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We study weakly-hydrated samples of platelet-shaped nano-

particles obtained by dry-pressing suspensions of the synthetic Na-

fluorohectorite clay. The particles consist of stacks of several tenths

of 1 nm-thick nanosilicate sheets. They form a compound of quasi-

two-dimensional particles whose average director is aligned with the

direction of the uniaxial stress applied at dehydration. Small-angle

X-ray scattering images from these samples are either isotropic or

anisotropic, depending on the sample orientation with respect to the

X-ray beam. From anisotropic images, we investigate changes in the

scattering objects’ orientation distribution probability (ODP) function,

as we lower the temperature, thus triggering swelling of the individ-

ual particles by water intercalation. This is done on the one hand by

inferring the width of the ODP function from the eccentricity of quasi-

elliptic iso-intensity cuts of the small-angle scattering images, and on

the other hand by obtaining the ODP function from azimuthal profiles

of the images. The decays of the scattering intensity as a function of

momentum transfer along the two principal directions of the images

exhibit power law behaviors. A crossover scale between two power

law regimes is observed on the profiles recorded along the horizontal

axis; it corresponds to the typical pore size along the direction of the

initially-applied load. These results are compared to a previous study

of similar systems.

1. Introduction

Clays are minerals with a grain size smaller than 2 µm. From

the morphological point of view, they consist of platelet-shaped

grains/crystallites (Velde, 1992). The basic structural unit of 2:1

clays, in particular, is a 1 nm-thick phyllosilicate platelet with a

negative structural charge on the top and bottom surfaces. Such is

Laponite, a much-studied model system for monodisperse platelet col-

loids (Mourchid et al., 1998; Bonn et al., 1999; Lemaire et al., 1996).

Another synthetic 2:1 clay is fluorohectorite. It possesses a structural

charge much larger than that of laponite (1.2 e− as opposed to 0.4

e−), which allows the platelets to stack by sharing an intercalated

cation X (the particular clay being denoted as X-fluorohectorite) and

to remain stacked either in dispersed- or weakly-hydrated state. In

poly-crystalline fluorohectorite samples, the grains therefore consist of

such nano-stacked particles, with a thickness of about 100 nm (DiMasi

et al., 2001; da Silva et al., 2002). They remain platelet-shaped and

essentially two-dimensional, their lateral dimension being much larger

than their thickness. They also exhibit a large polydispersity in their

lateral sizes.

Weakly-hydrated assemblies of nano-stacked particles can be stud-

ied in the framework of intercalation compounds (Solin, 1993). Hydra-

tion of individual clay particles, in particular, occurs through the

intercalation of water molecules in the space between adjacent silica

platelets, inside the stacks. The stepwise swelling of the nano-stacks

resulting from molecular packing between clay platelets (Skipper

et al., 1991; Skipper et al., 1991), is a well-known first order tran-

sition between hydration states corresponding to up to 4 (Suzuki

et al., 1987; Wada et al., 1990; da Silva et al., 2002). ”water lay-

ers”. The thermodynamically stable state is controlled by the ambi-

ent temperature (T ) and humidity (H), and transitions occurring along

given (H, T ) lines (Wada et al., 1990; da Silva et al., 2003). For Na-

Fluorohectorite and at H ≃ 100%, for example, the system goes from

0 water layers (WL) up to 2WL between 393 and 275 K (da Silva

et al., 2003).

In this paper, we study weakly-hydrated poly-crystalline samples

of Na-fluorohectorite obtained by dry-pressing aqueous suspensions,

under a uniaxial load. In such samples, the platelet-shaped nano-stacks

are tightly packed and preferentially oriented perpendicular to the load

applied at dehydration. Re-hydrating them causes particle-swelling,

and a subsequent re-arrangement of the particles with respect to each

other. In a recent study (Méheust et al., 2006a), we studied similar sam-

ples and monitored the changes in the particles’ orientation probability

densities during hydration transitions. In this paper, we also investigate

the changes in the geometry of the whole weakly-hydrated assembly

under the effect of individual particle swelling, but using small-angle

X-ray scattering (SAXS), thus probing larger length scales. Note that

small-angle neutron scattering (SANS) has previously been used on

similar samples, focusing on typical pore sizes (Knudsen et al., 2004).

Here we address predominantly orientational order.

2. Theoretical background

2.1. Sample geometry

The meso-structure of the samples consists of an assembly of Na-

fluorohectorite particles, i. e., of ∼ 100 nm-thick platelet-shaped nano-

stacks. The orientation of one clay particle can be described through its

director, a unit length director n normal to the top/bottom surfaces of

the particle.

The collective geometry of these particles retains a trace of the com-

paction process that created it: the particles have their directors on

average parallel to the direction of the load applied during dehydra-

tion. We denote that direction by a mean director n0. In Fig. 1, we

show a schematical cut of a sample through a plane parallel to n0.

The directors of the various particles are distributed in the entire solid

angle according to an orientation distribution probability function f

that only depends on the deviation angle α of a given director from

the mean director n0 (Méheust et al., 2006a). This geometric descrip-

tion is identical to that of a uniaxial nematic liquid crystal. In order to

describe the shape of the ODP function, we use a function identical to

that obtained by Maier and Saupe in their classical description of the

uniaxial nematic order (Maier & Saupe, 1958; Maier & Saupe, 1959),

in the form

f (α) ∝ exp(m cos
2
α) . (1)

Note that: (i) f is normalized to 1 on the range α ∈ [0; π/2], (ii) m is a

parameter that controls the width of the distribution, and (iii) in contrast

to nematic liquid crystals, there is no theoretical reason to motivate the

choice of that particular function in our system. In the process of fit-

ting a model to the data in order to quantify the angular width of the

distribution, the Maier-Saupe function provided good fits while allow-
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ing to relate our observations to a well-known description of an analog

geometry.

Regarding the shape of the distribution, the parameter m controls

the angular width of the distribution. We rather characterize the half-

width as the two-dimensional (2D) root mean square of the distribution,

defined as

p

〈α2〉 f =

„

2 π

Z

π/2

0

α
2

f (α) sin α dα

«

1
2

. (2)

To a first approximation, the porous space inside the samples can

be described as a system with a mesoporosity at the 0.1 − 1 µm scale,

in-between the clay particles (see gray shading in Fig. 1), and a micro-

porosity in the inter-layer spaces of the clay particles, i. e., in-between

adjacent platelets inside the nano-stacks (see red lines in Fig. 1).

2.2. Small-angle scattering by aggregates of particles

Small angle scattering profiles recorded from aggregates of colloids

often exhibit power laws on a wide q range (Dietler et al., 1986; Schae-

fer & Keefer, 1986; Vacher et al., 1988). Except for the anisotropy

of the platelet-shaped clay particles and the overall orientational order

of their assembly, these models are well suited to describe scattering

by the samples presented in section 2.1. Power laws in the scattering

curves arise from long range correlations either in the mass geome-

try of the aggregates, or in the roughness of their pores. However, the

exponent D of the power law

I(q) = A q
−D + B (3)

(B is the incoherent background scattering) that is fitted to the scat-

tering data is related to the fractal property of the scattering aggregate

in a way that depends on whether one addresses a mass- or a surface-

fractal (Schmidt, 1989):

If we consider systems in which the aggregated particles are posi-

tioned with respect to one another so that their two-point correlation

function is a power law function in the form

g(r) ∝ r
Dm−3

, (4)

where Dm is a fractal dimension, a power law scattering curve with an

exponent −Dm is observed for q values in the range 1/l ¿ q ¿ 1/a.

Here a is the typical size of an aggregated particle, and l is the size

of the whole system, i.e., the largest accessible length scale (Sinha

et al., 1984; Schmidt, 1989). The exponent D in Eq. (3) is simply

D = Dm, and is by definition in the range 1 ≤ D < 3.

If we now probe length scales smaller than the particle size, the scat-

tering becomes sensitive to the roughness of the aggregated particles.

If this roughness qualifies the particle for being considered a surface

fractal with a dimension Ds, or more generally if the area of the sur-

face is a power law of its linear dimension with an exponent Ds on a

given range of scales, then the scattering profiles exhibit a power law

behavior with an exponent −(6 − Ds) on that range of scales (Bale &

Schmidt, 1984; Schmidt, 1989). Here by definition Ds is in the range

2 ≤ Ds < 3, and the exponent D in the range 3 < D ≤ 4, with

the well-known Porod law limit (4) being reached for smooth particles

(Porod, 1951).

Therefore, the scattering curve can be interpreted as resulting either

from surface scattering, or from bulk scattering, depending on whether

the exponent is in the range 3 < D ≤ 4 or in the range 1 ≤ D < 3.

Often those two behaviors are both present, on two q ranges corre-

sponding to length scales smaller- or larger- than the typical particle

size, respectively. Note that the understanding of such data is more dif-

ficult in the presence of a polydispersity of the aggregated particles, or,

equivalently, of a wide distribution for the pore sizes. In this case, an

exponent D > 3 can arise both from surface scattering from rough pore

walls, or from bulk scattering by a porous media with a wide pore size

distribution (Pfeifer & Avnir, 83). In the case of the anisotropic clay

particles, which have two characteristic length scales instead of one,

the experiments are carried out in an intermediate q range correspond-

ing to length scales intermediate between the typical particle thickness

and the typical particle width.

2.3. Orientation distribution probability functions of platelet-
shaped scattering objects from two-dimensional SAXS
data

If the incoming X-ray beam hits the sample perpendicular to the

mean platelet director n0 (direction (2) in Fig. 1), the preferential ori-

entation of the scattering objects results in an anisotropy of the two-

dimensional small-angle scattering images. For nematic systems of

monodisperse platelets, the ODP function can be computed from small-

angle data, provided that there is no coupling between positional and

orientational order, or that no positional correlations are found in the

probed q range. Indeed, under these assumptions, the scattering inten-

sity is proportional to the integral over the ODP function of the form

factor F(q) of an individual platelet-shaped particle:

I(q, φ) ∝
Z

f (α)F(q) sin α dα . (5)

Using this relation, Lemaire et al. have fitted a model to the whole two-

dimensional scattering pattern in order to compute the order parameter

of a nematic dispersion of laponite colloids (Lemaire et al., 1996). Note

that Eq. (5) still holds when a polydispersity is present, but a further

integration on the varying size parameter(s) must be included.

Recently, van der Beek et al. proposed a method to infer the ODPs

function based on the monitoring of the scattering intensity along cir-

cular rings (at a given q value), for systems in which Eq. (5) is valid

(van der Beek et al., 2006). The authors derived an expression for the

scattering intensity in the range of q values corresponding to length

scales intermediate between the platelet thickness and the platelet

width, in the form

I(q, φ) ∝ f (α = φ)

q2
, (6)

where φ is the azimuthal angle. Their study was carried out on a sus-

pension of Gibbsite colloids that were partially aligned by an exter-

nal magnetic field, and consequently had their directors uniformly dis-

tributed in a plane orthogonal to the magnetic field. Such a configura-

tion is analog to, but different from, the nematic geometry addressed

here. However, a closer look at the details of their method shows that it

can be applied to a configuration such as that presented in Fig. 1, with

the beam arriving at the sample according to direction (2).

In our polydisperse system, the exponents of q-plots is significantly

different from −2 (see section 2.2). Nevertheless, we assume to a first

approximation that we can consider, as in the monodisperse case, that

the azimuthal intensity variations are controlled by the ODP function

and decoupled from the decay along the (radial) q-axis. Hence, we

assume that

I(q, φ) ∝ f (α = φ)

qγ
, (7)

in which γ is an average decay exponent for our system. In what fol-

lows, we use Eq. (7) to infer the ODP function from two-dimensional

SAXS data.

3. Experiments
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3.1. Experimental method:

3.1.1. Samples: Suspension samples were prepared from sodium

fluorohectorite produced by Corning Inc., New York. The raw pow-

der was first suspended in deonized water and stirred for several days.

The suspensions were then ion-exchanged in solutions of NaCl, for

two days and with an excess of Na+ cations approximately 5 times the

cation exchange capacity (Kaviratna et al., 1996), so as to yield a sus-

pension where the cations intercalated inside the colloids are all Na+.

After removal of the supernatant and of excess cations, by dialysis,

the suspension samples were heat-pressed at a temperature of 120◦C,

applying a moderate uniaxial load (0.12 MPa) in the direction of grav-

ity. The resulting dehydrated samples were disks with a diameter of 7.2

cm and a thickness of ∼ 2 mm. The global porosity of the samples (i.e,

ratio of the pore volume to the total volume) was measured to be 50

% (Knudsen et al., 2004). The clay disks were then cut into 2 × 2 × 6

mm3 parallelepipedic slices, proper for synchrotron experiments.

3.1.2. SAXS experiments: Measurements were carried out at

beamline BM-26B of the European Synchrotron Radiation Facility

(ESRF), in Grenoble (France), using an energy ∼ 8 keV. Scattered

X-rays were recorded on a 2-dimensional detector (a square matrix of

512 × 512 elements). The X-ray wavelength and the camera length

were both calibrated using the fiber diffraction of wet rat-tail collagen,

which has strong characteristic peaks at q = 2π n/67.2 nm−1 (n = 1, 3,

5). The wavelength was found to be λ = 1.53 Å and the camera length

D = 8355 mm. The exposure time for each image was 500 s. This

wavelength and this camera length, combined with the diameters of the

detector and beam stop, provided SAXS data in a range of momentum

transfer values between qmin = 0.02 nm−1 and qmax = 0.31 nm−1.

The samples were placed in a custom-made cell that ensured control

of the temperature and relative humidity in the vicinity of the sample. A

detailed description of this cell can be found in (Méheust et al., 2006a).

Two orthogonal orientations of the sample with respect to the incom-

ing X-ray beam were used; they are denoted (1) and (2) in Fig. 1. The

sample thickness parallel to the incoming beam was 2 mm, in both

configurations.

3.1.3. Protocol: After distance calibrations and proper sample

positioning, we performed a series of measurements in configuration

(1) (see Fig. 1) under large relative humidity (H = 98%), decreasing

temperatures between 393 K and 278 K, in steps of 30 to 10 K. The

hydration state at the beginning of the series was a mix of 0WL and

1WL states; at the end of the series it was a 2WL state. After impos-

ing each new temperature value, 6 SAXS pictures were taken regularly

during 1h. In what follows, we only present the results obtained from

the last picture at a given temperature. We assume that for this picture,

the system had time to adjust to the imposed temperature, in particular

with respect to water intake.

Subsequently, the sample was rotated into configuration (2) (see

Fig. 1), and the same series of measurements was performed again.

3.2. Results

3.2.1. Anisotropy of the SAXS images: Fig. 2 shows two SAXS

images recorded at 333 K, in configurations (1) and (2). In configura-

tion (1), the image is isotropic, which is expected due to the axial sym-

metry (at least statistically) of the sample meso-structure around the

average director n0. An anisotropy could be observed if this director’s

direction were significantly different from that of the incident beam,

which does not seem to be the case. In contrast, the image obtained

from configuration (2) is strongly anisotropic; it is this type of images

that are to be analyzed to infer the ODP functions of the clay particles

in the sample.

An estimate of the image anisotropy was obtained by fitting ellipses

to iso-intensity lines of the images. In practice, a narrow intensity range

was considered, in order to improve the statistics. The fits provided the

ellipse large semi-axis, a, its short semi-axis, b, and their directions.

The eccentricity e =
√

1 − b2/a2 was computed and used to quantify

the image anisotropy. For perfectly random orientations of the parti-

cles, the ellipse is a circle and e = 0; for a system of perfectly aligned

platelets, the eccentricity is expected to approach 1. A systematic check

of the influence on the elliptic fit parameters of the intensity level cho-

sen to perform the fit provided an uncertainty on e of ±0.01, while the

uncertainty on the direction of the axes was found to be ∼ ±1°. The

evolution of the eccentricity when decreasing temperature is addressed

in section 3.2.2.

Radial intensity profiles were then extracted along the principal

directions of the image, as defined by the ellipse orientation; they were

obtained by integrating sectors of the image, ±5°-wide and centered

on those directions, over azimuthal angles. The two profiles obtained

from the image shown in Fig. 2(2) are presented in Fig. 3. They are

different from each other in that the horizontal profile, denoted (a),

exhibits a crossover at a length scale qc = 0.071 nm−1 corresponding

to a length scale lc = 1/qc ∼ 14 nm. This length should be attributed

to a typical pore size in the direction of the applied pressure. Particles

present, on average, their lateral side to the beam, with their thickness

along the horizontal direction; consequently, the pores resulting from

particle aggregation exhibit a large aspect ratio: their smallest dimen-

sion is found along that direction (Knudsen et al., 2004). The average

thickness typical of these clay particles in suspension (around 100 nm)

is itselft out of our data range. Note that the typical pore size (which is

further discussed in section 4) should not be understood in terms of a

repeated motif in the meso-structure, since we do not observe a corre-

lation peak at this length scale; it is not allowed by the system’s disor-

der (arising mostly from the particle polydispersity). At length scales

smaller than lc, the exponent of the power law (Eq. (3)) is D = 4 which

indicates scattering by smooth surfaces; at length scales larger than lc,

the exponent is larger than- , but close to D = 3, indicating surface

scattering by very rough surfaces.

Along the vertical direction, in contrast, a single power law

is observed with an exponent intermediate between the two latter

regimes. Indeed, if a typical length scale exists along that direction

(i.e, a mean particle length or equivalently a mean vertical pore size),

it is larger than the larger scale probed by the SAXS (∼ 200 nm). Note

that in the scale range adressed by the SAXS experiment, the particle

surfaces are rougher along the vertical direction than horizontally. This

difference in the exponent is not surprising, as the horizontal roughness

as probed by the SAXS arises mostly from the stacking of the individ-

ual platelets into a clay particle, while the vertical roughness (i. e.,

along a particle’s edge), is related to the irregular shape of individual

platelets, in the form of an irregular polygon.

This radial behavior has been observed on several different images,

but its dependence on temperature has not been investigated yet.

3.2.2. ODP widths from the eccentricity values Assuming the

validity of Eq. (7), it is possible to relate the eccentricity of the iso-

intensity lines to the width of the ODP function. Following the line

of page 54 in chapter 4 of (van der Beek, 2005), which dealt with a

monodisperse system, the ratio f (φ)/qγ is constant along such a line,

and therefore, since the semi-axes a and b of the ellipse are given in

terms of q values, the ratio of the minimal value of the ODP function
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along the line, fmin, to that of its maximal value, fmax can be written as

fmin

fmax

=

„

b

a

«

γ

=
“

1 − e
2
”

γ
2

. (8)

Introducing the form chosen for the ODP function, one obtains the m

parameter from the eccentricity as

m = −γ

2
ln

“

1 − e
2
”

. (9)

The two-dimensional RMS width of the distribution is then computed

numerically.

In Fig. 5(a), we show in red, and with error bars, the eccentricity

values as a function of the decreasing temperature. We have used an

intensity value corresponding to q values smaller than qc. The ODP

widths inferred from theses eccentricities are shown in blue, with error

bars as well; they were computed using γ = −3.2, a value that we

obtained from Fig. 3. as an average of the exponents in plots (a) (value

−3.1) and (b) (value −3.3) at q values smaller than qc.

3.2.3. ODPs from azimuthal intensity profiles: Azimuthal

profiles extracted at the same q value (0.045 nm−1), in the interme-

diate q regime, are plotted for all temperatures in Fig. 4. The plots

have been normalized to 1 on the [0; 2 π] φ range, and subsequently

translated vertically, for clarity. Maier-Saupe functions in the form of

Eq. (1) have been fitted to them; they are shown on top of the experi-

mental data. Their 2D RMS width is plotted in blue in Fig. 5(b), as a

function of temperature.

The width of the ODP function, whether inferred from eccentric-

ity values (Fig. 5(a)) or from azimuthal profiles (Fig. 5(b)), increases

below 313 K, by a value that appears small but is significant with

respect to the uncertainty on the fit parameter m. This behavior indi-

cates a decrease in the orientational order of the scattering objects as

clay particles swell by water intercalation.

4. Discussion

In a previous study, we addressed the same topic from two-dimensional

wide-angle scattering (WAXS) data. The ODP functions for similar

samples were inferred from the azimuthal dependence of the amplitude

of diffraction peaks, following a method that we have recently devel-

oped (Méheust et al., 2006b). We observed an increase in the orienta-

tional order during the hydration transitions (Méheust et al., 2006a),

which we attributed to steric effects: during sample preparation, the

platelet-shaped particles do not have time to find the most favorable

configuration; they are locked into a more ordered meso-structure by

the constraint arising from the swelling of the individual particles. The

2D RMS width of the ODPs computed in (Méheust et al., 2006a) were

around 40 to 50° (see also the rocking curve in (da Silva et al., 2002)).

The two studies seem to be in contradiction when it comes to whether

ordering increases or decreases as a consequence of particle swelling.

Though different samples were addressed in the two studies (the load

applied at dehydration are respectively 0.12 MPa and 2.60 MPa), this

apparent discrepancy is probably not so much due to the difference

in the sample preparation, but stems from the fact that the objects

probed by WAXS and SAXS are different. Indeed, the ODPs obtained

from WAXS are those of the thick (∼ 100 nm) nano-stacked parti-

cles (Méheust et al., 2006b), which are rather well aligned; clay par-

ticles belonging to the lower tail of the thickness distribution do not

contribute to the WAXS signal. In contrast, the exponents measured

radially on the SAXS images (Fig. 3) indicate surface scattering from

discontinuities in the porous medium consisting of the aggregated clay

particles: SAXS is sensitive to all discontinuity surfaces, not only those

belonging to thick nano-stacked particles. The ODPs inferred from the

SAXS signal are therefore relative to diffracting objects that are con-

siderably different from-, and less ordered in their orientation than-, the

nano-stacked particles probed by WAXS. Considering that the discon-

tinuity surfaces at which scattering properties vary the most are those

between a clay particles and an adjacent cavity, and invoking the Babi-

net principle, we may argue that the SAXS signal can be partly inter-

preted from the population of cavities/pores, which is complementary

to the clay aggregate and is also expected to consist of anisotropically-

shaped objects. This is supported by the crossover length scale at 14

nm, which we interpret as a typical pore size in the direction parallel

to the initially-applied load. Apparently, the ordering of the population

of cavities decreases at hydration, while that of the thick nano-stacks

increases. Both effects are detectable but quite limited, though, and one

might argue that there is hardly no change in the assembly’s ordering

due to the effect of individual particle swelling.

Note also that the ODP width plots shown in Fig. 5(a) and Fig. 5(b),

though qualitatively similar, do not superimpose. Width values inferred

from ellipse eccentricities are overestimated with respect to those

obtained from monitoring the scattering intensity at a fixed q value.

This shows the limits of this simple analysis, in which we have adapted

to a polydisperse system a theory initially developed for a monodis-

perse system. However, we believe that this study still grabs the quali-

tative change of orientational order within the clay assembly.

5. Conclusion

Two-dimensional SAXS data was used to quantify the orientational

order in dry-pressed samples of platelet-shaped clay particles. The tem-

perature was changed in order to trigger hydration transitions and con-

sequently particle swelling, and changes in ODP functions were mon-

itored. The method seems to be able to detect very small changes in

the ODPs width. By comparison with a previous study that provided

clay particle ODP functions from WAXS data, we conclude that the

ODP functions probed by SAXS are relative to all discontinuity sur-

faces in the clay aggregate, at the probed scales, and are therefore quite

different from those obtained from WAXS data.

The prospects to this study are many. The first one is to extend the

experiments, both of hydration and dehydration, and to investigate the

dependence of q plots such as those shown in Fig. 3 on temperature. An

interesting study would also consist in a joint use of WAXS and SAXS

to estimate ODPs in such samples, confronting the two techniques.

This could be done on samples with various overall densities (going

from gels to pressed samples), so as to characterize if (and when) the

observed SAXS data converges to that of individual platelets (Eq. (5))

when the density is increased: the ODPs obtained from SAXS are then

expected to converge to those obtained from WAXS. Finally, one could

think of improving the method used here so as to account for the direc-

tion of the incident beam not being perfectly parallel to that of the aver-

age particle director, which results in the amplitudes of the two peaks

in Fig. 4 being different.
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(1)
(2)

Figure 1
Sketch of a vertical cut of one 2 × 2 × 6 mm3 dry-pressed Na-fluorohectorite

sample, as it stands in the beam. The gray shadings denote the sample’s meso-
pores, while the red lines represent the nano-porosity inside the nano-stacks.
Two configurations were used: one in which the beam is oriented with respect
to the sample according to the direction denoted (1), and one in which it is
oriented according to the direction denoted (2).

(1) (2)

Figure 2
Two-dimensional SAXS images recorded in the two configurations (1) and (2)

(see Fig. 1). In both images, a narrow range of intensities has been painted white
so a to highlight the shape of an iso-intensity line: in (1), the image is isotropic;
in (2), it is strongly anisotropic.
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Figure 3
Radial intensity profiles from a SAXS image recorded at 393 K: (a) along the

ellipse’s long principal axis (close to horizontal in Fig. 2(2)), and (b) along the
ellipse’s short principal axis (close to vertical in Fig. 2(2)).
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Figure 4
Azimuthal intensity profiles for a series of SAXS images recorded at decreasing
temperature values. Maier-Saupe fits are superimposed to the data; they provide
the ODP function for the nematic order of scattering objects in the sample.
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Figure 5
(a) Dependence on temperature of the eccentricity of iso-intensity lines (in red)
and of the 2D RMS of the ODP functions (in blue) inferred from the eccentricity
values. – (b) 2D RMS width of the ODP as directly obtained from the intensity
profiles at a fixed q value (see Fig. 4). Both plots show that a moderate decrease
of the orientational order occurs as particles swell by taking in one more layer
of water, at around 313 K.
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