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Blind channel identification based on cyclic statistics

L.Deneire
D.T.M.Slock

Indexing terms: Linear prediction algorithms, Subspace fitting

Abstract: Use of cyclic statistics in fractionally
sampled channels in subspace fitting and linear
prediction for channel identification is proposed,
possibly for multiuser and multiple antennas.
Identification schemes are based on cyclic
statistics using the stationary multivariate
representation, leading to the use of all cyclic
statistics. Compared with classical approaches,
the methods proposed have an equivalent
performance for subspace fitting, and an
enhanced performance for linear prediction.

1 introduction

Major impairments of most wireless communication
channels, especially in mobile environments, are inter-
symbol interference (ISI), cochannel interference (CCI)
and adjacent channel interference (ACI). In wireless
networks the latter is solved by source separation tech-
niques and ISI by equalisation techniques. In the past
three decades, so-called blind channel identification
and equalisation techniques flourished, where blind
really means based on the outputs of the channel only,
and some assumptions on the nature of the input and/
or channel. Among these techniques those based on
second-order statistics only are very attractive because
they need few samples to allow channel identification
compared with other methods (implicitly or explicitly
based on higher order statistics).

Recognising that communication (continuous time)
signals are cyclostationary shows the cyclostationarity
of the oversampled discrete time signals (w.r.t. data
rate) and under mild conditions leads to the identifia-
bility of the channel. The optimal method is the covar-
iance matching [1]. The two other families of methods
are subspace fitting and linear prediction introduced
with noncyclic statistics [2], which are suboptimal but
do not need complex numerical searches as the covari-
ance matching method.

In this paper we introduce a new multichannel model
derived from the stationary multivariate representation
introduced in [3]. This representation allows the deriva-
tion of subspace fitting and linear prediction methods
using cyclic statistics. Algebraic considerations show
that the cyclic subspace fitting has in theory the same
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performance as the noncyclic subspace fitting, although
the cyclic approach is characterised by fewer parame-
ters for the channel, leading to some enhancement
w.r.t. the noncyclhic method. For linear prediction, bas-
ing the prediction on more samples leads to better per-
formance.

2 Data model

We consider a spatial division multiple access (SDMA)
communication system with p emitters and a receiver
constituted of an array of M antennas (Fig. 1). The sig-
nals received are oversampled by a factor m w.r.t. the
symbol rate. The channel is FIR of duration N7/m

where T is the symbol duration.
m
T

Iy

p users

M antennas

Fig.1 Schematic SDMA situation
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Fig.2 Channel model

The received signal can be written as
N—-1
x(n) = > _ h(k)uln —k) +v(n)
k=0

|_'n.+N =1 J
= Z h(n — km)ax + v(n) (1)

=[]
where u(n) = 2 .. a,8n — km) (Fig. 2). The received
signal x(n) and noise v(n) are M x 1 vectors. x(n) is
cyclostationary with period m whereas v(rn) is assumed
not to be cyclostationary with period m. h(k) = [h;(k)”

... hy{F)T|T has dimension M X p, a(k) and u(n) have
dimensions p x 1.
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3  Cyclic statistics

Following the foregoing assumptions the correlations
Rqz(n,7) = E{x(n)x" (n - 7)} (2)

are cyclic in n with period m (¥ denotes complex conju-
gate transpose and E{ } denotes the expectation opera-
tor) [4]. One can easily express them as

R..(n,7) Z Zhn—am R..(0)
a=—00 f=—o00
x hf(n —am + fm — 7) + Ry (1)
(3)
We then express the kth cyclic correlation as
R (r) = — Z R, (l,7)e /5
= E{k}{x( )x (1 —1)} (4)
whose value is
R (7 2 Z Roo(8)
a——oc f=—oc0
x h (o + pm —1)e~7% oo (T)8(K)
(5)

with k integer and R*}(7) = RE™(7) (usually one
uses k € [-Lm/2], .. |m/2J]) Let us denote Tx(Hy) as

the convolution matrlx of Hy = [h(0)h(1)... h(N —

D77 and

DY} =blockdiag]T, ’e jesk g } ‘ gy |
(6)

where blockdiag[4 ... Z] denotes a matrix with its block
diagonal elements as A ... Z and zero elsewhere.

4 Gladyshev’s theorem and Miamee process

Gladyshev’s theorem [3] states that

Theorem: Function R,,(n, 7) is the correlation function
of some periodically correlated sequence (PCS) if and
only if the matrix-valued function

R(r) = R ()]l (7)

RED (1) =RETH (et /m - (8)

is the matrix correlation function of some m-variate
stationary sequence.

Remembering that R ¥} (7) = R & H(_p) the matrix

RO)  R(1) R(K - 1)
R(-1) R(0) R(K —2)
E = . . .. .
R(1-K) R2-K) - R(0)
(9)

is an hermitian K x K block Toeplitz matrix of Mm x
Mm blocks, then Miamee [5] gives the explicit expres-
sion of the multivariate associated stationary process

m—1

@ x(n + j)e2iknti)/m

=0
(10)

= [ZE]7 where ZF =

where @ is the direct sum, i.e. noting w = 2™,
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ZE = whn[x(n), x(n+1)wk,

n

x(n+m—1)whm=1)

(11)
is defined in an Hilbert space, where the correlation is
the Euclidean product

m—1
(25,28, = > B{ZE()ZE, NOIEGE)
=0
and Z, = [Z,°T Z.,')T ... Z,”"'"]7, with the classical cor-

relation for multivariate stationary processes. On the
other hand, Miamee gives the link between the linear
prediction Z, and the cyclic AR model of x(#), which
we use to derive an efficient way of computing the hn-
ear predictor.

5 Expression of Z, w.r.t. u(n) and h(n)

From Z)} = @ mo X(n + j) eXmkmtdim \where

x(n+j) = Zh(k u(n+j—k)+v(n+j)

u(n + j)
u(n  + 1
—Hy ( +:J+ ) v(n +j)
u(n+j;N+1)
(13)

and defining U,,; = [u(n +HT culn+j - N+ DI
and H{k} = [w‘kfh(])] 1 we express the Miamee process

as
m—1 .
z, = D (Hﬁv_k}wk"Unﬂ +v(n+j)e*m* m])
7=0
= H}{V‘k}wkn [Un Ut U tm—1 ]
m-—1 .
-+ @ V(n +j)€2ﬂjk% (14)
7=0
= Z, = He,: U(n) + V(n) (15)
where H,,, = [H]{\?}T H]{VI}T H]{vl’m}T],

U= D{Dnli%"N} [Un Unys Un-l-m—l] (16)

v(n) v(n+m-—1)
. v(n)w™ v(nt+m—1)wmTm=1
V(n) =
v(n)wn(m—l) v(n+m71)w(n+m~1)(mfl)

(17)

= Z=Tpin-1(Hio)Ur +Vy, (18)

. =1 ML, is clearly a stationary process whose
correlation matrix can easily be deduced from R,
Refer to Figs. 3 and 4. Based on eqn. 18 we apply the
classical subspace fitting and linear prediction channel
identification schemes as follows.

5.1 Identifiability

Provided that the data collected are numerous enough
the rank condition on 77,y 1(H,,) leads to the usual
identifiability conditions, i.e. H,,(z) must be minimum
phase, which is equivalent to the condition that h{(z)
may not have 2n/m equispaced zeros and that hy(z) and
h(z) may not have common zeros for all i # j.
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Fig.3 Classical time series channel model representation
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Fig.4 New channel model

5.2 Signal subspace fitting

Recall the signal subspace fitting [6, 7] (noise subspace
based) blind channel identification algorithm. One can
write the SVD of the cyclocorrelation matrix R =
ABCH with the relations

range{A} = range{C} = range{Tk (H:t)} (19)
We then solve the classical subspace fitting problem

i | T (L) — ATI: (20)
Introducing Al such that |AALl is a unitary matrix
leads to

KMm
min i, | > Tw(AFTOTH (AR | HE (21)

° i=DL1
where A/ is a KMm? x 1 matrix and D* = N + K and
superscript ! denotes the transposition of the blocks of
a block matrix. Under constraint |[H,,| = 1, H/, is
then the eigenvector corresponding to the minimum
eigenvalue of the matrix between brackets. Similar
work has been done by Schell [4] for the direction-of-
arrival estimation problem. One can reduce the compu-
tational burden by using D+ > N + K [7], which leads
to loss of performance. A reduced-complexity signal
subspace fitting without loss of performance is
described in [8]. The case p > 1 can be (partially) solved

as in [9, 10].

5.3 Linear prediction
Consider the denoised case. The correlation matrix is
then computed as Ri?jsb =RY — R, (1), where

m—1

Row(Miy = Y E{vln+ v (n+1+7)}
=0
x D) gy —a{ntitr)
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m—~1
= RUU(T)wn(i_j)—jT Z w(ZAJ)l
=0
= va(T)'wn(i_j)—ij&ij
= méi Royp (T)w ™7 (22)
Hence Ry{(7) = blockdiag Ry{(1) wRp(1) ... wimlr
Ry(7)J, which in R corresponds to the noise contribu-
tion of the zero cyclic frequency cyclic correlation.
From eqn. 18 and noting Zg(n — 1) = LZjJ}EZ:{f, the
predicted quantities are T

Z(n>|ZK(n41) = pl—Z—n-I +-oo-t pKZn—K (23)

Z(n) = Z(m) ~ Z0)g, oy (24)
Following [11], we rewrite the correlation matrix as

RO Ik :I
R = 25
R- R e (25)
this yields the prediction filter

Px =[p1- -px] = —rxRg, (26)

and the prediction error variance

05 x = Ro—Pgril = Hm(O)a‘g,KW_ngt(O)

(27)

where the inverse might be replaced by the Moore-Pen-
rose pseudoinverse and still yield a consistent channel
estimate. Another way of being robust to order overes-
timation would be to use the Levinson—-Wiggins-Robin-
son (LWR) algorithm to find the prediction quantities
and estimate the order with this algorithm.

There are many ways to proceed from the prediction
quantities to the channel estimate [12, 13]. We use the
optimal solution here. For K = K = [N = 1/Mm — 1],
eqn. 27 allows one to find H,,(0) up to a scalar multi-
ple. Let H}, be M.m x (M.m — 1) of rank M.m — 1
such that HX, H,,,(0) = 0, then

Fio., = HEI P (28)

is a set of M.m — 1 blocking equalisers, since F°Z = 0.
Due to the commutativity of convolution,

FyTr(Hie) =0 H, Tn(FY)  (29)
Now
dim(Range {Ty(F%, )P =1 (30)

so that we identify the channel H#! as the last right
singular vector of T\(Fgiy).

6 Computational aspects

It is obvious that the correlation matrix R built from
the cyclic correlations is bigger (in fact each scalar in R
is replaced by a m x m block n R) than the corre-
sponding matrix built from the classical time series rep-
resentation of oversampled stationary signals. This fact
must be balanced with the stronger structure that is
cast in our correlation matrix. In fact, one can show
that the estimates H §* are strictly related (i.e. H
= [woh()] Ng! for all k), which indicates that this struc-
ture should lead to reduced complexity algorithms
w.r.t. the original ones. When developing the expres-
sions in detail this is particularly obvious in linear pre-
diction, where the prediction filter has some strong
structure, which is also visible in [14]. Moreover, as
noted in [13], the multichannel linear prediction prob-
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lems correspond to a block triangular factorisation and
to an orthogonalisation of the block components of the
vector Z.

Returning to the original channel model; we alterna-
tively introduce sequential processing and orthogonal-
ise the elements of the vector X = [x(n) ... x(n + K)]
scalar component by scalar component. This leads to
the cyclic prediction filters whose explicit relations to
the multivariate predictions filters are known, and
results from a true (nonblock) triangular factorisation.

7 Simulations

In our simulations we restrict ourselves to the p = 1
case, using a randomiy generated real channel of length
67, an oversampling factor of mm = 3 and M = 3 anten-
nas. We draw the NRMSE of the channel, defined as

100
1 .
- —_— (l)— 2 2
MRMSE 100t§:1||h hl|%/lIh]|Z  (31)

where h® is the estimated channel in the /th trial. The
correlation matrix is calculated from a burst of 100
QAM-4 symbols (if we used real sources we would
have used the conjugate cyclocorrelation, which is
another means of getting rid of the noise, provided it is
circular). For these simulations we used 100 Monte-
Carlo runs.

7.1 Subspace fitting
The estimations of 25 realisations for an SNR of 20dB
are reproduced in Fig. 5.

0.5

-0.5

0 2 4 8 8 10 12 14 16 18
Fig.5 Simple channel estimate

For comparison we used the same algorithm for the
classical time series representation of the oversampled
signal. The results, Fig. 6, show a better performance
for the classic approach due to the fact that we used
the same complexity for both algorithms (same matrix
size), which results in a lower noise subspace size for
the cyclic approach. In theory, when one uses the same
subspace size, as there is a one-to-one correspondence
between the elements of the classic correlation matrix
and the elements of the cyclic correlation matrix, the
performances should be equal. The third curve illus-
tratee this.

In more realistic cases, when one uses a channel
model where the transmitter and receiver filters are
incorporated, the cyclic approach gives better results.
This is mostly due to the fact that one can better refine
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Fig.6 Subspace fitting estimation error
+ cyclic correlation

O classic correlation

X cyclic correlation, increased complexity
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Fig.7 Combined channel and transmission/reception filter

normalised squared error, dB

305 5 70 15 20 25

SNR

Fig.8 Subspace fitting estimation error
O stationary statistics
X cyclic statistics

the channel-length estimate (and should be preceded by
a good channel-length estimation algorithm). Indeed, if
we use a channel of the form (M = 2 and m = 2)

€ % %x X *x x €

E % ¥ x *x Xx €
where £ is a near zero value, the cyclocorrelation
approach can afford to restrict to the central part of

the channel, but the classical approach will try to find
the M.m multichannel
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£ x % XK ok
* &k x % €

or (33)
£ % % SR S
* Kk k ¥ x £

with two more (near zero) parameters to estimate,
which will globally give a worse estimation. Fig. 8 illus-
trates, for moderate SNR, the performance enhance-
ment for a 57 channel combined to a 90% excess
bandwidth raised-cosine filter (we continue to use M =
3 and m = 3).

7.2 Linear prediction

For the linear prediction we expect to have a slightly
better performance in the cyclic approach than in the
classic approach. Indeed, in the classic approach, if we
use for example an M = 1 antenna and an oversam-
pling factor of m = 3, we predict [x(n) x(n — 1) x(n -
2)]" based on [x(n — 3) x(n — 4) ... ¥, whereas in the
cyclic approach we predict the scalar x(rn) based on [x(n
—1) x(n - 2) x(n — 3) ... ]7. The corresponding predic-
tion filter thus captures little more prediction features
in the cyclic case.

On the other hand, the noise contribution being only
present in the zero cyclic frequency cyclic correlation
(see eqn. 5), we expect a better behaviour of the
method if we do not take noise into account in the cor-
relation matrix (i.e. do not estimate the noise variance
before doing the linear prediction). Those expectations
are confirmed by the simulations shown in Fig. 9 (The
label ‘LP on cyclic statistics’ refers to the use of R
where the noise contribution has been removed,
whereas ‘LP on cyclic statistics, no denoising’ refers to
the use of the plain correlation matrix).

Sr

NRMSE, dB

-35 I L 1 1 |
0 5 10 15 20 25
SNR

Fig.9 Linear prediction estimation error
+  LP on stationary statistics

X LP on cyclic statistics

O LP on cyclic statistics, no denoising

8 Conclusions

Using the stationary multivariate representation intro-
duced in [3, 5, 14], we have explicitly expressed this
process. It can be seen as the outPut of a s¥stem with
transfer channel H,,, = H r H 7, and
input easily related to the actual system nput. Once
these quantities are expressed, application of the classi-
cal subspace fitting and linear prediction algorithms is
straightforward.
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For the subspace fitting, one has essentially the same
performance as in the time series representation [11].
The only advantage one could expect is some refine-
ment in the channel order estimation prior to the sub-
space fitting. The main drawback is the increase of the
computational burden.

For the linear prediction, there is a better perform-
ance owing to the fact that we take the very near past
into account. What is more, use of modular multichan-
nel linear prediction algorithms such as those described
in [15] provide fast algorithms and adaptive implemen-
tations.
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