external RVDT and torque was measured with an internal capacitance load cell with a resolution of 0.2 Nm. The procedure to calculate shear stress from measured torque is detailed by [START_REF] Paterson | Rock deformation tests to large shear strain in torsion[END_REF].

[11] Before calculation of the shear stress, the measured torque was corrected for the strength of the copper jacket surrounding each sample. Torsion deformation tests were conducted on copper samples with the same composition as the jacket to determine its strength at the experimental conditions. Copper data were in good agreement with flow laws for copper compiled by [START_REF] Frost | Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics[END_REF]. In most stepping tests, the resulting jacket corrections were on the order of 5-30% of the total torque recorded during the tests. In a few steps at the highest temperatures and lowest shear rates, the apparent viscosities of the samples could not be determined because of a high contribution of the copper jacket to measured torque. Analysis of the mechanical data is presented in detail by [START_REF] Champallier | Experimental investigation of magma rheology at 300 MPa: From pure hydrous melt to 75 vol. % of crystals[END_REF]. Experimental conditions and rheological data are summarized in Tables 1 and2, respectively.

Analytical Techniques and Particle Shape Properties

Polished thin sections were prepared from deformed samples parallel to the [XZ] plane (with X the direction of shear, and Z the normal to the [XY] plane of shear), close to the outer surface of the samples. In this plane, deformation occurs approximately by simple shear. The finite strain γ sec in this section of observation is slightly lower than the finite strain γ measured at the maximum sample radius. Microstructural observations and sectional shape fabric measurements were performed on both optical microscope and scanning electron microscope (SEM) images (microstructural analyses are summarized in Table 3). SPO of the solid alumina and the bubble phases were obtained by applying two methods depending on the concentration of objects. First, for solid fractions s ≤ 0.34, grains are distinguishable and separated from each other. In that case, the two-dimensional shape properties of each type of object, alumina grains and bubbles, were determined by applying the inertia tensor method using the program SPO.EXE [START_REF] Launeau | Magmatic fabric acquisition mechanism in a syenite: Results of a combined anisotropy of magnetic susceptibility and image analysis method[END_REF][START_REF] Launeau | Mise en evidence des écoulement magmatiques par analyse d'image 2-D des distributions 3-D d'Orientations préférentielles de Formes[END_REF]. The shape fabric of the alumina grain population is obtained by averaging the single object inertia tensors and the one for the bubble population by using the Rf/Phi method [START_REF] Lisle | Geological Strain Analysis[END_REF]. Second, for s ≥ 0.54, alumina grains form an interconnected network in which objects cannot be separated easily from each other by image processing on 2-D polished sections (Figure 1). Therefore the overall shape fabric was calculated by using the intercept method applied to the whole image [START_REF] Launeau | Fabric analysis using the intercept method[END_REF]. The method involves a Fourier series decomposition of the polar plot of intercepts, and yields a rose of directions which quantifies the fabric symmetry, its direction α (-90° < α < 90°, positive for a clockwise orientation with respect to the dextral shear direction α = 0), and its intensity expressed by the axial ratio R [START_REF] Saltikov | Stereometric Metallography[END_REF][START_REF] Launeau | Shape preferred orientation of object populations: Automatic analysis of digitized images[END_REF][START_REF] Launeau | Fabric analysis using the intercept method[END_REF]. In these highly concentrated suspensions, bubble shapes were not analyzed because they cannot be distinguished from the trace of alumina grains plucked during the polishing procedure (Figure 1, s = 0.54, 0.65 and 0.76).

Characterization of the Starting Material

[13] In the starting material, the fraction of residual bubbles preserved after sample hydration is b = 0.01, as measured on polished sections of crystal-free melt (HPG10, Figure 1). The average surface based on 1001 bubble measurements is 147.56 ± 96.53 μm 2 , which corresponds to an idealized mean bubble diameter of 13.7 μm. The axial ratios r = a/b have approximately a lognormal distribution with an average axial ratio R = 1.17 ± 0.16 reasonably close to an ideal spherical object (i.e., R = 1.00, Figure 2). Shape properties of the bubble population were also determined in the starting material containing 16% of alumina grains (HPG5, Figure 2a). The mean bubble diameter of 13.9 μm is close to the one obtained for crystal-free melt. The lognormally distributed axial ratios exhibit an average of R = 1.55 ± 0.8 with a significant dispersion toward large aspect ratios, with a maximum of r = 5.8. These large aspect ratios are measured on bubbles in contact with or more likely squeezed between alumina grains, while isolated bubbles conserve an isotropic shape (Figure 1, s = 0.16).

Because of the crushing procedure, some of the alumina grains display strong concavities and convexities (Figure 1). The potential influence of these complex shapes on rheology and shape fabric development in the magmatic suspensions will be detailed in the Discussion. In the starting material with s = 0.16 (HPG5, Figure 2), grain axial ratios exhibit a lognormal distribution (with R = 2.35 ± 1.14) comparable to those commonly measured in magmatic, idiomorphic and even fragmented crystal populations [START_REF] Bindeman | Fragmentation phenomena in populations of magmatic crystals[END_REF]. For s > 0.34, intragranular fracturing is recognized, suggesting high local stresses at contact points between neighboring particles of the solid framework (Figure 1). The percentage of split grains has not been quantified, but clearly increases with increasing solid fraction. The volume fraction of the solid phase was controlled by measuring the area percentage of alumina grains on polished sections of the synthesized materials. The results yield a regression line constrained through the origin with a slope of 0.83 that links volume percentage of alumina grains mixed with the melt during sample preparation and alumina surface percentage on 2-D sections (Figure 2b). For s = 0.65, the surface percentage appears overestimated. At this concentration, melt forms thin films between crystals, for instance between fragments of split grains (typically less than 2 pixels at the used resolution). During segmentation of the analyzed images, these thin melt films are not fully distinguished from the solid phase, which is therefore overestimated. In all the starting materials, alumina grains are not preferentially oriented, confirming nearly isotropic pressure conditions during synthesis as already suggested by the bubble shape analysis in crystal-free melt.

Ten samples with solid fractions s between 0.0 and 0.76 were deformed at different temperatures and strain rates to total shear strains of up to 21.3 (Table 1 andFigure 3). Typically, experimental conditions (temperature and shear strain rate at the outer diameter of the sample) were held constant over small strain intervals of ~0.6-1.2 or were kept constant up to very large strains in order to measure the evolution of strength as a function of strain (Figure 4a). The mechanical data are briefly presented below and are treated in detail by [START_REF] Champallier | Experimental investigation of magma rheology at 300 MPa: From pure hydrous melt to 75 vol. % of crystals[END_REF].

At low solid fractions ( s < 0.34), bulk deformation remains perfectly homogeneous (e.g., PO540 and PO514, Figure 3), and the mechanical data indicate steady state behavior irrespectively of finite strain (e.g., PO540 and PO519, Figure 4a). At higher solid fractions, pronounced grooves on the outside jacketing material and asymmetric shapes of the deformed samples denote increasingly heterogeneous bulk deformation with increasing solid fraction (e.g., PO609 and PO528, Figure 3). Progressive strain hardening occurs in these samples (PO524, Figure 4a), especially at faster strain rates.

The magmatic suspensions strengthen with increasing crystal content, as illustrated by Figures 4a and4b. No reliable mechanical data were obtained for s = 0.76, as deformation was limited to a very small total strain (γ ~ 0.05, PO515 in Figure 3) because of technical problems caused by the very high strength of the material. In addition, Figure 4b shows that the rheology becomes non-Newtonian at higher solid fractions. Non-Newtonian behavior may be described by a power law equation of the form typically used to model high-temperature creep of rocks:

where is shear strain rate, τ is shear stress, T is temperature (K), R is the gas constant, and A, n and Q are empirical parameters called respectively the preexponential term, the stress exponent and the activation energy for creep [e.g., [START_REF] Poirier | Creep of Crystals[END_REF]. The stress exponent n (corresponding to the slope to the data on a logarithmic plot of stress versus strain rate, e.g., Figure 4b) is equal to 1 for Newtonian creep and is greater than 1 for materials undergoing shear thinning. For each crystal fraction ( s = constant), we fit equation ( 1) to the rheological data by a nonlinear least squares regression procedure. This analysis yielded flow laws with stress exponents n increasing with crystal fraction from 1 to ~3, and activation energies Q in the range of 210 to 250 kJ mol -1 . Since such variations in activation energies were not significant (all values being within one standard deviation), new fits were done to the data for each composition using a constant overall activation energy Q av , where Q av = 231 ± 19 kJ mol -1 is the weighted average of the individual activation energies (Figure 4c). Table 2 lists the rheological parameters determined using this approach.

Figure 5 summarizes the rheological behavior of the magmatic suspensions with solid fractions s between 0 and 0.65. In the case of a non-Newtonian rheology, viscosity is dependent not only on crystal fraction and temperature but also on strain rate (or stress). Therefore, for comparison all the experimental data were plotted as apparent viscosity as a function of crystal fraction after normalization to a constant strain rate. Flow is Newtonian (n = 1) for s = 0.0-0.16 and deviation from Newtonian behavior (n > 1) is observed for crystal fractions of approximately s > 0.2. The apparent viscosity increases by 2.5 orders of magnitude between s = 0.34 and 0.65 and extrapolation of the data suggests a very sharp increase in viscosity for s ≥ 0.65.

Shape Fabric of the Bubble Phase

Although measuring the SPO of deformable particles during shearing was not within the initial scope of this study, the presence of residual bubbles in crystal-free ( s = 0) and in s = 0.16 samples provided the opportunity to test the potential use of such deformable objects as strain markers in haplogranitic melts deformed at high pressure and temperature.

3.2.1. Bubbles in Crystal-Free Samples ( s = 0.00)

The initially nearly spherical bubbles (with a mean diameter of 13.7 μm, HPG10 in Figure 1) appear elongated in [XZ] sections of crystal free melt deformed to a finite strain γ sec = 7.5 (PO540, Figure 6). SPO measurements by the single object inertia tensor method on 1001 bubbles yield a shape fabric orientation α = -8.87° and an axial ratio R = 7.09 (sign convention for α in Figure 7). On the basis of the observation of strongly deformed bubbles (white arrow in Figure 6), a first assumption is to consider that the bubbles deform perfectly during steady state shear deformation, i.e., the bubbles behave likes "passive markers" with no apparent viscosity contrast between them and the melt. In that case, theoretical relationships between α, R and finite shear strain γ can be determined by using the finite strain ellipse theory [START_REF] Ramsay | Strain variation in shear belts[END_REF]. The relationship between the theoretical long axis orientation α and the applied finite strain γ is derived from the [START_REF] March | Mathematische Theorie der Regelung nach der Korngestalt bei affiner Deformation[END_REF] equation: and R is equal to the aspect ratio of the strain ellipse expressed in terms of the quadratic extensions λ 1 and λ 2 :

with [Ramsay, 1967, equations ( 2)-( 7), p. 30]:

For a finite strain γ sec = 7.5, equations ( 2), (3), and (4) yield a theoretical orientation of the long axis of a passive marker of α th = -7.46° and a theoretical aspect ratio of R th = 58.2. While α th is close to the value α = -8.87° determined for the bubble population, R th is much larger than the average R = 7.09 obtained for the bubble population and even far from the aspect ratio r = 21.2 of the most elongated bubble measured (Figures 6 and7).

3.2.2. Bubbles in Crystal-Bearing Samples ( s = 0.16) Three experiments (PO514, PO610 and PO519) were performed on samples with s = 0.16 to different finite strains (γ = 2.5, 6.1 and 17.5 respectively). As in crystal-free melt, a residual phase formed of dispersed spherical bubbles (with a diameter of 13.9 μm) is present in the starting material HPG5 (Figure 1). The shape fabric orientation α is -24° for γ sec = 2.2 and stabilizes at about -16° to -17° for higher finite strains (Figure 8). Intensity of the bubble shape fabric ranges from R = 1.38 to 2.24. The lowest value is recorded in PO610, where a significant number of alumina grains were plucked during polishing, leaving black irregular areas in the images (Figure 8). Although we tried to manually suppress the largest areas, residual traces of plucked grains incorporated to the bubble phase during the segmentation process likely contributed to an underestimation of the value of R (Figure 8).

In Figure 9, the shape fabric orientations α for s = 0 and s = 0.16 are compared to the orientations predicted by the [START_REF] March | Mathematische Theorie der Regelung nach der Korngestalt bei affiner Deformation[END_REF] model. For the s = 0.16 runs, α departs from the model as early as γ sec = 2.2 and is stable at large finite strains. In addition, the intensity R measured in PO610 is much lower than those measured in PO540 ( s = 0) for similar finite strains (Figure 8). All evidence points to a strong influence of the solid fraction on the shape fabric acquired by the bubble phase.

Residual Bubbles as Potential Strain Markers

In experiment PO540 ( s = 0.0, γ sec = 7.5), the shape fabric orientation α of the residual bubble population fits with the theoretical orientation given for perfectly deformable bubbles in a steady state shear flow to a finite strain γ = 7.5. This implies that the interfacial tension forces that tend to maintain -or restore -the initial sphericity of the bubbles are negligible compared to the viscous forces that cause deformation of the bubbles [Stein andSpera, 1992, 2002;[START_REF] Llewellin | Bubble rheology and implication for conduit flow[END_REF]. By contrast, measured bubble aspect ratios r are all much lower than the theoretical value of R th = 58.2 (Figure 7a). In turn, this suggests that the interfacial forces play a significant role in limiting deformation of the bubbles. To answer this apparent discrepancy, we estimated the capillary number Ca expressing the ratio between viscous forces and interfacial tension forces [START_REF] Manga | Rheology of bubble-bearing magmas[END_REF]]:

where is surface tension, l is the mean undeformed bubble radius and η is melt viscosity. Liquid-bubble interfacial tension has not been measured in a water-undersaturated haplogranitic melt at the temperature and pressure conditions of our deformation experiments. However, surface tension can be approximated from the measurements of [START_REF] Bagdassarov | Effect of alkalis, phosphorus, and water on the surface tension of haplogranite melt[END_REF] at 1 bar and nearly dry conditions. For the minimum temperature of 475°C, the best fit expression of [START_REF] Bagdassarov | Effect of alkalis, phosphorus, and water on the surface tension of haplogranite melt[END_REF] yields a surface tension = 240 mN m -1 , which is close to the value of 250 mN m -1 deduced by [START_REF] Llewellin | Bubble rheology and implication for conduit flow[END_REF] from [START_REF] Murase | Properties of some common igneous rocks and their melt at high temperature[END_REF]. Taking this last value for , a measured mean bubble radius of 5.8 μm and a melt viscosity of 1 × 10 10.3 Pa s as measured in the PO540 experiment, the capillary number ranges from a minimum of Ca = 93 for = 2.01 × 10 -4 s -1 to a maximum of Ca = 289 for = 6.24 × 10 -4 s -1 . Such Ca 1 confirms that interfacial forces are negligible against viscous forces. Therefore bubbles should deform perfectly and remain deformed during cooling and relaxation, following the March model of perfectly deformable inclusions in simple sheared suspensions [START_REF] March | Mathematische Theorie der Regelung nach der Korngestalt bei affiner Deformation[END_REF][START_REF] Hinch | Long slender drops in a simple shear flow[END_REF] (Figure 9, s = 0.0). The size and morphology of bubbles observed on analyzed SEM images provide more arguments to explain the discrepancy between measured axial ratios and orientations and the values predicted by the [START_REF] March | Mathematische Theorie der Regelung nach der Korngestalt bei affiner Deformation[END_REF] model. If shear stresses overcome capillary forces, bubbles may fragment at large strains and high strain rates into smaller, nearly isotropic or at least less elongated, bubbles [START_REF] Stein | Rheology and microstructure of magmatic emulsions: Theory and experiments[END_REF]. In our experiments, some of the bubbles display this boudinage-like morphology invoked by [START_REF] Stein | Rheology and microstructure of magmatic emulsions: Theory and experiments[END_REF] (black arrow in Figure 6). The smallest bubbles that result from the boudinage (about d < 10 μm) yield nearly random, distributed orientations α which do not significantly affect the mean orientation of the bubble population controlled by the largest preserved bubbles (Figure 7). In addition, fracturing and breaking up of small glass pieces along bubble edges during the polishing process also likely affect the aspect ratio of segmented bubbles (Figure 6). However, as for the boudinage-like fragmentation, it does not significantly affect the long axis orientation α of strongly deformed bubbles. Thus both fracturing during polishing and boudinage-like fragmentation do not affect α but affect R. Consequently, residual bubbles can be used as strain markers for this melt composition at our experimental conditions, and the finite strain γ can be calculated from the average long axis orientation α of the bubbles.

Shape Fabric of the Crystal Fraction

As detailed in the experimental procedure, for s ≤ 0.34 each particle can be separated and analyzed individually in segmented images. Conversely, for s > 0.34 the crystals form a continuous network and cannot be separated from each other. For these crystal fractions, the orientation α and the intensity R of the SPO were measured locally in order to quantify possible SPO variations over the [XZ] section. Segmented images were divided in 378 × 378 pixels subimages for local analysis following a diamond-shaped grid (Table 3). The local orientations α of the shape fabric measured in subimages are represented by arrows at the subimage centers and placed on top of intensity R maps calculated by kriging (see Figure 10 for illustration). Three experiments (PO514, PO610 and PO519) were performed to different maximum finite strains (γ = 2.6, 7.0 and 17.5, respectively) at the outer radii of the samples, corresponding to strains of γ sec = 2.2, 6.1 and 15.0, respectively, in the analyzed [XZ] sections (Figure 8). Grain shape fabric orientations α are close to the shear direction X independently from finite strain (α = -2.2°, -1.7° and -6.3° at γ sec = 2.2, 6.1 and 15.0, respectively; sign convention for α in Figure 7). Rose diagrams of the orientations of the single object inertia tensor yield comparable average orientations and show a unimodal distribution that widens with increasing strain (Figure 8). This decrease in shape fabric intensity with strain is also evidenced by the decrease in axial ratio of the mean tensor ellipse from R = 1.48 at γ sec = 2.2 to R = 1.29 at γ sec = 15.0.

Samples With s = 0.34

A sample with s = 0.34 was deformed to a strain γ = 8.5 (PO609, γ sec = 7.5, Figure 10). The surface of the sample is affected by a number of small spiral grooves that suggest heterogeneous deformation (Figure 3). The local shape fabric orientations α measured on subimages and placed on R maps are heterogeneous (Figure 10). The rose diagram of orientations α indicates a slightly bimodal distribution, with the main orientation nearly parallel to the X direction of shear and a less pronounced second orientation at -30° from X (Figure 11). The average orientation α = -6.8° ± 30.2° is close to the value calculated by the intercept method applied to the whole image (α = -5.69°). The intensities R obtained on subimages vary from 1.1 to 1.48 and follow a unimodal distribution. The average intensity determined by the intercept method (R = 1.12, Figure 11) is much lower than that measured for s = 0.16 (R = 1.32 for a similar finite strain of 6.1; PO610, Figure 8).

The R map provides evidence of distinct areas with either R < 1.2 or R > 1.2 that form alternating bands oriented at about -40° with respect to the direction of dextral shear (Figure 10b). Although it cannot be excluded that the orientation and the average width (~200 μm) of these alternating bands are partly influenced by the diamond-shaped grid of the analyzed subimages, the effect of the grid shape on the average measurements is likely minor, as shown by a study on natural deformed gabbros that used a similar methodology [START_REF] Arbaret | Complex flow in lowest crustal, anastomosing mylonites: Strain gradient in a Kohistan gabbro, northern Pakistan[END_REF]]. In addition, there is no apparent link between these bands and the areas formed by the two orientations evidenced by the rose diagram (Figures 10 and11).

Samples With s = 0.54

Three experiments (PO524, PO516 and PO528) were performed to different maximum finite strains (γ = 8.8, 10.8 and 21.3, respectively) at the outer radii of the samples, corresponding to finite strains of γ sec = 7.5, 9.5 and 18.9, respectively, in the [XZ] sections (Figure 12). The outer surfaces of the samples show heterogeneous bulk deformation (Figure 3). For instance, PO528 is affected by a single spiral groove where the sample radius is reduced by 800 μm. Analysis of SEM images indicates two types of microstructures in these samples. In PO516 and PO528, the grain size distribution is similar to the one observed before deformation in the starting material HPG6 (Figures 12 and1). At such high solid fractions, neighboring grains in contact with each other in the solid framework cannot accommodate all the local stresses by solid rotation or sliding, resulting in some intragranular fracturing (Figures 12 and13). In PO516, PO528 and HPG6, intragranular fracturing is present in the same proportion and thus likely results from local stress accommodation during sample synthesis. By contrast, PO524 is characterized by a very different texture (Figure 12). A large number of grains are fractured in a multitude of small angular pieces, except for rare porphyroclast-like preserved grains (Figure 14a). In some areas, local deformation was low enough after the fracturing event to preserve the original shape of the fractured grains, highlighting the importance and pervasiveness of intragranular fracturing in this sample (Figure 14c). The texture observed in PO524 expresses a cataclastic behavior, a process that apparently remained limited in PO516 and PO528.

Differences in textures are correlated with differences in shape fabrics measured in the three runs. For PO516 and PO528, the shape fabric orientations α measured on whole images are close to the shear direction (α = 3.01° and α = -5.29°, respectively, Figure 11). The arithmetic mean shape fabric orientations α of the measurements made on subimages are close to these values for both experiments; the largest deviation of Δα = 14.7° is found for PO528. For PO516 (γ sec = 9.5), the rose diagram of the shape fabric orientations α shows a bimodal distribution that is nearly symmetric with respect to the shear direction X. For PO528 (γ sec = 18.9), the bimodal distribution for α is less evident, because of a large distribution in the corresponding rose diagram. By contrast, the shape fabric in the sample characterized by a cataclastic texture (PO524) departs strongly from the one in PO516 and PO528 (Figure 11), with α = 32.06° for the whole image and α = 23.6° ± 27.8° as average of the subimages. For all three samples PO516, PO528 and PO524, the intensities R measured on whole images (R = 1.05, R = 1.04 and R = 1.03, respectively) and on subimages (bimodal distribution with an average of R = 1.07 ± 0.04 and R = 1.05 ± 0.03 for PO516 and PO528; and unimodal distribution with R = 1.05 ± 1.02 for PO524) are all low compared to the ones measured for lower solid fractions (R = 1.2 for s = 0.16 in Figure 8 and R = 1.12 for s = 0.34, PO609 in Figure 11).

In R maps for PO516 and PO528, areas with R < 1.06 form bands oriented at about ±30° with respect to X (Figure 12). As already pointed out for the s = 0.34 experiment, it cannot be excluded that the measured orientation of the bands is partly influenced by the diamond shape of the sampling grid of the subimages during the kriging calculation. The local shape fabric orientations α in PO516 and PO528 give clear evidence of a bimodal distribution composed of areas with positive orientations alternating with areas with negative orientations (white and black arrows, respectively, in Figure 12). In sample PO524 characterized by an apparent cataclastic texture, a major overall shape fabric orientation lies at α ~ + 24° from the direction of shear X (Figures 11 and12, sign convention in Figure 7), except for one area where an angle of α ~ -60° is associated with preserved porphyroclasts (Figure 14a). This orientation corresponds to the orientation of a 200 μm thick shear zone whose top to the right sense of shear is given by the deflection of the matrix around the rotating porphyroclasts (Figures 14a and14d). On the basis of the black traces of plucked disaggregated or fractured grains in the segmented images (PO 524, Figure 12), other small shear zones with similar orientations are suspected to exist in the section. However, they are not evidenced by shape fabric analysis, as they affect only a limited number of grains with respect to the size of the analyzed images.

Samples With s = 0.65

A sample with s = 0.65 was deformed to a finite strain γ = 7 (PO612, γ sec = 3.3, Figures 13 and14). The shape fabric orientations α on the [XZ] section are remarkably regular with an average of 67.8 ± 7.5° from the shear direction (rose diagram in Figure 11). Contrary to all other experiments with lower solid fractions, there are no associated negative orientations. The shape fabric intensity yields a unimodal distribution with an average R = 1.10 ± 0.03, slightly higher than intensities measured for s = 0.54.

Samples With s = 0.76

Owing to technical difficulties, the sample with the highest solid fraction ( s = 0.76) was deformed only to a strain of γ ~ 0.05 (PO515, Figure 3). No structures developed in the sample at such small finite strain.

Discussion

Constraints on Application of Experimental Results

The experiments in this study were designed to explore the effect of solid fraction on the rheology and the structural evolution of magmatic suspensions during noncoaxial deformation at high pressure and temperature. For this reason, we chose a model system consisting of a single synthetic aluminosilicate melt with a fixed water concentration mixed with varying solid fractions of crushed alumina grains. It is evident that such a simplified system, deformed at temperatures and strain rates limited by our experimental setup, may not necessarily reproduce all conditions and processes in magmatic settings ranging from the slow cooling of deeply emplaced plutons to fast volcanic flows. In crystallizing magmas, the residual melt fraction evolves continuously toward silicic compositions with, among other components, enrichment of water content that gradually decreases the viscosity of the melt phase. This decrease in melt viscosity may balance or even exceed the effect of progressive crystallization of anhydrous mafic and calc-alkaline phases on bulk viscosity [START_REF] Scaillet | Rheological properties of granitic magmas in their crystallisation range, in Granite: From Segregation of Melt to Emplacement Fabrics[END_REF][START_REF] Petford | Rheology of granitic magmas during ascent and emplacement[END_REF]]. An extreme case is illustrated by dacitic compositions where bulk viscosity can decrease at large crystallinities [START_REF] Scaillet | Phase equilibrium constraints on the viscosity of silicic magmas: 1. Volcanic-plutonic comparison[END_REF]]. Consequently, the rheology of cooling magmas over their liquidus-solidus domain may in some cases differ from the one measured in the present study on magmatic suspensions with a fixed melt composition and water content. The Einstein-Roscoe equations [START_REF] Roscoe | The viscosity of suspensions of rigid spheres[END_REF] have often been used to model the rheological behavior of crystallizing magmas. As these equations consider only the effect of solid-phase content on the viscosity of particle-bearing fluids, they may not always be adequate to model the behavior of magmas with large crystallinities (larger than about 0.5) and have spurred the development of empirical rheological models [e.g., [START_REF] Rosenberg | Experimental deformation of partially melted granite revisited: Implication for the continental crust[END_REF][START_REF] Costa | Viscosity of high crystal content melts: Dependence on solid fraction[END_REF]. While the rheological behavior of the magmatic suspensions deformed in this study may not reproduce all of the complexities found in nature, it may help in developing and constraining rheological models of crystallizing magmatic rocks.

The initial alumina grain population in our samples exhibits a log normal size distribution almost representative of magmatic crystal populations [START_REF] Bindeman | Fragmentation phenomena in populations of magmatic crystals[END_REF]. However, the shape of the grains is irregular, with concave to convex faces and complex angular relationships, far from idiomorphic crystal shapes irrespective of any crystallographic system. Analogue 3-D experiments carried out on the rotational behavior of parallelepipedic particles embedded in a viscous matrix submitted to simple shear deformation showed that such particles behave as ellipsoidal objects having the same aspect ratio [START_REF] Arbaret | Effect of shape and orientation on rigid particle rotation and matrix deformation in simple shear flow[END_REF]. This behavior is explained by a certain volume of the viscous matrix that remains undeformed around the particle, the solid particle-undeformed matrix couple behaving as a uniform solid object. Therefore we believe that the complex shapes of the crushed grains used in our experiments have little or no influence on their rotational behavior and by extension on the shape fabric acquisition in the low to medium solid fraction range. This is not true at high solid fractions, where grain shape plays a direct role in interactions and contacts between grains and their rearrangement by solid rotation and slip between neighboring tabular grains [START_REF] Ildefonse | Effect of mechanical interactions on the development of shape preferred orientations: A two-dimensional approach[END_REF][START_REF] Nicolas | Kinematics in magmatic rocks with special reference to gabbros[END_REF]. In addition, the existence at high solid fractions of a solid framework composed of less anisometric particles causes intragranular fracturing during deformation, resulting in dilatant and shear hardening processes [START_REF] Smith | Shear thickening dilatancy in crystal-rich flows[END_REF][START_REF] Petford | Consolidation phenomena in sheared granitic magma: Effects of grain size and tortuosity[END_REF].

All runs were conducted at subsolidus temperatures from 475°C to 600°C and strain rates from 2.0 × 10 -5 s -1 to 2.1 × 10 -3 s -1 . These conditions were constrained by the capabilities of the Paterson apparatus to measure the torque needed to deform the sample in response to applied strain rate during stepping tests. An additional constraint was to choose conditions far enough from the ductile to brittle (glass) transition of the melt, to ensure that all experiments remained in the ductile field. This condition is essential at s > ~0.5, where intragranular fracturing-related fabrics and strain localization may develop. The glass transition of the melt as a function of water content is predicted by the empirical equation proposed by [START_REF] Dingwell | The glass transition in hydrous granitic melts[END_REF]:

where T g is the glass transition at the log 10 (Pa s) = 12.38 isokom and C H2O the water concentration in wt %. For a water concentration of 2.5% in the melt, the equation yields T g = 436.5°C, or a difference of ΔT = 38.5°C with the lowest temperature of 475°C reached during the experiments. In addition, the viscosity of log 10 (Pa s) = 10.87 measured at this temperature is much lower than the predicted viscosity at the glass transition. These differences in both temperature and viscosity confirm that the experiments were performed above the glass transition.

Finally, the explored strain rate range is far from representative of deeply emplaced magmas where expected strain rates are generally about 10 -10 s -1 [START_REF] Petford | Rheology of granitic magmas during ascent and emplacement[END_REF]. However, the fast strain rates reached in our experiments at subsolidus temperatures are relevant for silicic magmas emplaced at shallow depths in subvolcanic dykes and sills or erupting at the surface to form domes and lava flows (10 -3 to 10 -7 s -1 [START_REF] Chadwick | The mechanics of ground deformation precursory to dome-building extrusions at Mount St. Helens 1981-1982[END_REF][START_REF] Spera | Rheology of melts and magmatic suspensions: 1. Design and calibration of concentric cylinder viscometer with application to rhyolitic magma[END_REF]). Keeping all these limitations in mind, a general evolution of structures and rheology of crystallizing magmas is proposed.

Evolution of Rheology With Crystal Fraction

At low crystal fractions ( s = 0.0 to 0.16), where interaction between rotating porphyroclasts is very limited, deformation is Newtonian and a mild increase in viscosity with crystal fraction is well approximated by the Einstein-Roscoe equation (see [START_REF] Champallier | Experimental investigation of magma rheology at 300 MPa: From pure hydrous melt to 75 vol. % of crystals[END_REF] for a detailed discussion). Deformation deviates from Newtonian to pseudoplastic flow (n > 1) at intermediate crystal fractions (0.16 ≤ s ≤ 0.34) because of an increase in tortuosity of the fluid as colliding clasts create clusters in the suspension. At crystal fractions ≥ 0.54, strong cataclastic textures develop. Clasts form a solid framework and produce shear bands and S/C structures. Consequently, the suspension undergoes strain hardening and deformation is increasingly heterogeneous. Shear thinning is accentuated (n ~ 2 to 3) and the increase in apparent viscosity becomes more pronounced with crystal content. Previous results on crystalbearing silicate melts have shown an abrupt transition from Newtonian to non-Newtonian flow and an increase in apparent viscosity of up to 6 orders of magnitude at s ~ 0.40 [START_REF] Lejeune | Rheology of crystal-bearing silicate melts: An experimental study at high viscosities[END_REF]. By contrast, here the apparent viscosity increases by ~2.5 orders of magnitude for a change in crystal fraction from s = 0.0 to 0.54, and by ~1.5 orders of magnitude between s = 0.54 and 0.65. Extrapolation of the experimental data to high solid fractions suggests a rheological threshold for these magmatic suspensions at around s = 0.60-0.75. 4.3. Newtonian Field at Low Solid Fraction ( s ≤ 0.16) Pure hydrated haplogranitic melt ( s = 0.00) behaves as a Newtonian fluid at the imposed strain rates with a dynamic viscosity of 10 10.3 Pa s at 500°C, in agreement with previous work on a similar silicic composition [START_REF] Schulze | The influence of H 2 O on the viscosity of a haplogranitic melt[END_REF][START_REF] Dingwell | The effect of water on the viscosity of a haplogranitic melt under P-T-X conditions relevant to silicic volcanism[END_REF]. Deformation remains homogeneous up to large strains (γ = 8), as evidenced both by the overall shape of the sample after the experiment (Figure 3) and by homogeneous deformation of the residual bubbles in the melt acting as perfect strain markers. For s = 0.16, the shape preferred orientations of the bubble population yield an average orientation α that deviates significantly from the theoretical behavior known for ideally deformable (passive) markers submitted to bulk simple shear flow. This apparent discrepancy expresses a change in the general flow of the liquid (the matrix) that wraps around the suspended (solid) particles formed by alumina grains (Figure 15). This phenomenon is well documented in analogue simple shear experiments conducted on solid fractions as low as s = 0.1 [START_REF] Ildefonse | Effect of mechanical interactions on the development of shape preferred orientations: A two-dimensional approach[END_REF]]. In the case of an isolated rigid particle having a coherent interface with the surrounding fluid submitted to slow laminar flow, the streamlines deviate around the solid particle and form an asymmetric strain pattern. The maximum width of the perturbation in the fluid lies in the shear plane passing through the center of inertia of the particle, and depends on the viscosity of the fluid and, for a non-Newtonian matrix, on the flow rate [START_REF] Ildefonse | Effect of mechanical interactions on the development of shape preferred orientations: A two-dimensional approach[END_REF]. This heterogeneous strain pattern is well known in fluid mechanics for spherical bodies and has been extensively explored for anisometric particles in experimental studies on analogue materials [START_REF] Ildefonse | Effect of mechanical interactions on the development of shape preferred orientations: A two-dimensional approach[END_REF][START_REF] Arbaret | Effect of shape and orientation on rigid particle rotation and matrix deformation in simple shear flow[END_REF][START_REF] Piazolo | The influence of matrix rheology and vorticity on fabric development of populations of rigid objects during plane strain deformation[END_REF] and in numerical simulations (see [START_REF] Marques | Influence of a low-viscosity layer between rigid inclusion and viscous matrix on inclusion rotation and matrix flow: A numerical study[END_REF] for a recent review). All agree that the extension of the perturbed field in the direction of shear is about two times the maximum length of the rigid particle. Field examples are common in highly sheared ductile rocks where the geometry of the perturbed flow is often "fossilized" by both alignment of anisometric minerals and/or deformation of the soft polycrystalline groundmass around rotating "winged" porphyroclasts [START_REF] Hanmer | Shear-sense indicators: A review[END_REF]. Similar features are also typical in highly volcanic rocks with the alignment of microlites wrapping around phenocrysts and forming asymmetric tails [START_REF] Smith | Structural analysis of flow-related textures in lavas[END_REF]. For very low solid fractions ( s 0.1), the distance between ideally distributed particles is theoretically enough to avoid any interaction between the flow perturbations caused by individual particles. For s > 0.1, the distance between solid particles is statistically shorter (undeformed suspension HPG5 in Figures 1 and8) and asymmetric strain patterns developed around particles coalesce (see also Arbaret et al. [1996, Figure 6] for illustration). Consequently, as recorded by residual bubbles in our experiments for s = 0.16, the bulk direction of the streamlines makes an angle with the bulk shear direction that remains constant at large strains.

Measured shape fabrics of the solid fraction are characterized by a unimodal orientation α almost stable and parallel to the shear direction, and by an intensity R that decreases gradually with strain. As already pointed out in the introduction, such fabric development with strain is usually related to the combination of a heterogeneous distribution of particle aspect ratios and numerous transient interactions (i.e., collisions) between particles that occur because of the relative motion of the rigid particles in the sheared matrix [START_REF] Blumenfeld | Shear criteria in granite and migmatite deformed in the magmatic and solid states[END_REF][START_REF] Tikoff | Strain and fabric analyses based on porphyroclast interaction[END_REF][START_REF] Philpotts | Magmatic flow-direction indicators in a giant diabase feeder dike[END_REF][START_REF] Arbaret | Shape fabrics of particles in low concentration suspensions: 2D analogue experiments and application to tiling in magma[END_REF][START_REF] Stickel | Fluid mechanics and rheology of dense suspensions[END_REF]. The proportion of interacting particles is difficult to quantify in twodimensional sections. Two-dimensional analogue experiments on suspensions with similar solid fractions deformed by simple shear [START_REF] Arbaret | Shape fabrics of particles in low concentration suspensions: 2D analogue experiments and application to tiling in magma[END_REF] have shown that, for shear strains larger than γ ~ 5, 50% of the particles are statistically involved in collisions. 4.4. Transition to Nonlinear Rheology ( s = 0.34) For s = 0.34 (PO609), the apparent viscosity of the magmatic suspension increases with crystal fraction and deformation progressively becomes nonlinear (n > 1) as the suspension evolves from a material containing isolated rotating porphyroclasts to one where interacting clasts result in complex structures and textures (Figure 15). These trains of imbricate particles whose long axis orientations control the orientation α ~ -7° of the whole SPO are more stable than tiling systems recognized in dilute suspensions and can survive and develop at large strains [START_REF] Ildefonse | Effect of mechanical interactions on the development of shape preferred orientations: A two-dimensional approach[END_REF][START_REF] Tikoff | Strain and fabric analyses based on porphyroclast interaction[END_REF]. In our experiments, the rare trains of particles that are present are mostly oriented at ~20° from the shear direction X (dark grey arrows in Figure 10). Similar orientations with respect to the bulk mineral foliation were evidenced for trains of feldspar megacrysts in the deformed Mono Creek Granite (Sierra Nevada, California) and assimilated to S/C fabrics [START_REF] Tikoff | Strain and fabric analyses based on porphyroclast interaction[END_REF][START_REF] Berthé | Orthogneiss, mylonite and non-coaxial deformation of granites: The example of the South American shear zone[END_REF]. The development of such long rigid clusters induces a strong increase in tortuosity of the fluid as it is forced to wrap around them and flow along melt enriched channels bordered by parallel trains (Figure 15). This is well evidenced by isolated particles statistically oriented parallel to the elongation of these channels. Discrete melt-enriched zones similarly oriented with respect to the average orientation of grains in bordering aggregates are documented in lavas with basalt to dacite compositions [e.g., [START_REF] Smith | Shear thickening dilatancy in crystal-rich flows[END_REF] where such microstructures are possibly the cause of a deviation from Newtonian rheology.

[41] Complex flux line trajectories in the fluid and the formation of a crystal network may result in the onset of a finite yield strength τ c [START_REF] Petford | Consolidation phenomena in sheared granitic magma: Effects of grain size and tortuosity[END_REF][START_REF] Saar | Numerical models of the onset of yield strength in crystal-melt suspensions[END_REF]], although we have not been able to observe τ c in our experiments. Studies based on percolation theory show that the value of the critical (crystal) volume fraction c for the onset of crystal or particle network formation depends on particle shape and size distributions and on the particles' overall orientation distribution [START_REF] Pike | Percolation and conductivity: A computer study[END_REF][START_REF] Garboczi | Geometrical percolation threshold of overlapping ellipsoids[END_REF][START_REF] Lorenz | Precise determination of the critical percolation threshold for the three-dimensional "Swiss cheese" model using a growth algorithm[END_REF][START_REF] Saar | Numerical models of the onset of yield strength in crystal-melt suspensions[END_REF]. For spheres c is 0.2896 [START_REF] Shante | An introduction to percolation theory[END_REF][START_REF] Lorenz | Precise determination of the critical percolation threshold for the three-dimensional "Swiss cheese" model using a growth algorithm[END_REF], a value approached for parallel-aligned convex object populations [START_REF] Saar | Numerical models of the onset of yield strength in crystal-melt suspensions[END_REF]. A minimum of c = 0.08 is reached for randomly oriented and strongly flattened prisms [START_REF] Saar | Numerical models of the onset of yield strength in crystal-melt suspensions[END_REF][START_REF] Saar | Continuum percolation for randomly oriented soft-core prism[END_REF]. In our starting microstructures, the crystal population is randomly oriented and characterized by an axial ratio of R = 2.35 ± 1.14. On the basis of the assumption that the particles can be approximated as biaxial ellipsoids despite their heterogeneous size and shape, three-dimensional numerical models yield a percolation threshold c < ~0.25 [START_REF] Garboczi | Geometrical percolation threshold of overlapping ellipsoids[END_REF][START_REF] Saar | Continuum percolation for randomly oriented soft-core prism[END_REF]. At large shear strains, a bulk shape preferred orientation is evidenced but remains weak, implying only a limited decrease in percolation threshold due to particle alignment. Accurate estimation of c in these sheared suspensions remains difficult as it requires quantification in three dimensions of the anisotropic distribution of the solid phase and the possible formation of clusters and trains of particles. 4.5. Pseudoplastic and Cataclastic Fields ( s ≥ 0.54) At high solid fractions, magmatic suspensions have a pseudoplastic behavior that is thought to be controlled by a bridging solid crystal framework composed of both stable long trains and large clusters of particles [START_REF] Pinkerton | Methods of determining the rheological properties of magmas at sub-liquidus temperatures[END_REF][START_REF] Saar | Numerical models of the onset of yield strength in crystal-melt suspensions[END_REF][START_REF] Saar | Continuum percolation for randomly oriented soft-core prism[END_REF]. At s = 0.54, the crystal network appears almost entirely connected in [XZ] sections. At large strains (γ > 9.5), the bulk shape fabric is organized into alternating orientation domains characterized by conjugate mineral orientations with respect to the direction of shear (white arrows and black arrows for PO516 and PO528 in Figure 12). These crystal alignment domains are structures commonly found in crystal-rich lava flows deformed at large strain rates in dykes (trachyte dyke, Fraser Island [START_REF] Smith | Structural analysis of flow-related textures in lavas[END_REF]) and domes (Hradiště trachyte dome [START_REF] Jančušková | Relation entre fabriques de la sanidine et mise en place des magmas trachytiques (exemple du massif de Hradište, Bohême du nord)[END_REF]) (Figure 15). Such structures are often associated with dilatancy [START_REF] Smith | Shear thickening dilatancy in crystal-rich flows[END_REF]. Dilatancy is also characteristic of crystallizing mush at the base of granitic magmas emplaced at lower strain rates than lavas flows (10 -10 s -1 [START_REF] Petford | Rheology of granitic magmas during ascent and emplacement[END_REF]) and has been evidenced in quartz undergoing granular flow [START_REF] Schmocker | Granular flow and Riedel band formation in water-rich quartz aggregates experimentally deformed in torsion[END_REF] and in quartz analogue (norcamphor) experiments [START_REF] Bauer | Strain localization and fluid pathways in mylonite: Inferences from in situ deformation of a water-bearing quartz analogue (norcamphor)[END_REF].

[43] Discrete local shear zones surrounded by aligned crystals and oriented at about 20°-30° with respect to the shear direction crosscut all alternating domains (PO516, Figure 12). They resemble shear bands marked by local alignment of crystals observed in highly viscous lavas such as trachyte [START_REF] Nicolas | Kinematics in magmatic rocks with special reference to gabbros[END_REF], dacite [START_REF] Smith | Shear thickening dilatancy in crystal-rich flows[END_REF] and phonolite domes [START_REF] Arbaret | The phonolitic body of Petit Gerbier (eastern Velay, French Massif Central, France)-Magnetic and magmatic structures[END_REF]. These shear bands are usually interpreted as C' bands by analogy with the S/C associations developed in low to medium grade metamorphic rocks deformed to large strains [START_REF] Berthé | Orthogneiss, mylonite and non-coaxial deformation of granites: The example of the South American shear zone[END_REF][START_REF] Nicolas | Kinematics in magmatic rocks with special reference to gabbros[END_REF]. Similarly oriented melt-rich shear bands with synthetic normal sense of shear have been evidenced in partially molten rocks ( s > 0.88) experimentally deformed in a bulk simple shear regime [START_REF] Rosenberg | Syntectonic melt pathway during simple shearing of a partially molten rock analogue (norcamphor-benzamide)[END_REF][START_REF] Holtzman | Melt segregation and strain partitioning: Implications for seismic anisotropy and mantle flow[END_REF][START_REF] Katz | The dynamics of melt and shear localization in partially molten aggregates[END_REF].

[44] At low temperatures (T = 500°C, PO524), a generalized cataclastic texture develops because of high local stresses at contact points between touching grains. It is formed by abundant fragments of dislocated grains, only a small number of grains having preserved their original size. This texture is characterized by a bulk extensional fabric parallel to the shortening direction (Figures 12 and14a). Shear zones oriented at -30° from the shear direction are marked by well-dispersed fragments of dislocated grains that document the matrix deformation around preserved rotating grains and are consistent with a dextral sense of shear (Figure 14d). In other regions the original shape of dislocated grains is mostly preserved (Figure 14a). The organization of fragments and radial orientations of fractures indicates that the fragmentation started and propagated from the contact region between grains (Figure 14c). Similar brittle behavior commonly develops between touching phenocrysts [START_REF] Smith | Structural analysis of flow-related textures in lavas[END_REF] and is often observed at the base of lava flows and near conduit walls where it is interpreted as a consequence of intense, localized shear [START_REF] Smith | Ductile-brittle transition structures in the basal shear zone of a rhyolite lava flow, eastern Australia[END_REF][START_REF] Miura | Arcuate pyroclastic conduits, ring faults, and coherent floor at Kumano caldera, southwest Honshu, Japan[END_REF][START_REF] Polacci | Novel interpretation for shift between eruptive styles in some volcanoes[END_REF]. Evidence of intragranular fracturing by contact interaction between particles is also visible in PO528 while it is only a minor process in PO516, an experiment where most of the deformation occurred at higher temperatures. These microstructures suggest that intragranular fracturing becomes more widespread with decreasing temperature, i.e., with increasing viscosity of the suspension. Complementary experiments exploring a larger strain rate range are needed to quantify the effect of deformation rate on the development of the observed cataclasites.

[45] At very high crystal fractions, evidence of strongly fragmented grains suggests intragranular fracturing due to high local stresses at contact points between grains (as in PO524, s = 0.54; Figures 14a and14c). However, a large number of broken grains show different fracturing patterns, with the presence of fractures parallel to the maximum principal stress. Regular spacing and parallelism of the fractures result in the breakup of grains into regularly shaped, almost parallelepipedic, fragments with an average shape preferred orientation that controls the bulk shape fabric of α ≈ 68° measured over the section. Such morphology corresponds to the asymmetric domino boudin geometry commonly found in large strain shear zones developed in ductile high-grade terrains [START_REF] Goscombe | Asymmetric boudins as shear sense indicators-An assessment from field data[END_REF] and in some volcanic rocks such as pyroxene fragments in a dacite (Katsurajima, Japan [START_REF] Smith | Structural analysis of flow-related textures in lavas[END_REF]). Since PO612 ( s = 0.65) and PO516 ( s = 0.54) were deformed under similar experimental conditions (stepping experiments, Table 1) and to similar finite strains, the fracture mechanism may be due to the difference in crystal fraction in the two samples.

Conclusion

We carried out torsion experiments on synthetic magmatic suspensions composed of a waterundersaturated aluminosilicate melt with 2.5 wt % H 2 O and various solid fractions of crushed alumina grains (0.00 < s < 0.76). The chosen composition and experimental conditions (subsolidus temperatures of 475°C to 600°C and strain rates from 2.00 × 10 -5 to 2.09 × 10 -3 s -1 ) are particularly relevant for silicic magmas either emplaced at shallow depths in subvolcanic dykes and sills or erupting at the surface to form domes and lava flows.

Pure hydrated haplogranitic melt ( s = 0.00) behaves like a Newtonian fluid at the imposed strain rates with a viscosity of 10 10.3 Pa s at 500°C. Homogeneous deformation is recorded during the experiment by residual bubbles acting as perfect strain markers. From low to intermediate solid concentrations (0.16 < s < 0.54), the shape fabrics of the solid fraction, measured on [XZ] sections, are characterized by a unimodal orientation that is almost stable and nearly parallel to the shear direction, and by an intensity that decreases gradually with strain. At fixed experimental conditions, the apparent viscosity increases with solid fraction, while the rheology becomes progressively pseudoplastic and can be modeled by a power law (n > 1). Both the shape fabric development and the change in rheological behavior originate from the increase in the number of particle clusters. Because the experiments were performed at high stresses, the possible onset of a finite yield strength could not be observed.

At high solid concentrations ( s > 0.54), the crystal network appears almost entirely connected in [XZ] sections. At T ≥ 550°C, the bulk shape fabric of the solid fraction is organized into alternating orientation domains that are conjugate with respect to the direction of shear and that are crosscut by melt-enriched discrete shear zones surrounded by aligned crystals. At T ≤ 550°C, intragranular fracturing of the alumina grains results from high local stresses at contact points between neighboring particles. The resulting bulk extensional fabric is almost parallel to the shortening direction and is crosscut by synthetic normal shear zones.

For s = 0.65, the alumina grains form a fully interconnected solid framework and consequently undergo intense fracturing. Cataclastic processes include intragranular fracturing due to high local stresses at contact points between grains and the development of tensile fractures that form asymmetric structures resembling domino boudins. These structures control the orientation of the bulk shape fabric at about 68° from the shear direction and are associated with a shear thinning rheology.

Although magma composition, temperature and strain rate may be different in nature, results obtained in this study provide a framework for interpreting observed structures in terms of rheological evolution of magma flow during ascent and emplacement. The change in rheology from fast viscous flow to power law rheology due to degassing-induced crystallization is recognized to control the mode of ascent and surface emplacement of crystal-rich lavas, as highlighted by the observation of dome growth on active andesitic volcanoes such as the Merapi and Mount Unzen volcanoes or by the present-day eruption of the Soufrière hills volcano [e.g., [START_REF] Watts | Growth patterns and emplacement of the andesitic lava dome at Soufrière Hills Volcano, Montserrat, in The Eruption of Soufrière Hills Volcano, Montserrat, From 1995 to 1999[END_REF]. In this environment, the development of localization microstructures such as melt-filled shear bands and intragranular fracturing may play a key role in the generation and persistence of ductile to brittle shear faults along sidewalls of magma conduits or on the surface of near-solid spines developed during the effusive phases of eruptions.

Notation

A preexponential term (MPa -n s -1 ). a long axis of object (bubble or crystal) (μm). b short axis of object (bubble or crystal) (μm). Ca capillary number (dimensionless).

d mean equivalent diameter of deformed bubbles (μm). n stress exponent (dimensionless). n i number of analyzed subimages (dimensionless). n o number of analyzed objects (bubbles or crystals) in image (dimensionless). l undeformed bubble radius (μm). Q activation energy for creep (kJ mol -1 ). r axial ratio of object (bubble or crystal) (dimensionless). R measured axial ratio of shape fabric ellipse = SPO intensity (dimensionless). R th theoretical axial ratio of shape fabric ellipse (dimensionless). T temperature (°C). T g brittle-ductile transition temperature (°C). η melt viscosity (Pa s). η ap apparent viscosity (Pa s). Φ b bubble fraction (dimensionless).

surface tension (J m -2 ). Φ c critical crystal volume fraction (dimensionless). Φ s solid fraction (dimensionless). Ø diameter of crushed alumina crystals (μm). α orientation of long axis of shape fabric ellipse (degree). α th theoretical orientation of long axis of shape fabric ellipse (degree). strain rate (s -1 ).

γ theoretical finite shear strain or total finite strain measured at maximum sample radius (dimensionless) γ sec finite strain reached at the depth of the section of observation (dimensionless).

γ i incremental strain during stepping experiment (dimensionless). τ c finite yield strength (Pa). The estimated finite shear strain of the analyzed section is γ sec = 7.5. Black objects are residual bubbles and take up 0.9% of the total surface. Mean length of the bubbles' long axis is 9.9 ± 9.6 μm, with a maximum of 70.4 μm. White arrow points to a perfectly deformed bubble with a well-preserved shape. Black arrow points to an example of a bubble that has suffered both boudinage and fracturation. After segmentation of the image during analysis such an object is viewed as two identically oriented objects but with lower aspect ratios than the preserved bubble. Other bubbles on the image are affected by microcracks that have induced irregular borders during polishing. (inset) Full segmented image used for analysis. (b) Resulting Rf/Phi fabric ellipse obtained from analysis of n o = 1001 bubbles. Rf 1/2 is the average axial ratio, and α is the orientation of the average long axis with respect to the direction of dextral shear (α < 0 when anticlockwise, sign convention shown in Figure 7). Bubbles with an average diameter of less that 2.4 μm, corresponding to less than 16 pixels at the resolution scale of the analyzed image, were not taken in consideration for the shape fabric calculation. Enhanced EPS 14a). In Figure 14c, outside the shear zone, intragranular fractures developed in a grain whose initial shape is still recognizable, suggesting low finite strain outside the shear zone. In Figure 14d in the shear zone the sense of shear is given by winged porphyroclasts whose asymmetrical wings are composed of dispersed fragments of dislocated grains. Enhanced EPS Here η ap is the apparent viscosity measured for magmatic suspensions with different solid fractions at the given temperatures and a shear strain rate ~ 6 × 10 -4 s -1 . For the complete mechanical data set, see [START_REF] Champallier | Experimental investigation of magma rheology at 300 MPa: From pure hydrous melt to 75 vol. % of crystals[END_REF]. Q, n, and A are the activation energy, the stress exponent and the preexponential term, respectively, measured for magmatic suspensions with different solid fractions. Errors are given as one standard deviation.

b Data considered to be below the detection range of the apparatus.
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  3.3.1. Samples With s = 0.16
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 7 Figure 7. (a) Rf/Phi-like diagram giving the distribution of long axis orientations α versus aspect ratios r of residual bubbles measured in [XZ] section (γ sec = 7.5) of deformed crystalfree melt (PO540). The horizontal dashed line corresponds to the orientation α of an ideal passive marker theoretically deformed to γ = 7.5. (inset) Sign convention used in this study for the long axis orientation α of analyzed objects and shape fabric ellipses of object populations. (b) Orientation α versus mean equivalent diameter d of residual bubbles. Here d corresponds to the diameter of an ideal isotropic disk having the same surface as the elongated bubbles measured in [XZ] sections. Enhanced EPS

Figure 15 .

 15 Figure15. Schematic model for shape fabrics (illustrated by rose diagrams), localization structures, and rheology of an idealized crystallizing magma in the explored 0.0 < s < 0.7 crystallinity range. The dashed curve is the fit found for apparent viscosity at the experimental conditions specified in the diagram (see Figure5). Grey numbers are the stress exponents determined for the corresponding solid fractions s . Below the graph are schematized 2-D structures illustrated by field examples. Enhanced EPS
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 2 Tables Right-click (PC) or CTRL-click (Mac) to download tab-delimited version: table1.txt Table 1. Deformation Conditions for Torsion Experiments on Synthetic Magmatic Suspensions Summary of Rheological Data for Synthetic Magmatic Suspensions a

	Solid Fraction, vol	Starting		Strain Rate	Finite Strain
	Run	%	Sample	T, °C	Range, s -1	(γ)
	PO540 0		HPG -10a	475-500 2 × 10 -4 -2 × 10 -3	8.8
	PO514 16.3		HPG -5a	475	2 × 10 -4 -6 × 10 -4	2.6
	PO519 16.3		HPG -5b	500-550 6 × 10 -4	17.5
	PO610 16.3		HPG -11a	500-550 2 × 10 -4 -2 × 10 -3	7.0
	PO609 34.2		HPG -8	500-600 1 × 10 -4 -2 × 10 -3	8.5
	PO516 53.9		HPG -6a	500-600 2 × 10 -4 -2 × 10 -3	10.8
	PO524 53.9		HPG -6b	500	6 × 10 -4	8.8
	PO528 53.9		HPG -6c	550	6 × 10 -4	21.3
	PO612 64.5		HPG -13	500-600 2 × 10 -4 -1 × 10 -3	6.5
	PO515 75.7		HPG -7a	800-	2 × 10 -5 -2 × 10 -4	0.05
				1000		
	Right-click (PC) or CTRL-click (Mac) to download tab-delimited version: table2.txt
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 3 Image Properties and Measured Surface Fractions of the Phases a

		Size,	Alumina Grains	Bubbles and Plucked Grains	
	Image	pixels	(Surface), %	(Surface), %	γ sec
	514	2368 ×			
		1774			
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