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Abstract

Using new numerical methods we detect the topology of hyperbolic
manifolds supporting diffusion in the a priori unstable dynamical sys-
tems and compare them with the diffusion properties. We measure a
spread of the asymptotic manifolds which is significant to explain diffu-
sion. We show that the stable and unstable manifolds have a topolog-
ical transition when the Melnikov approximation looses its accuracy.
This transition is correlated to a change of the law of dependence of
the diffusion coefficient on the perturbing parameter. This suggests
that the Melnikov approximation is not only a technical tool which
allows one to compute accurate approximations of the manifolds at
small values of the perturbing parameters, but is related to a dynami-
cal regime.

1 Introduction

Diffusion in conservative dynamical systems has been a very studied
subject in the last decades. Apart from specific examples, the un-
derstanding of the general mechanisms which can produce drift and
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diffusion in the phase space of such systems is an interesting, and in
general open, problem. In this paper we focus our attention on an
important class of conservative systems, which we call a priori unsta-
ble ones following the terminology introduced in [4], while in a second
paper [2] we consider the case of quasi–integrable systems.

Since the pioneering work of Arnold [1] many efforts have been done
to relate diffusion in phase space to the topology of the so called stable
and unstable manifolds of the normally hyperbolic invariant manifolds
of the system. To fix ideas, we consider a discrete dynamical system
defined by a symplectic map φ : M → M , M being a symplectic and
Riemannian manifold, with a normally hyperbolic invariant manifold
Λ ⊆ M such that the dynamics of φ restricted to Λ has no diffusion, for
example we require that any orbit of φ|Λ is uniformly bounded by some
constant c0. It is interesting to study the diffusion in a neighborhood of
Λ, that is, for any c > c0 and ρ > 0 finding x, y up to a distance ρ from
Λ which are on the same orbit and their distance is greater than c. In
quasi–integrable systems this kind of diffusion is usually called Arnold
diffusion, since Arnold’s paper [1]. A way of proving the existence of
this kind of diffusion is to prove that the stable and unstable mani-
folds of invariant objects of Λ intersect transversely. Precisely, for any
x0, y0 ∈ Λ, one needs to prove that there exist x0, x1, ...., xN = y0 ∈ Λ
which belong to different invariant sets A0, A1, ..., AN ⊆ Λ such that
the unstable manifold Wu

i of Ai and the stable manifold W s
i+1 of Ai+1

intersect transversely. As a consequence, for any ρ > 0, there are points
ξ0, ..., ξN within distance ρ from x0, ..., xN which are on the same or-
bit. The sequence x0, ..., xN is called transition chain, because the
orbit which connects ξ0, ξN passes through the neighborhoods of the
points xj . Therefore, this mechanism, which is called transition chain
mechanism, provides a useful topological argument to prove the exis-
tence of ‘some’ specific orbits which diffuse in the phase–space, but it
is not known up to now if it is the predominant mechanism of diffusion.
The existence of the transition chain mechanism in a specific quasi–
integrable system has been proved for the first time by Arnold, and
up to now it has not been yet generalized to generic quasi–integrable
Hamiltonian systems, while it has been proved very recently [6] for
the so–called a priori unstable systems under quite general hypothe-
ses. Independent proofs are published in [5] (based on Mather theory),
in [21], [22] (based on the so called separatrix method).

One of the most important techniques to prove the existence of
transitions chains (used in [6]) is the so–called Melnikov theory, which
provides first order approximations of the stable and unstable mani-
folds.

In the last years we detected numerically diffusion in the Arnold
web of quasi–integrable systems with a diffusion coefficient decreasing
faster than a power law with respect to a perturbing parameter, which
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we identified as Arnold diffusion [15], [17], [18]. Despite of the slowness
of this diffusion, we were able to measure a statistical regularity in
the diffusion properties of well chosen sets of initial conditions. For a
priori unstable systems it is much simpler to detect sets of orbits which
diffuse with a regular statistics (for a review see [16] and references
therein). Can the transition chain mechanism explain these phenomena
of regular diffusion of orbits?

In this paper we investigate numerically the topological properties
of this kind of regular diffusion for the a priori unstable systems and we
compare them with the transition chain mechanism. To do this, we use
numerical methods to represent the stable and unstable manifolds of
the 2–dimensional hyperbolic invariant manifolds embedded in a four
dimensional space, using some methods which are based on existing
ones and a new method which is based on the so called Fast Lyapunov
Indicator (introduced in [11] and reviewed in the Appendix).

Our main result is the measure of a spread of the asymptotic stable
(unstable) manifolds in the phase–space which is significant to explain
diffusion. Given a generic point x in the invariant manifold, the dy-
namics maps all the points in a neighborhood U of x along the unstable
manifold of x, and because of the spread of this unstable manifold, the
set U spreads in the phase space and some of its points return near the
invariant manifold ’far away’ from the orbit of x. This is the mechanism
that is behind the diffusion phenomena that we detect numerically.

In this sense, for generic diffusing orbits, we did not detect tran-
sitions from different stable and unstable manifolds, but this is likely
due to the fact that the probability of finding an orbit which passes
near selected number of heteroclinic points is very small.

The existence of heteroclinic transverse intersections remains a pos-
sible way to prove the spread of the asymptotic manifolds in certain
situations, for example when the Melnikov approximation is valid.

At this regard, we show that the topology of the stable and unsta-
ble manifolds has a transition when the Melnikov approximation looses
its accuracy. This transition is correlated to a change of the law of de-
pendence of the diffusion coefficient on the perturbing parameter. This
suggests that for these systems the Melnikov approximation is not only
a technical tool which allows one to compute accurate approximations
of the manifolds at small values of the perturbing parameters, but is re-
lated to a dynamical regime. We remark that such a transition, related
to the Melnikov regime, occurs for values of the perturbing parameter
which are smaller than the thresholds of transition to a Chirikov–like
regime of global overlapping of resonances for the dynamics restricted
to the normally hyperbolic invariant manifold.

The paper is organized as follows: in section 2 we recall some defini-
tions about the normally hyperbolic invariant manifolds and we define
our model example; in section 3 we recall the dynamical properties of a
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priori–unstable systems which are useful in this paper; in section 4 we
describe the numerical methods for detecting the structure of the stable
(unstable) manifolds; in section 5 we report the results on the compu-
tation of the stable (unstable) manifolds and the comparison with the
Melnikov approximation; in section 6 we connect the geometry of the
manifolds to diffusion; in the appendix we review the fundamentals of
the Fast Lyapunov Indicator method.

2 Hyperbolic invariant manifolds in a model

problem

We investigate the diffusion properties of four dimensional symplectic
maps near a normally hyperbolic invariant manifold. The notion of
normally hyperbolic invariant manifolds was introduced in [3], and
can be stated as follows (see, for example, [9]):

Definition ([3], [9]). Let M be a Cq (q ≥ 1) compact connected
Riemannian manifold; let U ⊆ M open and let φ : U → M be a
Cq embedding; let Λ be a sub-manifold of M which is invariant by φ.
The map φ is said to be normally hyperbolic to Λ (Λ is also said to
be normally hyperbolic invariant manifold) if for any point x ∈ Λ the
tangent space TxM has the following splitting:

TxM = Es(x) ⊕ TxΛ ⊕ Eu(x)

which is invariant, i.e. the linear spaces Es(x), Eu(x) are invariant by
φ:

DφEs(x) ⊆ Es(φ(x)) , DφEu(x) ⊆ Eu(φ(x)) ,

and there exist constants λ1, λ2, λ3, µ1, µ2, µ3 satisfying:

0 < λ1 ≤ µ1 < λ2 ≤ µ2 < λ3 ≤ µ3 , µ1 < 1 < λ3 ,

such that:

λ1 ≤ infξ∈Es(x)\0
‖Dφ(x)ξ‖

‖ξ‖ ≤ supξ∈Es(x)\0
‖Dφ(x)ξ‖

‖ξ‖ ≤ µ1

λ2 ≤ infξ∈TxΛ\0
‖Dφ(x)ξ‖

‖ξ‖ ≤ supξ∈TxΛ\0
‖Dφ(x)ξ‖

‖ξ‖ ≤ µ2

λ3 ≤ infξ∈Eu(x)\0
‖Dφ(x)ξ‖

‖ξ‖ ≤ supξ∈Eu(x)\0
‖Dφ(x)ξ‖

‖ξ‖ ≤ µ3 . (1)

The importance of normally hyperbolic invariant manifolds is mainly
stated by the so called local stable (unstable) manifold theorem, which
states the existence, at any x ∈ Λ of the smooth manifolds W loc

s (x), W loc
u (x)

(see [3]) such that: x ∈ W loc
s (x), W loc

u (x), TxW loc
s (x) = Es(x), TxW loc

u (x) =
Eu(x) and for any n ≥ 0 it is:

y ∈ W loc
s (x) ⇒ d(φn(x), φn(y)) ≤ C(µ1 + c)nd(x, y)
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y ∈ W loc
u (x) ⇒ d(φ−n(x), φ−n(y)) ≤ C(λ3 − c)−nd(x, y)

with C, c > 0 suitable constants (c suitably small) and d(·, ·) denotes
a distance on M . The manifolds Ws(x), Ws(x) are then obtained by
iterating the local manifolds W loc

s (x), W loc
u (x) with φ−1 and φ respec-

tively.
The local stable and unstable manifolds of Λ are defined by:

W loc
s = ∪x∈ΛW loc

s (x) , W loc
u = ∪x∈ΛW loc

u (x) , (2)

while the stable and unstable manifolds of Λ are:

Ws = ∪x∈ΛWs(x) , Wu = ∪x∈ΛWu(x) , (3)

Examples. The explicit examples given in this paper refer to the
discrete system defined by the map:

φ : T
4 −→ T

4

(ϕ1, ϕ2, I1, I2) 7−→ (ϕ′
1, ϕ

′
2, I

′
1, I

′
2) (4)

such that:

ϕ′
1 = ϕ1 + I1

ϕ′
2 = ϕ2 + I2

I ′1 = I1 − a sin ϕ′
1 + ǫ

sin ϕ′
1

(cosϕ′
1 + cosϕ′

2 + c)2

I ′2 = I2 + ǫ
sin ϕ′

2

(cosϕ′
1 + cosϕ′

2 + c)2
, (5)

where a, ǫ and c > 2 are parameters. The symplectic structure on T
4 is

dϕ1∧dI1 +dϕ2∧dI2. The map φ has the following invariant manifold:

Λ = {(I1, ϕ1, I2, ϕ2) : such that (I1, ϕ1) = (0, π)} (6)

for any value of the parameters. In particular we will consider the
following cases:

i) For a > 0 and ǫ = 0 the manifold Λ is normally hyperbolic for a
suitable choice of the Riemannian structure. For example, one can
use the following flat norm of tangent vectors ‖(ξϕ1

, ξϕ2
, ξI1 , ξI2)‖2 =

|ξϕ1
|2 + γ |ξϕ2

|2 + |ξI1 |2 + |ξI2 |2, with γ ∈ (0, 1] suitably small. An
alternative way to display the normal hyperbolicity of the map is to
fix a Riemannian structure (for example with γ = 1) and then proving
that φN is normally hyperbolic for some integer N .

The stable and unstable manifolds of Λ are the product of the stable
and unstable manifolds of the hyperbolic fixed point of the standard
map:

ϕ′
1 = ϕ1 + I1 , I ′1 = I1 − a sin ϕ′

1
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with the torus T
2, domain of (I2, ϕ2). Because normal hyperbolicity

persists for small perturbations, Λ is normally hyperbolic also for suit-
ably small ǫ. In this case the stable and unstable manifolds are not
a product as in the previous case, and to describe their topology we
will use Melnikov–like approximations and numerical techniques. The
case a > 0 defines an a priori unstable system, because the invariant
manifold Λ is hyperbolic also for ǫ = 0.

ii) For a = 0, ǫ = 0 the map is integrable and Λ is not hyperbolic.
For a = 0 and ǫ 6= 0 the map is quasi–integrable, the manifold Λ
is still invariant (as well as the manifold (I2, ϕ2) = (0, π)), but one
does not immediately recognize if it is hyperbolic. The diffusion in
quasi–integrable systems at small values of the perturbing parameter
is often called Arnold diffusion. Paper [2] is entirely dedicated to these
systems.

3 Survey on the dynamics near hyperbolic

invariant manifolds in the model problem

The dynamics of φ defined in (5) restricted to Λ has no diffusion if
ǫ is suitably small. In fact, this dynamics is represented by the 2–
dimensional map:

ϕ′
2 = ϕ2 + I2 , I ′2 = I2 + ǫ

sin ϕ′
2

(cosϕ′
2 + c − 1)2

, (7)

whose invariant KAM curves bound any possibility of diffusion if ǫ is
suitably small. Let us denote by ǫc the value such that KAM theorem
is valid for any 0 < ǫ ≤ ǫc. As usual in KAM theory, the analytic
estimate of ǫc can be inefficient, so that we refer to its numerical esti-
mate obtained directly from the phase portraits of the restricted map.
In figure 1 we report phase portraits of (7) obtained for different val-
ues of ǫ for I2 ∈ [0.26, 0.38]. Approximately, for ǫ < 0.002, the map
has still many invariant tori which constitute a topological bound to
chaotic diffusion. Instead, for ǫ = 0.0026 the invariant tori seem to
have disappeared, leaving the possibility to chaotic diffusion in the di-
rection of the action I2. Therefore, there is a numerical indication that
ǫc ∈ (0.002, 0.0026) in this interval of the action. We recall that if the
invariant tori are a topological barrier which completely stops diffusion,
as soon as ǫ is bigger than ǫc there is the possibility of diffusion, but
it can be very slow because of possible stickiness phenomena (see, for
example, [8]) due to the presence of cantori and islands of regular mo-
tion [25]. These barriers to diffusion loose their effectiveness at higher
values of ǫ. In this paper we are interested in the range 0 < ǫ ≤ ǫc, for
which there is not diffusion on Λ and we study the diffusion properties
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Figure 1: Phase portrait of the restricted map (7) for ǫ = 0.002, 0.0026 and
c = 2.1.

of a neighborhood of Λ. This can be done numerically by using the
techniques which we used in [12], [15], [17], [18], [19] to study Arnold
diffusion in quasi–integrable systems. Specifically:

i) individual orbits in a neighborhood of the invariant manifold indeed
spread in the I2 direction, as it is shown in figure 2.

ii) we measured the diffusion coefficient for a = 0.4, c = 2.1 for different
values of ǫ for three sets of N = 100 initial conditions near I2 = 0.324,
I2 = 1.8 and I2 = 2 respectively (the other initial conditions are I1 ∈
[−10−5, 10−5], ϕ1 = π, ϕ2 = 0). More precisely, we computed the
average evolution of the mean squared distance of a set of N orbits from
their initial conditions. This quantity turns out to grow linearly with
time, the slope giving the diffusion coefficient. The results, reported
in figure 3, reveal that for the three sets the diffusion coefficient is well
fitted by a power law D(ǫ) ≃ ǫ2 for ǫ ≤ 6 10−6. For 6 10−6 ≤ ǫ ≤ 4 10−4

some irregularity can appear depending on the specific set of initial
conditions, although data are not far from the D(ǫ) ≃ ǫ2 law. For
ǫ > 4 10−4 the power law changes to D(ǫ) ≃ ǫ2.8. We anticipate (see
section 5) that these changes in the law of dependence of D on ǫ seem
to be correlated to changes in the topology of the stable (unstable)
manifolds of Λ.

These experimental facts can be only partially explained by means of
existing rigorous results. Precisely, though there does not exist in the
literature a rigorous result proving diffusion of orbits for a system like
(5), this system is very similar to those studied in [5], [21], [22], [6], for
which diffusion of individual orbits is proved. The differences between
the map (5) with a 6= 0 and the systems studied in those papers are:
for ǫ = 0 the system studied in [5], [21], [22], [6] is a simple pendulum
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Figure 2: Representation of the FLI for the map (5) with a = 0.4, c =
2.1 and ǫ = 10−5. For any initial condition with I1 ∈ [−0.3, 0.3], I2 =
[0, 3] we plot the value of the FLI after 1000 iterations of the map using a
color scale. The black points on the FLI figure represent the points of the
orbits of N = 100 initial conditions with I1 ∈ [−10−5, 10−5], I2 = 0.324,
ϕ1 = π, ϕ2 = 0 which re-enter in the neighborhood of the surface S =
{(I1, ϕ1, I2, ϕ2) such that : ϕ1 = π , ϕ2 = 0} defined by |ϕ1 − π|+ |ϕ2| ≤
0.05. In the left panel the orbits are computed up to 106 iterations, in the
right panel up to 108 iterations.

coupled with a rotation (a more general case is considered in [21], [22],
which includes perturbations of such a system), while for the map (5)
the unperturbed case corresponds to a standard map coupled with a
rotation. However, in both cases there is an invariant manifold which
is hyperbolic also at ǫ = 0; the dynamics on this invariant manifold
can be represented by a 2D quasi–integrable map. As a consequence,
the mechanism of transition introduced in [6] which takes into account
the stable and unstable manifolds of all type of orbits (not only the
invariant tori) could be important also in the present case. The tech-
niques used in [6] are essentially based on the Melnikov approximation
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Figure 3: Variation of the diffusion coefficient as a function of ǫ, for a =
0.4 and c = 2.1. Data are very well fitted to a power law D(ǫ) ≃ ǫ2 for
10−13 ≤ ǫ ≤ 6 10−6. For 6 10−6 ≤ ǫ ≤ 4 10−4 some irregularity can appear
depending on the choice of initial conditions, although data are not far from
the D(ǫ) ≃ ǫ2 law.

of the stable and unstable manifolds of the normally hyperbolic invari-
ant manifold, which, in the continuous case (as the one considered in
[6]), is well expressed through explicit integrals. The techniques used
in [21], [22] are based on the so–called separatrix map method, which
is based on the Melnikov approximation as well.

Here, a Melnikov like approximation, which will be introduced in
section 5, is instead based on series expansions which are not explicit.
We will compare numerically in section 5 the Melnikov approximations
of the stable and unstable manifolds with the representation obtained
by the numerical methods described in section 4.
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4 Numerical detection of the stable and

unstable manifolds

In this section we describe the methods which we use to detect numer-
ically the global structure of the stable and unstable manifolds Ws, Wu

of a two dimensional normally hyperbolic invariant manifold of a four
dimensional map. We will use two different methods displaying differ-
ent properties of the global structure of these manifolds. The first one
is an extension of the method of propagation of sets commonly used
to detect the stable and unstable manifolds of hyperbolic fixed points
of two dimensional maps; the second one is based on the computation
of the fast Lyapunov indicator (FLI in the following, see [11] and the
appendix).

It is well known that the numerical localization of the unstable
manifold of an hyperbolic fixed point can be obtained by propagating
a small neighborhood of initial conditions up to a time T of the order
of some Lyapunov times of the fixed point. In such a way, one directly
constructs a neighborhood of a finite piece of the unstable manifold
(for the stable manifold one repeats the construction for the inverse
flow). This method gives very good results for fixed points of two
dimensional maps, because the neighborhoods of the fixed points are
two dimensional and can be propagated with reasonable CPU times.
A more sophisticated method in the aim of a better visualization of a
piece of the manifold can be found in [23].

For higher dimensional maps and higher dimensional invariant hy-
perbolic manifolds the application of this method encounters two dif-
ficulties: the propagation of high dimensional sets requires very long
CPU times and the interpretation of the results in an high dimensional
space is difficult.

The first problem can be overcome if one knows in advance some
approximations of the local unstable manifold to restrict the choice of
the set of points to propagate. The second problem could be overcome
by reproducing two dimensional sections of the stable and unstable
manifolds. However, only few points of the numerically integrated
discrete orbits pass near the selected section, so that good results still
require enormous sets of initial conditions.

Different sophisticated methods can be found in the literature for
computing (un)stable manifolds for higher dimensional cases. The
reader can find in [24] a detailed review with applications for the visual-
ization of a 2 dimensional manifold. The common point to all methods
is that manifolds are “grown” from local knowledge, i.e. from linear
approximations. Then the manifold is constructed as a sequence of
geodesic circles. For the specific case of interest here, i.e. for normally
hyperbolic invariant manifolds, an algorithm based on graph transform
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and Newton’s method can be found in [26].
In the following we describe two strategies that allow one to over-

come the above problems.

1) Computation and parametrization of Ws(x).

To discuss the properties of the stable and unstable manifolds we need
a precise parametrization of these manifolds.

For all values of the parameters a, ǫ the dynamics of φ|Λ is defined
by the map (7) which can have invariant KAM curves, resonant li-
brating orbits, resonant chaotic orbits. For the moment we consider
x ∈ Λ belonging to a KAM curve of φ|Λ, but we will apply the method
also to the other cases. As already remarked, the computation of Wu

using the method of propagation of sets is simplified by knowing an
approximation of W loc

u (x). Here, we use a numerical method valid for
0 < ǫ < ǫc to obtain the linear approximation x + Eu(x) of W loc

u (x).
For a given value of 0 < ǫ < ǫc one has to check if the invariant

manifold Λ is still normally hyperbolic. Precisely, we choose the tan-
gent vectors norm: ‖(ξϕ1

, ξϕ2
, ξI1 , ξI2)‖2 = |ξϕ1

|2+|ξϕ2
|2+|ξI1 |2+|ξI2 |2

and we check if the map φN is hyperbolic for some integer N and for
ǫ = 0.001, which is the largest value of the perturbing parameter used
in this paper (still lower than ǫc). We restrict to a compact invari-
ant region D of Λ, such as the one delimited by two invariant KAM
curves. For each point x of a grid of initial conditions with I2 ∈ [0, 2],
I1 = 0, ϕ1 = π, ϕ2 = 0 we first computed the Lyapunov exponents
of the map φ (up to a N = 103 iterations) for initial tangent vectors
in the tangent space TxΛort orthogonal to TxΛ, i.e. for vectors of the
form ξ = (ξϕ1

, 0, ξI1 , 0). We measured a positive Lyapunov exponent
bigger than 0.6 for all the points of the grid, and of course a negative
Lyapunov exponent smaller than −0.6 (figure 4 on the left). This is
an indication of the hyperbolic splitting of the space TxΛort as a direct
sum of a stable space Es(x) and an unstable space Eu(x). The nu-
merical algorithm for the computation of the Lyapunov characteristic
exponents provides also an estimate of λ1 = µ1 and λ3 = µ3 related
to an iterate φN of φ. In fact, if N is sufficiently large, the quantities
1/ exp(FLI(N)) and exp(FLI(N)), where FLI(N) denotes the Fast
Lyapunov indicator computed up to N iterations of the map φ, for
almost any initial tangent vector ξ ∈ TxΛort converge exponentially to
λ1 and λ3. It remains to estimate the constants λ2, µ2 for the map φN

in the point x. Because in this case the growth of initial tangent vec-
tors ξ = (0, ξϕ2

, 0, ξI2) ∈ TxΛ is not expected to be always exponential,
we did not computed the Lyapunov characteristic exponents, but we
computed numerically the two dimensional matrix representing the re-
striction of DφN (x) to the space TxΛ. This can be done by computing
the evolution of a bases of two independent vectors of TxΛ. Once the
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Figure 4: On the left: Lyapunov exponents computed on a grid of 1000
initial conditions with I2 ∈ [0, 2], I1 = 0, ϕ1 = π, ϕ2 = 0, on N = 103

iterations for ǫ = 10−3. The initial tangent vectors are chosen in the space
TxΛort. A positive and a negative value indicate the splitting of TxΛort in
a stable and an unstable space. On the right: Numerical estimates of
log λ2/N and log µ2/N , computed on a grid of 1000 initial conditions with
I2 ∈ [0, 2], I1 = 0, ϕ1 = π, ϕ2 = 0.
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matrix DφN (x) was obtained, we computed directly the quantities:

λ2 ≤ inf
ξ∈TxΛ\0

‖DφN (x)ξ‖
‖ξ‖ ≤ sup

ξ∈TxΛ\0

‖DφN (x)ξ‖
‖ξ‖ ≤ µ2 .

Figure 4 (right panel) shows the numerical computation of log λ2/N
and log µ2/N for N = 1000. From the comparison of the four com-
puted quantities log λ1, log λ2, log µ2, log λ3 we infer that the invariant
manifold Λ is normally hyperbolic.

To compute numerically approximations of the linear space Eu(x)
we can now profit of the hyperbolicity of the dynamics. Precisely, we
take a generic initial tangent vector ξ = (ξϕ1

, 0, ξI1 , 0) ∈ Es(x)⊕Eu(x)
and we define the sequence:

ξk = Dφk(x)ξ = (ξk
ϕ1

, 0, ξk
I1

, 0) ∈ Es(φk(x)) ⊕ Eu(φk(x)) .

The evolution of the components (ξk
I1

, ξk
ϕ1

) does not necessarily reach a
limit vector, but we know from hyperbolicity that the component of ξk

on the space Eu(φk(x)) expands exponentially with k, while the com-
ponent of ξk on the space Es(φk(x)) contracts exponentially with k. If
the spaces Eu(φk(x)), Es(φk(x)) do not converge to fixed directions,
as it is expected in the case x lies on an invariant torus, after some
iterations of the map the vector ξk does not converge to a fixed di-
rection but its direction converges to the unstable direction Eu(φk(x))
(the inverse map allows one to obtain Es(φk(x))). Therefore, a strat-
egy to compute the unstable space of a point on an invariant torus is
to choose an initial condition x on the torus, and then compute the
evolution of a tangent vector for a high (compared to the exponent of
the expanding direction) number k of iterations of the map, and then
choose as new initial condition the point φk(x) which has the direction
Eu(φk(x)) determined by ξk. For example, in the case of the initial
condition (ϕ1, ϕ2, I1, I2) = (π, 0, 0, 0.324), a = 0.4, ǫ = 10−4, after
k = 105 iterations we obtain:

x ∼ (π, 4.070625, 0, 0.324319) , Eu(x) ∼< (0.652, 0, 0.75749, 0) >

and xj = φj(x), Eu(xj) can be easily computed for any needed j.
For any point xj , denoting by ξj the unit vector generating the

unstable space Eu(xj), we use the linear approximation:

W loc(xj) ∼ {xj + s ξj , s ∈ [0, ρ)} ,

which is good as soon ρ is very small (we use ρ = 10−10 in our com-
putations).

Then, from the knowledge of the linear approximation of the local
manifold we compute finite pieces of the unstable manifold using:

φj(W loc
u (x−j)) ⊆ Wu(x) .
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The small error that we do in using the linear approximation for the
local manifold do not accumulate at successive iterations, because the
hyperbolic dynamics tends to reduce these errors at successive iter-
ations. Being interested also in computing a parametrization of the
manifold with respect to its arc length, we proceed in two steps. First,
we set K such that:

W1(x) = ∪K
j=1φ

j(W loc
u (x−j)) ⊆ Wu(x)

can be parametrized by the ϕ1 coordinate, so that we can order the
points in W1(x) with respect to ϕ1 (figure 5, left). This allows one to
construct a parametrization of W1(x) with respect to its arc–length,
that we denote:

s 7−→ (ϕ1(s), ϕ2(s), I1(s), I2(s)) .

Then, we want to reconstruct the unstable manifold also for an arc–
length much longer than the one obtained at the first step, so that
to include many lobes of the manifold. This can be easily done by
mapping with φK additional points of the linear approximation of the
local manifold (figure 5, right panel), but paying attention to obtain a
uniform sampling of the manifold with respect to its arc–length. This
problem was already discussed in [23] and we use a similar procedure
for the choice of the initial conditions on W loc

u (x−K). More precisely,
let us denote by xm, xm+1 the last two points of W loc

u (x−K) used to
compute W1(x), by ∆xm = d(xm, xm+1), and by ∆sm = sm+1 − sm

the difference of the arc–lengths of the points φK(xm),φK(xm+1). The
choice of the point xm+2 will be done depending on ∆sm as follows:







xm+2 = xm+1 + ∆xm if ∆s1 < ∆sm < ∆s
xm+2 = xm+1 + η∆xm if ∆sm > ∆s
xm+2 = xm+1 + 1

η
∆xm if ∆sm < ∆s1

(8)

with ∆s, ∆s1, η suitable parameters, which we set to ∆s = 10−2,
∆s1 = 10−3 and η = 0.1 in our numerical experiments.

2) Detection of stable manifolds using the Fast Lyapunov In-
dicator

We have found a new application of the FLI method which allows
one to obtain a sharp detection of the intersection of the stable and
unstable manifolds of the normally hyperbolic invariant manifolds with
any two dimensional surface of the phase–space. The principle is the
following. We sample the two dimensional surface of the phase space
with a grid of points. Then, for any point of the grid we compute
the FLI (see Appendix) up to a time T . The points of the grid which
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Figure 5: Sketch of the first (left panel) and second (right panel) step of the
algorithm of computation of the unstable manifold. The coordinates of the
plot are: (ϕ1−π, ϕ2,I1+I2). One invariant torus of the map restricted to Λ is
plotted. We recall that ϕ1 = π and I1 = 0 on Λ. (Left panel) The segments
correspond to the local linear approximation of the unstable manifold of
the points x−j, j = 1, ...K. The flow φj applied on such points allows one
to construct W1(x) (the “arc-shaped” structure), with x selected in Λ as
explained in the text. (Right panel) Some of the points x−K are plotted
(the segment in the picture). The flow φK allows one to add ordered points
to the manifold Wu(x). In order to have a uniform sampling of the manifold
with respect to its arc length the choice of the points x−K is adapted to the
evolution of the arc parameter of the manifold as explained in the text.
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will have the highest values of the FLI are those points whose orbits
approach an hyperbolic invariant manifold within the time T , because
the growth of tangent vectors is bigger near the hyperbolic manifolds.
Therefore, a short–time computation of the FLI allows one to detect a
neighborhood of a finite piece of the stable manifold (for the unstable
manifold one repeats the computation using the inverse map). As a
check on a well known example, we show in figure 6 the computation
of the FLI on a set of 900 × 900 initial conditions regularly spaced in
I, ϕ for the standard map of equations:

ϕ′ = ϕ + I , I ′ = I + a sin ϕ′ (9)

with a = 0.3, iterated up to T = 100. In such a case KAM tori have
FLI ∼ log(T ), while higher values characterize chaotic orbits and lower
values characterize regular resonant motion [12],[13],[14]. In figure 6
for any initial condition with ϕ ∈ [−0.1, 0.1], I ∈ [−0.1 : 0.1] we plot
the value of the FLI after T iterations of the map (T = 100 on the
left panel and T = 1000 on the right panel) using a color scale1 such
that the orange and yellow structures correspond to pieces of the stable
manifold. For comparison, the black points on the chaotic region of
figure 6, left represent the stable manifold obtained with the classical
method of propagation of sets (see the figure caption). The agreement
among the results of the two methods is good and in particular we
remark the sensitivity of the FLI method.

When increasing the number of iterations (right panel of figure 6)
the whole chaotic zone surrounding the origin appears clearly, but the
manifold structure is lost as well as when increasing the integration
time in the method of propagation of a set of initial conditions.

The advantage of the FLI method is that it is not sensitive to the
dimension of the phase–space, and that one does not need to know
in advance which are the normally hyperbolic invariant manifolds and
their local approximations. In fact, the method detects the stable
manifolds of all the hyperbolic structures of the system.

5 Topology of the stable and unstable man-

ifolds

In this section we compute different representations of the stable and
unstable manifolds of Λ for a > 0. When ǫ = 0 the stable and unstable
manifolds Ws, Wu of Λ are the product of the stable and unstable

1The color version of all figures can be found on the electronic version of the paper so

that light gray corresponds there to yellow and darker grey corresponds there to darker

orange.
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Figure 6: Representation of the FLI for the standard map (9). For any
initial condition with ϕ ∈ [−0.1, 0.1], I ∈ [−0.1, 0.1] we plot the value of the
FLI after T = 100 (left panel) and T = 1000 (right panel) iterations of the
map using a color scale. On the left: with the short number of T = 100
iterations we detect a finite piece of the stable manifold. The black points on
the chaotic region represent the stable manifold obtained with the classical
method of propagation of a set of 1000 initial conditions in a neighborhood
of size 10−10 of the hyperbolic fixed point (0, 0), up to 100 iterations. On
the right: For the longer integration time T = 1000 the whole chaotic zone
surrounding the origin appears clearly, but the manifold structure is lost as
well as when increasing the integration time in the method of propagation
of a set of initial conditions.
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manifolds W ∗
s , W ∗

u of the hyperbolic fixed point of the standard map:

ϕ′
1 = ϕ1 + I1 , I ′1 = I1 − a sin ϕ′

1 (10)

with the torus T
2, domain of (ϕ2, I2); Ws intersects Wu at any inter-

section point of W ∗
s , W ∗

u ; there is no diffusion in the variable I2.
To study diffusion along Λ it is convenient to consider the two

dimensional surface of the phase–space:

S = {(ϕ1, ϕ2, I1, I2) such that : ϕ1 = π , ϕ2 = 0} (11)

which we already used in figure 2 to represent the spread of orbits with
initial condition in a neighborhood of S. In the following we describe
and compute the topology of the sets:

S∗
u = ∪x∈Λ

(

S ∩ Wu(x)
)

, S∗
s = ∪x∈Λ

(

S ∩ Ws(x)
)

.

Any invariant torus of φ|Λ intersects S∗
u in only one point x, so that

S∗
u is the set where points with initial conditions in a neighborhood of

S can return near S following diffusion paths defined by the unstable
manifolds of the points of Λ. When ǫ = 0 it is:

S∗
u = {(ϕ1, ϕ2, I1, I2) such that : ϕ1 = π , (I1, ϕ1) ∈ W ∗

u , ϕ2 = 0} ,

that is a set of lines parallel to the I2 axis with accumulations. The
same holds for S∗

s . When ǫ 6= 0 understanding the topology of S∗
u, S∗

s

becomes a difficult problem, but if ǫ is very small, we can use Melnikov
like approximations.

A Melnikov–like approximation of S∗
u

The Melnikov approximations of a priori unstable systems are ob-
tained by neglecting the perturbation on the hyperbolic part of the
system, which is usually chosen to be integrable by quadratures. Here,
the unperturbed hyperbolic part of the system is represented by the
standard map (10), which is not integrable. Nevertheless, we define a
Melnikov–like approximation:

Definition. Let us consider x = (ϕ1, ϕ2, I1, I2) ∈ Λ and denote J =
I2. We define the Melnikov approximation of Wu(x) to be the unstable
manifold of x with respect to the following simplified map φ̃:

ϕ′
1 = ϕ1 + I1 ϕ′

2 = ϕ2 + J

I ′1 = I1 − a sinϕ′
1 I ′2 = I2 + ǫ

sinϕ′
2

(cos ϕ′
1 + cosϕ′

2 + c)2
. (12)

We can represent the Melnikov approximation of Wu(x) as follows:

18



Proposition. Let us consider x = (ϕ̃1, ϕ̃2, Ĩ1, Ĩ2) ∈ Λ and denote
J = Ĩ2. The Melnikov approximation of Wu(x) can be obtained by all
points z = (ϕ1, ϕ2, I1, I2) such that (ϕ1, I1) is in the unstable manifold
W ∗

u of the fixed point (π, 0) with respect to the map:

ϕ′
1 = ϕ1 + I1 , I ′1 = I1 − a sin ϕ′

1 , (13)

while ϕ2 = ϕ̃2 and:

I2 = Ĩ2−ǫ
−∞
∑

k=−1

( sin(ϕ̃2 − kJ)

(cosϕ1(k) + cos(ϕ̃2 − kJ) + c)2
− sin(ϕ̃2 − kJ)

(cos(ϕ̃2 − kJ) + c − 1)2

)

(14)
where (ϕ1(j), I1(j)) denote the orbit with initial condition (ϕ1, I1) ∈
W ∗

u with respect to the map (13).

The proof of this proposition is reported at the end of this section.
Here, we use the proposition to obtain a parametric representation of
the unstable manifold Wu in the Melnikov approximation. In figure 7
we report the plot of two parametrizations s 7→ (I2(s) − I2(0)): one is
obtained with the Melnikov approximation (14), while the other one
is obtained using the full map and the method described in section
4. The left panel shows that for ǫ = 10−6 the two parametrizations
are indeed very close one to the other. The right panel shows that for
ǫ = 10−4 the Melnikov approximation is no valid at all.

In order to appreciate the accuracy of the Melnikov approximation
we have computed for 10−8 < ǫ < 10−3 the histogram of (I2(s) −
I2(0))/ǫ for both the full map and the Melnikov approximation. We
consider as an indicator of the distance between the two distributions
the quantity:

d =

∑N
i=1(Hf (i) − HM (i))2

N
(15)

where Hf and HM correspond to the histograms of (I2(s)−I2(0))/ǫ for
respectively the full map and the Melnikov approximation and N = 100
is the number of bins. The quantity d (figure 8) remains smaller than
3 10−6 up to ǫ = 5 10−6 and suddenly increases with ǫ, although not
regularly, for higher values of the perturbing parameter. We remark
that the transition value 5 10−6 is close to the transition value from a
regular to an irregular behavior of the diffusion coefficient (figure 3).

In order to describe the topology of S∗
u using the Melnikov approx-

imation, we define the sequence sk, k ∈ N, such that ϕ1(sk) = π, so
that the Melnikov approximation of S∗

u is:

S∗
u = ∪k∈N(ϕ1(sk), 0, I1(sk), I2(sk)) ,

that is a set of lines parallel to the I2 axis with accumulations, as in
the unperturbed case. As a consequence, when the topology of finite
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pieces of S∗ is very far from lines parallel to the I2 axis, the system is
very far from the validity of the Melnikov approximation regime. We
describe below the detection of a transition in the topology of the sets
S∗

u, S∗
s which turns out to correspond to the loose of validity of the

Melnikov approximation.

A transition in the topology of S∗
s , S∗

u

We considered the map (5) with c = 2.1, a = 0.4 and we computed
S∗

s for different values of ǫ by computing the FLI on refined grids
of 1000 × 1000 regularly spaced points of S. The results are shown
in figures 9,102: the three columns of the figures represent different
zooms of S with respect to the action I1, allowing one to appreciate
the topology of S∗

s from the small values of I1 ∈ [10−11, 10−8] (left
column) up to I1 of order 0.1 (right column). Each line refers to a
different value of ǫ, so that we can appreciate the evolution of S∗

s from
ǫ = 0 up to ǫ of order 10−3. The action I2 is in the range [0, 1]. We
now comment the results. For ǫ = 0 (top line of figure 9) we recognize
that S∗

s is a set of lines parallel to the axis I1 = 0 with accumulation
towards I1 = 0, as we expected. For ǫ = 10−6 (second line of figure
9) the situation is very similar to the case with ǫ = 0: S∗

s seems to be
represented by vertical lines (of course with small deviations), as it is
expected if the Melnikov approximation is valid. For ǫ = 6 10−6 (last
line of figure 9) most of the vertical lines are still visible in the three
zooms, though with an evident distortion. However, the vertical lines
have disappeared in some regions. For ǫ = 4 10−5 (top line of figure 10)
we are close to a transition in the topology of all vertical lines, which
becomes more evident for ǫ = 6 10−5 (second line of figure 10), where
horizontal lines appear. This kind of topology cannot be explained by
the Melnikov approximation, which is therefore not valid for this value
of ǫ. For ǫ = 6 10−4 (last line of figure 10) the transition in the topology
of S∗

s is complete: the inner zoom shows only horizontal lines and also
the outer zoom reveals a topology which is completely different from
the one which is expected in the Melnikov approximation. We say that
for this value of ǫ the transition of the topology of S∗

s in the range of
I2 ∈ [0, 1] is completed.

We repeated these computations for I2 ∈ [1.4, 2.4], and we detected
the same kind of transitions in the topology of S∗

s .

Summarizing these results, we have shown that for small values of
ǫ the topology of S∗

s is consistent with the description of the stable
(unstable) manifolds obtained with the Melnikov approximation, i.e.

2To better appreciate the topology we uploaded high resolution pictures available also

at http://www.obs-nice.fr/elena/topology. In the final version of the paper the pictures

should be available on-line as supplemental material.
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Figure 7: Each panel represents two parametrizations s 7→ (I2(s)−I2(0))/ǫ:
one is obtained with Melnikov approximation, while the other one is obtained
using the full map. The left panel is for ǫ = 10−6: the two parametrizations
are close one to the other. The right panel is for ǫ = 10−4: the Melnikov
approximation is not valid.
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Figure 8: Computation of d defined in (15) as a function of ǫ. We can
appreciate that d remains smaller than 3 10−6 up to ǫ = 510−6. For higher
values of the perturbing parameter d suddenly increases with ǫ, although
not regularly.
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Figure 9: Computation of S∗
s for I1 < 10−8 (t = 60, left panels), for I1 <

10−4 (t = 80, middle panels) and I1 < 10−2 (t = 80, right panels). The
perturbation is (from top to bottom) ǫ = 0, 10−6, 6 10−6. The yellow lines
correspond to finite pieces of the stable manifold.
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Figure 10: Computation of S∗
s for I1 < 10−8 (t = 60, left panels), for

I1 < 10−4 (t = 80, middle panels) and I1 < 10−2 (t = 80, right panels). The
perturbation is (from top to bottom) ǫ = 4 10−5, 6 10−5, 6 10−4. The yellow
lines correspond to finite pieces of the stable manifold.
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it is characterized by the prevalence of vertical lines. For high values
of ǫ the topology is characterized by horizontal lines which originate at
the resonances on Λ. This happens even for values of ǫ such that the
restricted map has still al lot of invariant tori, so that the transition
in the topology of S∗

s is not related to the transition to the Chirikov
regime of φ|Λ. For intermediate values of ǫ we detect a transition
among the two topologies, in which the vertical lines are distorted up
to be completely replaced by horizontal lines.

We find useful to compare the different topologies of S∗
s with the

dependence of the diffusion coefficient on ǫ that we represented in fig-
ure 3, where we identified a law for the diffusion coefficient D ∼ ǫ2 for
ǫ < ǫ1 ∼ 6 10−6 approximately some irregular behavior up to ǫ = ǫ2,
which is about 4 10−4, and then a different regular power law for ǫ > ǫ2.
We remark that the interval (ǫ1, ǫ2) corresponds approximately to the
interval of transition from the topology characteristic of the Melnikov
approximation to the completely different topology characterized by
the horizontal structures, so that the topology of the stable (unsta-
ble) manifold and the dependence of the diffusion coefficient on ǫ are
correlated.

Proof of the Proposition

Let us denote by z(j) = (ϕ1(j), ϕ2(j), I1(j), I2(j)) the orbit of z =
z(0) = (ϕ1, ϕ2, I1, I2) and by x(j) = (ϕ̃1(j), ϕ̃2(j), Ĩ1(j), Ĩ2(j)) the
orbit of x = x̃(0) = (ϕ̃1, ϕ̃2, Ĩ1, Ĩ2) with respect to the map φ̃. The
point z is in the unstable manifold of x if and only if it is:

lim
j→−∞

‖z(j) − x(j)‖ = 0 .

Therefore, (I1(j), ϕ1(j)) tends to (0, π) as j → −∞ if and only if
(I1(0), ϕ1(0)) is in the unstable manifold Wu of the fixed point (π, 0)
with respect to the map (13). Let us now prove (14). For any j ≤ −1
it holds:

I2(j) =

j
∑

k=−1

(I2(k)−I2(k+1))+I2(0) = ǫ

j
∑

k=−1

sinϕ2(k + 1)

(cosϕ1(k + 1) + cosϕ2(k + 1) + c)2
+I2 ,

as well as:

Ĩ2(j) =

j
∑

k=−1

(Ĩ2(k)−Ĩ2(k+1))+Ĩ2(0) = ǫ

j
∑

k=−1

sin ϕ̃2(k + 1)

(cos ϕ̃2(k + 1) + c − 1)2
+Ĩ2 .

Therefore, it is:
lim

j→−∞
‖I2(j) − Ĩ2(j)‖ = 0

if and only if it holds (14).
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6 Spread of the unstable manifolds and

diffusion

We computed the parametrization of Wu(x) using the first method
reported in section 4 for quite a long arc–length for different values of
0 < ǫ < ǫc (a = 0.4, c = 2.1) and for different types of orbits of φ|Λ,
KAM tori, regular resonant librations and resonant chaotic motions.

In figures 11, 12, 13 (top right panels) it appears clearly that I2(s)
undergoes large fluctuations for all the kind of different dynamics. The
unstable manifolds, which are contained in a plane I2 = constant for
ǫ = 0, are unrolled along the I2 direction for ǫ > 0, thus supporting
diffusion in the neighborhood of Λ. To appreciate that the manifolds
are unrolled in the phase–space we represent them (bottom right pan-
els) in the three–dimensional space ϕ1, I1, I2. The reference orbits of
the restricted map are instead represented in the bottom left panels.
To measure the spread of the manifolds in the I2 direction we also plot
on the bottom left panels the vertical segments which correspond to
the representation on the plane (I2, ϕ2) of the points of Wu(x) with
|ϕ1 − π| ≤ 0.5 (reducing the tolerance on ϕ1 decreases the number of
points on the figure, but does not decrease the amplitude of the seg-
ment). For the case of the KAM torus (figure 11) for ǫ = 10−6 this
segment is definitely bigger than the variation of I2 along the torus.
For the case of the resonant regular libration and the chaotic orbit
for ǫ = 10−4 (figures 12, 13) the amplitudes of respectively 2 10−3,
1.5 10−3 of these segments are representative of the spread of Wu(x)
along the I2 direction.

We remark that these conclusions are obtained for a value of ǫ for
which the Melnikov approximation is valid (ǫ = 10−6) as well as for a
value for which the Melnikov approximation is not accurate, but the
dynamics of φ|Λ is still bounded by many invariant tori.

From figures 11, 12, 13, we observed that the unstable manifolds are
characterized by many oscillations in the I2 direction which remember
us the oscillation that the actions do in diffusing along the resonances.
Therefore, to remove the effect of the oscillations and to look for a
systematic spread of the manifolds in the I2 direction we compute the
quadratic averages of the quantity I2(s) − I2(0) with respect to many
close initial points x. Precisely, in figure 14 we represented:

d(s) =
1

N

N
∑

j=1

(

Ij
2(s) − Ij

2(0)
)2

(16)

versus s for ǫ = 10−5 (N = 200, the initial conditions are I1 = 0,
ϕ1 = π, 0.6 < I2 < 1, ϕ2 = 0). The figures remark a systematic
growth of the quadratic spread of the manifolds. The large oscillations
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Figure 11: Computation of the unstable manifold for an initial condition
(ϕ1, ϕ2, I1, I2) = (π, 0, 0, 0.324) on a KAM torus of φ|Λ for ǫ = 10−6. The
initial conditions for the computation of the manifold after k = 105 iterations
are x = (π, 4.406484, 0, 0.324001). On the top: Representation of I1(s) (on
the left) and I2(s) (on the right). On the bottom left: The orbit of φ|Λ

is on a KAM torus. The vertical segment corresponds to the representation
on the plane (I2 − I2(0), ϕ2) of the points of Wu(x) with |ϕ1 − π| ≤ 0.5
(reducing the tolerance on ϕ1 decreases the number of points on the figure,
but does not decrease the amplitude of the segment). The fluctuations of
Wu(x) along I2 are definitely bigger than the variation of I2 along the torus.
On the bottom right: Representation of the unstable manifold of x in
the three dimensional space ϕ1, I2 − I2(0),I1.26
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Figure 12: Computation of the unstable manifold for an initial condition
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ǫ = 10−4. The initial conditions for the computation of the manifold after
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The orbit of φ|Λ is on a regular resonant libration. The small vertical seg-
ment corresponds to the representation on the plane (I2, ϕ2) of the points
of Wu(x) with |ϕ1 − π| ≤ 0.5 (reducing the tolerance on ϕ1 decreases the
number of points on the figure, but does not decrease the amplitude of the
segment). The amplitude of 2 10−3 of this segment in the direction of I2 is
representative of the spread of Wu(x) along this direction. On the bottom
right: Representation of unstable manifold of x in the three dimensional
space ϕ1, I2,I1.

27



-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  500  1000  1500  2000  2500  3000  3500  4000

I1
(s

)

s

 1.2544

 1.2546

 1.2548

 1.255

 1.2552

 1.2554

 1.2556

 1.2558

 1.256

 0  500  1000  1500  2000  2500  3000  3500  4000

I2
(s

)

s

 1.24

 1.245

 1.25

 1.255

 1.26

 1.265

 1.27

 1.275

 0  1  2  3  4  5  6  7

I2

ϕ2

 0
 1

 2
 3

 4
 5

 6  1.2546
 1.2548

 1.255
 1.2552

 1.2554
 1.2556

 1.2558
 1.256

-1.5
-1

-0.5
 0

 0.5
 1

 1.5

I1

ϕ1

I2

I1

Figure 13: Computation of the unstable manifold for an initial condi-
tion (ϕ1, ϕ2, I1, I2) = (π, 0, 0, 1.256) on a chaotic resonant orbit of φ|Λ for
ǫ = 10−4. The initial conditions for the computation of the manifold after
k = 105 iterations are x = (π, 6.213, 0, 1.254). On the top: Representation
of I1(s) (on the left) and I2(s) (on the right). On the bottom left: The
orbit of φ|Λ is chaotic. The small vertical segment corresponds to the rep-
resentation on the plane (I2, ϕ2) of the points of Wu(x) with |ϕ1 − π| ≤ 0.5
(reducing the tolerance on ϕ1 decreases the number of points on the figure,
but does not decrease the amplitude of the segment). The amplitude of
1.5 10−3 of this segment in the direction of I2 is representative of the spread
of Wu(x) along this direction. On the bottom right: Representation of
unstable manifold of x in the three dimensional space ϕ1, I2,I1.28



are due to the excursions of I2 with respect to ϕ1. We can kill them
both computing a running average on eq. (16), or taking the values of
I2(s) with ϕ1(s) on a suited small interval as shown in figure 14, left
panel. Finally, to provide a quantitative measure of the link between
diffusion of orbits and geometric spread of the unstable manifolds we
define a “geometrical” diffusion coefficient of the unstable manifolds.
At this purpose, if we consider the restriction of the map φ to the un-
stable manifold, the arc–length s grows nearly exponentially with time
when the manifold passes near the hyperbolic invariant manifold. By
denoting with λ the mean value of the Lyapunov exponent computed
over a time of t = 109 iterations (for a set of N = 20 orbits with initial
conditions: −10−5 < I1 < 10−5, ϕ1 = π, 0.3 < I2 < 3, ϕ2 = 0), we
define the “geometrical” diffusion coefficient µ as the limit slope of the
quantity:

G(t) =
λd(s(t))

ln(s(t)/s(0))
, (17)

where we defined s(t) = s(0) exp(λ t). For ǫ = 10−5 we can infer from
(figure 14,right) a value of µ = 3.5 10−11. We have repeated the com-
putation of µ for different values of ǫ up to ǫ = 10−3, i.e. close to the
thresholds for diffusion on Λ but still below this thresholds. We report
in figure 15 the comparison with the diffusion coefficient computed as
reported in figure 3. With respect to figure 3 we have added the dif-
fusion coefficient computed on a set of N = 100 initial conditions near
I2 = 0.8, i.e. in the same domain used for computing d(s). The ge-
ometrical diffusion coefficient shows a remarkable agreement with the
spread of orbits in the I2 direction quantified by D. Although we are
aware that this result is based on the detection of finite pieces of the
unstable manifolds, the agreement with the diffusion coefficient on in-
dividual orbits confirms that the spread of the manifolds is significant
to explain the diffusion that we detected numerically in section 2.

7 Conclusions

In this paper we have numerically detected the topology of the hyper-
bolic manifolds supporting diffusion in the a priori unstable dynamical
systems using also new numerical methods. We find that the topology
is correlated to the diffusion properties of the system. Precisely, we
measured a spread of the asymptotic manifolds which is significant to
explain diffusion. We also have shown that the stable and unstable
manifolds have a topological transition when the Melnikov approxi-
mation looses its accuracy. This transition is correlated to a change
of the law of dependence of the diffusion coefficient on the perturbing
parameter. This suggests that the Melnikov approximation is not only
a technical tool which allows one to compute accurate approximations
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Figure 14: On the left: plot of d(s) versus s for ǫ = 10−5 (N = 200, the
initial conditions are I1 = 0, ϕ1 = π, 0.6 < I2 < 1, ϕ2 = 0). The running
average over a length ∆s = 200 as well as the quantity d(s) computed
selecting the data with |ϕ1 − π| ≤ 0.5 are also plotted. On the right: plot
of the quantity G(t) defined in the text for the three data sets of left panel.

of the manifolds at small values of the perturbing parameters, but is
related to a dynamical regime. The definition of a ’geometrical’ dif-
fusion coefficient and its comparison with the diffusion coefficient of
orbits confirms the correlation among topology and diffusion.

8 Appendix: the Fast Lyapunov Indicator

A precise numerical detection of the dynamical character of an orbit is
possible with the Fast Lyapunov Indicator whose definition is related
to the Lyapunov exponent theory. In the numerical computations of
the Lyapunov Characteristics Indicator (LCI hereafter) the attention
is focused on the length of time necessary to get a reliable value of
its limit, while very little importance is given to the first part of the
computation. Actually, this part is usually considered as a kind of
transitory regime depending, among other factors, on the choice of an
initial vector of the tangent manifold.

In 1997, Froeschlé et al. [11] have remarked that the intermediate
value of the largest LCI (which was called fast Lyapunov Indicator:
FLI hereafter), taken at equal times for chaotic, even weakly chaotic,
and ordered motions, allows one to distinguish between them. It turns
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out that the FLI allows also to distinguish among ordered motions of
different origins, like resonant and non resonant motions [14]. This is
not possible with the LCI, which tends to zero when t goes to infinity
in both cases.

Given a map φ from R
n to R

n, an initial condition x(0) ∈ R
n, and

an initial vector v(0) ∈ R
n of norm one, let us define the FLI function

FLI(x(0), v(0), T ), T > 0, as:

FLI(x(0), v(0), T ) = sup
0<t≤T

log ||v(t)|| , (18)

where v(t) is given by the system:

{

x(t + 1) = φ(x(t))

v(t + 1) = ∂φ
∂x

(x(t)) v(t) .
(19)

The definition trivially extends to continuous flows. In the specific case
of quasi-integrable Hamiltonian systems:

Hǫ(I, ϕ) = h(I) + ǫf(I, ϕ) , (20)

for any initial condition (I(0), ϕ(0)) and any initial tangent vector
(vI(0), vϕ(0)), the FLI at time t is:

log ‖(vI(t), vϕ(t))‖ . (21)

In order to kill non significant fluctuations of (21), in formula (18)
we have considered the supremum of the logarithm of the norm of
the tangent vector. A running average could also have been used.
Actually, as far as the mathematical development is concerned, we
drop these averaging procedures, which however are useful in numerical
computations. For ǫ = 0 it is evidently:

v0
I (t) = vI(0) , v0

ϕ(t) = vϕ(0) +
∂2h

∂2I
(I(0))vI(0)t .

If ǫ is small we can estimate the evolution of ||v|| with Hamiltonian
perturbation theory. Following [14], if the initial condition is on a
KAM torus then the norm ||vǫ(t)|| satisfies:

||vǫ(t)|| =

∥

∥

∥

∥

∂2h

∂2I
(I(0))vI(0)

∥

∥

∥

∥

t + O(ǫαt) + O(1) , (22)

with some α > 0. As a consequence, the FLI has approximately the
value of the unperturbed case on all KAM tori. Instead if the initial
condition is on a regular resonant motion then it is [14]:

||vǫ(t)|| = ‖CΛΠΛortvI(0)‖ t+O(ǫβt)+tO(ρ2)+O(
√

ǫt)+O(
1√
ǫ
) (23)
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with some β > 0, Λort being the linear space orthogonal to an integer
lattice Λ (the integer lattice Λ ⊆ Zn defines the resonance, see [14] for
details), CΛ is a linear operator depending on the resonant lattice Λ
and on the initial action I(0), ΠΛort denotes the projection over the
lattice Λort.

It is important to remark that the FLI on regular resonant motions
is different at order O(1) from the unperturbed case on regular reso-
nant motions. In fact, the linear operator CΛΠΛort is different from
the Hessian matrix of h at order O(1), i.e. CΛΠΛort does not approach
∂2h
∂I2 as ǫ approaches to zero. In this way, we detect the presence of
the resonances because the value of the FLI is different from the uni-
form value assumed on the KAM tori. Finally, for initial conditions on
chaotic resonant motions the FLI is higher (since the tangent vectors
growth exponentially with time) than the value characterizing KAM
tori. As a consequence the resonance structure of the phase space can
be detected computing the FLI with the same v(0) and the same time
interval t on a grid of regularly spaced initial conditions. The repre-
sentation of the set of resonances of a quasi–integrable Hamiltonian
system can be found in [12].
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