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Abstract

We provide the numerical detection of the topological mechanism
of Arnold diffusion along resonances of quasi–integrable systems in
the regime of validity of the Nekhoroshev and KAM theorems. This
result is obtained through an investigation of the stable and unstable
manifolds of the hyperbolic manifolds of the phase space which are
related to the resonances: first, we explain the qualitative features of
these manifolds, which appear to be characterized by peculiar ’flower–
like’ structures; then, we detect different transitions in the topology
which are correlated to the changes of the slopes characterizing the
dependence of the diffusion coefficient on the perturbing parameter in
a log-log scale. We measure a spread of the manifolds, asymptotic to
the resonant ones, which is significant to explain diffusion. We also
obtain an indirect numerical verification of the exponential decay of
the normal form, as predicted by the Nekhoroshev theorem. Precisely,
we measured an exponential dependence of the size of the lobes of
the asymptotic manifolds through many orders of magnitude of the
perturbing parameter.
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1 Introduction

Diffusion in generic quasi–integrable systems at small values of the
perturbing parameters has been a very studied subject since the pi-
oneering work of Arnold [1]. The proof of the existence of diffusion
of orbits for generic systems satisfying the hypotheses of both KAM
and Nekhoroshev theorems is still lacking, and consequently there is
not full understanding of the mechanisms which possibly produce dif-
fusion. Since [1], many efforts have been done to relate diffusion in
phase space to the topology of the so called stable and unstable man-
ifolds of the normally hyperbolic invariant manifolds of the system.
This has been done for the so called a priori unstable systems [4], [5],
[6], [25],[26], which we studied in [2].

For quasi–integrable systems the situation is more complicated than
for the a priori unstable ones for two reasons: first, the quantities re-
lated to diffusion decrease exponentially with the perturbing parameter
ǫ, so that it is very difficult to measure them numerically; second, the
hyperbolic structures are generated by the perturbation, and hyper-
bolicity disappears when ǫ = 0. Therefore, at any small ǫ, there is the
problem of identifying the normally hyperbolic invariant manifolds of
the system and to describe the properties of their asymptotic mani-
folds, which are clearly related to resonances.

The problem we face is the following. In previous papers [18],[19],[20]
we have measured diffusion in quasi–integrable systems identified as
Arnold diffusion. Using the Fast Lyapunov Indicator method (FLI
hereafter, see [11],[12] and the Appendix), we have first obtained very
precise computations of the so–called Arnold web of these systems [13],
and then [18],[19] we have detected sets of orbits diffusing in the Arnold
web with a diffusion coefficient decreasing faster than a power law with
respect to a perturbing parameter. As a consequence, we identified the
phenomenon as Arnold diffusion. In this paper we investigate numeri-
cally the topological mechanism which generates this kind of diffusion,
and we compare it with the so–called transition chain mechanism.

To bypass part of the technical problems related to this study we
will use as a model problem a quasi–integrable system for which a
normally hyperbolic invariant manifold Λ of a given resonance can be
explicitly identified at any small ǫ 6= 0. First, we study the diffusion
properties of the system near this invariant manifold, then we numer-
ically compare the results with those related to generic resonances.

To do this, we use the numerical methods introduced in [2] to rep-
resent the stable and unstable manifolds of 2–dimensional hyperbolic
invariant manifolds of the system. We are able to provide a satis-
factory global description of the topology of the stable and unstable
manifolds. For any fixed value of the perturbing parameter, we find
that the topology of the stable (unstable) manifolds present peculiar
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flower–like structures which we explain by using a model of weakly in-
teracting resonances. By changing the value of the perturbing param-
eter, we detect different transitions in the topology which are related
to the local predominant resonances. We also measure an exponen-
tial decreasing of the size of the lobes of the homoclinic tangle related
to the asymptotic manifolds in the single resonances through many

orders of magnitude. This measure provides an indirect numerical ver-
ification of the exponential decay of the normal form, as predicted by
the Nekhoroshev theorem for maps ([10], [22], [23]).

The comparison among the topology of the asymptotic manifolds
with the diffusion properties in the resonance shows that they are cor-
related: in section 3 we will show that, by changing ǫ, the topology
has transitions which approximately correspond to the changes of the
slopes of the diffusion coefficient versus ǫ in the log/log representation;
in section 5 we will show that the amplitude of the lobes of the homo-
clinic tangle decreases exponentially with 1/ǫ1/3, and we attribute this
scaling to the exponentially decrease of the remainder of the resonant
normal form, as in the case of the validity of the Nekhoroshev theorem.
These facts provide strong indications of the correlations among the
exponentially small remainder of the resonant normal forms around Λ,
the topology of the stable/unstable manifolds of Λ and the diffusion
coefficient along Λ. However, it will be in section 6 that we will show
how the stable/unstable manifolds are directly related to the diffusion
along Λ. Precisely, we will explain this mechanism by showing that the
unstable manifolds of the points x ∈ Λ are unrolled along the direction
of diffusion in the action space, with possible many large oscillations
in this direction, but with an average systematic drift. In fact, the
oscillations of the unstable manifolds along the direction of diffusion
in the action space are similar to the large oscillations that the single
orbits do during their Arnold diffusion along Λ, and also in that case
we needed to perform averages and filters on the data to show the
existence of a very slow diffusion. The existence of a systematic drift
of the unstable manifold in the direction of diffusion shows how the
diffusion along Λ takes place: given a generic point x in the invari-
ant manifold, the dynamics maps the points in a neighborhood U of
x along the unstable manifold of x, and because of the spread of this
unstable manifold, the set U spreads in the phase space and some of
its points return near the invariant manifold ’far away’ from the orbit
of x. This is the mechanism that we detect and that is behind the
diffusion phenomena that we detected in the papers [18], [19],[20].

As for the a priori unstable case that we studied in [2], we do not
directly detect transitions of orbits from stable to unstable manifolds,
but this is likely due to the fact that the probability of finding an
orbit which passes near selected number of heteroclinic points is very
small. The existence of heteroclinic transverse intersections remains a
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possible way to prove the spread of the asymptotic manifolds in certain
situations.

The paper is organized as follows: in section 2 we define our model
problem of quasi–integrable system, and we review its dynamical prop-
erties; in section 3 we report the computation of the global structure
of the hyperbolic manifolds of the system and we detect transitions
in their topology; we explain in section 4 the peculiar topology based
on flower–like structures in terms of weakly interacting resonances;
in section 5 we detect the exponential decreasing of the lobes of the
homoclinic tangle related to the asymptotic manifolds in the single
resonances; we report in section 6 the detection of the spread of these
manifolds in the action space which is significant to explain Arnold
diffusion. We review in the Appendix the Fast Lyapunov Indicator
method and its use in the detection of hyperbolic manifolds.

2 A model of quasi–integrable system and

its dynamics near resonant invariant mani-

folds

The notion of normally hyperbolic invariant manifolds was introduced
in [3], and we recalled it in [2]. While in the a priori unstable systems
there exists naturally a normally hyperbolic invariant manifold, this
is not the case for quasi–integrable systems. Of course, hyperbolic
manifolds are related to the resonances of the system, but it can be
difficult to identify them. To be definite, in this paper we refer to the
discrete system used in [19], [20], [21], which is defined by the map:

φ : T
4 −→ T

4

(ϕ1, ϕ2, I1, I2) 7−→ (ϕ′
1, ϕ

′
2, I

′
1, I

′
2) (1)

such that:

ϕ′
1 = ϕ1 + I1
ϕ′

2 = ϕ2 + I2

I ′1 = I1 − ǫ
sinϕ′

1

(cosϕ′
1 + cosϕ′

2 + c)2

I ′2 = I2 − ǫ
sinϕ′

2

(cosϕ′
1 + cosϕ′

2 + c)2
, (2)

where ǫ and c > 2 are parameters, and the symplectic structure on
T

4 is dϕ1 ∧ dI1 + dϕ2 ∧ dI2. The map φ has the following invariant
manifold:

Λ = {(I1, ϕ1, I2, ϕ2) : such that (I1, ϕ1) = (0, π)} (3)

4



for any value of the parameters. When ǫ = 0 the map is integrable
and Λ is not normally hyperbolic. For ǫ 6= 0 the map is quasi–
integrable, the manifold Λ is still invariant (as well as the manifold
(I2, ϕ2) = (0, π)), but one does not immediately recognize if it is nor-
mally hyperbolic, so that we will look for a numerical indication of this
fact in section 6.

Let us remark that, by normal form theory, it is possible to show
that if ǫ is suitably small then an open subset of Λ is normally hyper-
bolic. In fact, at any point of Λ the angle ϕ1 is resonant, and outside
the crossing with the other main resonances it is possible to conjugate
with a near to the identity canonical transformation the map φ to its
normal form φ′ which is a perturbation (of higher orders with respect
to ǫ) of the map:

ϕ′
1 = ϕ1 + I1
ϕ′

2 = ϕ2 + I2
I ′1 = I1 − ǫu(ϕ′

1)
I ′2 = I2 (4)

where:

u(ϕ1) =
∂

∂ϕ1

1

2π

∫ 2π

0

1

cosϕ1 + cosϕ2 + c
dϕ2 .

The normal form φ′ can be obtained with a single step of perturbation
theory (such as the ones used in [10]), and moreover the canonical
conjugation, where it is defined, has Λ as fixed invariant manifold.
The map (4) is decoupled in the product of a constant twist for the
variables ϕ2, I2 and a two dimensional generalized standard map for
the variables ϕ1, I1. The hyperbolic fixed points of this generalized
map (ϕ1, I1) 7→ (ϕ′

1, I
′
1) define hyperbolic invariant manifolds for (4),

which remain hyperbolic by adding suitably small perturbations.
It is also possible to go beyond the normal forms constructed by one

step of perturbation theory, up to a remainder which is exponentially
small with respect to an inverse power of the perturbing parameter,
as it is done in the proof of the Nekhoroshev theorem for maps (see
[10]). To be more precise, using the normal forms constructed in [10]
adapted to the present case, we obtain the following:

Proposition. There exist constants K = O(1/ǫ1/16), α1 = O(ǫ7/24),
α2 = O(ǫ11/48) and a near to the identity canonical transformation C
defined on the set B × T

2, where:

B = {(I1, I2) ∈ T
2 : |I1| ≤ α1 and |k1I1 + k2I2 + 2πk0| ≥ ‖(k0, k1, k2)‖α2

∀ k = (k0, k1, k2) ∈ Z
3 with ‖k‖ ≤ K and k2 6= 0} ,(5)

which conjugates φ to a map generated by the function

W ′(I ′, ϕ) = I ′ · ϕ+
I ′

2
1

2
+
I ′

2
2

2
+ ǫu(ϕ1, I

′) + ǫR(I ′, ϕ) , (6)
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where u is a perturbation of higher order with respect to ǫ of

u0(ϕ1) =
1

2π

∫ 2π

0

1

cosϕ1 + cosϕ2 + c
dϕ2 ,

and R is exponentially small with respect to K.

Let us remark that we do not claim that the exponent 1/16 related
to the exponentially small remainder is optimal (see, for example, the
introduction to paper [10]). In section 5 we will use the normal form (6)
to explain some properties of the topology of the stable and unstable
manifolds of the normally hyperbolic invariant manifold, by obtaining
also an indirect numerical verification of the exponential decay of the
remainder R with ǫ.

The invariant manifold Λ is in the resonance: I1 = 0. For this
reason this resonance is a special one. However, we did not find in
our works a difference in the diffusion properties of this resonance
and of the other ones defined by: (k1, k2, k3) · (I1, I2, 2π) = 0, with
k1, k2, k3 ∈ Z. In fact, using the normal forms, one proves that the
single resonances related to any (k1, k2, k3) contain normally hyperbolic
invariant manifolds, eventually interrupted by the double resonances.
The advantage of the resonance I1 = 0 is that the normally hyperbolic
invariant manifold has the same expression for any ǫ and that it is
diffeomorphic to the torus T

2. For these reasons, in this paper we study
predominantly this resonant manifold, but we study also a generic one.
Precisely, to compare with the results of the papers [19], [20] we study
also the hyperbolic manifolds of the resonance 2I2 = I1.

As we already remarked in paper [2], the dynamics of φ restricted
to Λ, which is represented by the 2–dimensional standard map:

ϕ′
2 = ϕ2 + I2 , I ′2 = I2 − ǫ

sinϕ′
2

(cosϕ′
2 + c− 1)2

, (7)

has no diffusion is ǫ is suitably small. We found (see figure 1) that,
approximately for ǫ < ǫc ∼ 0.002, the map has invariant KAM tori
which bound the possibility of chaotic diffusion, which instead can
appear for higher values of ǫ. Therefore, for 0 < ǫ ≤ ǫc there is not
diffusion on Λ but possibly there is diffusion in a neighborhood of Λ for
ǫ 6= 0, which we study numerically by using the techniques introduced
in [13], [18], [19], [20], [21]. Specifically:

i) individual orbits in a neighborhood of the invariant manifold
indeed spread in the I2 direction, as it is shown in figure 2;

ii) we measured the diffusion coefficient for c = 2.1 and for different
values of ǫ. Precisely, we computed the average evolution of the mean
squared distance of a set of N orbits from their initial conditions. This
quantity turns out to grow linearly with time, the slope giving the
diffusion coefficient D. The initial conditions for N = 100 orbits are:
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Figure 1: Phase portrait of the restricted map (7) for ǫ = 0.002, 0.004 and
c = 2.1. On the right panel we see that the region of the phase space with
I2 ∈ [0.5, 1] is characterized by the overlapping of resonances.

I2 = 0.324, I1 ∈ [−10−5, 10−5], ϕ1 = π, ϕ2 = 0. According to the
results of [18],[19], we found (figure 3) that the diffusion coefficient
decreases faster (possibly exponentially) than a power law.

These experimental facts cannot be explained by means of existing
rigorous results. Up to now, there is not available any rigorous proof
about the existence of diffusion of individual orbits in general cases,
even if a quite general result has been announced by Mather [24] in
2003. However, at suitably small ǫ the Nekhoroshev theorem for sym-
plectic maps (see for example [10]) implies an exponential upper bound
to the diffusion of orbits, in agreement with the diffusion curve shown
in figure 3. We also remark that there does not exist any rigorous re-
sult that explains the statistical properties (as the one shown in figure
3, see also [18],[19]) for this kind of diffusion.

3 The global topology of stable and unsta-

ble manifolds in a quasi–integrable system

In all our papers [18],[19],[20] we found convenient to study diffusion
through two dimensional sections of the phase space, such as:

S = {(I1, ϕ1, I2, ϕ2) such that : ϕ1 = π , ϕ2 = 0} . (8)

In figure 2 we represented the spread of orbits with initial conditions
in a neighborhood of S. In this section we compute the intersection
among the stable and unstable manifolds of Λ with the section S. We
first need to recall some notations (already used in paper [2]). For any
x ∈ Λ we denote by W loc

s (x),W loc
u (x) (see [3]) the smooth manifolds
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Figure 2: Representation of the FLI for the map (2) with c = 2.1
and ǫ = 910−5. For any initial condition with I1 ∈ [−0.005, 0.005],
I2 = [0.3235, 0.3245] we plot the value of the FLI after 5000 iterations of the
map using a color scale. The black points on the FLI figure represent the
points of the orbits of N = 100 initial conditions with I1 ∈ [−10−5, 10−5],
I2 = 0, 324, ϕ1 = π, ϕ2 = 0 which re-enter in the neighborhood of the
surface S = {(I1, ϕ1, I2, ϕ2) such that : ϕ1 = π , ϕ2 = 0} defined by
|ϕ1 − π|+ |ϕ2| ≤ 0.05. In the left panel the orbits are computed up to 2 107

iterations, in the right panel up to 109 iterations.

such that: x ∈ W loc
s (x),W loc

u (x), TxW
loc
s (x) = Es(x), TxW

loc
u (x) =

Eu(x) and for any n ≥ 0 it is:

y ∈W loc
s (x) ⇒ d(φn(x), φn(y)) ≤ C(µ1 + c)nd(x, y)

y ∈W loc
u (x) ⇒ d(φ−n(x), φ−n(y)) ≤ C(λ3 − c)−nd(x, y)

with C, c > 0 suitable constants (c suitably small) and d(·, ·) denotes a
distance onM . The stable and unstable manifoldsWs(x),Wu(x) of the
point x are then obtained by iterating the local manifoldsW loc

s (x),W loc
u (x)

with φ−1 and φ respectively.
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Figure 3: Variation of the diffusion coefficient as a function of ǫ, for c = 2.1.
Data are well fitted by three different power law D(ǫ) ≃ ǫm with respectively
m1 = 7.3, m2 = 10.5 and m3 = 24.1 in agreement with Nekhoroshev’s
theorem.

The local stable and unstable manifolds of Λ are defined by:

W loc
s = ∪x∈ΛW

loc
s (x) , W loc

u = ∪x∈ΛW
loc
u (x) , (9)

while the stable and unstable manifolds of Λ are:

Ws = ∪x∈ΛWs(x) , Wu = ∪x∈ΛWu(x) , (10)

We denote by:

S∗
u = ∪x∈Λ

(

S ∩Wu(x)
)

, S∗
s = ∪x∈Λ

(

S ∩Ws(x)
)

.

the intersection among S and the stable and unstable manifolds of Λ.
Let us remark that any invariant torus of φ|Λ intersects S∗

u in only one
point x, so that the set S∗

u represents the set where points with initial
conditions in a neighborhood of S can return near S following diffusion
paths defined by the unstable manifolds of points of Λ.

Transitions in the topology of S∗
u, S

∗
s
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As we did in [2] we use the FLI method to study the topology
of the sets S∗

u, S
∗
s . The first set of numerical experiments concerns

the map (2) with c = 2.1 and different values of ǫ from ǫ = 6 10−6

up to ǫ = 4 10−4. The results of the computations are reported in
figure 4.1 Precisely, for each value of ǫ we computed the FLI on a grid
of 1000 × 1000 points of S regularly spaced in −10−4 < I1 < 10−4,
while the action I2 is in suitable neighborhoods of I2 = 0.324. The
FLI is computed up to T = 5000 iterations (top panels of figure 4),
T = 2500 (bottom left panel of figure 4) and T = 600 (bottom right
panel of figure 4). We recall that the points of the grid which have the
highest values of the FLI are those points whose orbit approaches an
hyperbolic invariant manifold within the time T , because the growth of
tangent vectors is bigger near the hyperbolic manifolds. Therefore, a
short–time computation of the FLI allows one to detect a neighborhood
of a finite piece of the stable manifold (for the unstable manifold one
repeats the computation using the inverse map). The details concerned
with this method of computation of the stable and unstable manifolds
are discussed in detail in paper [2].

In all the pictures the yellow line at I1 = 0 represents the normally
hyperbolic invariant manifold Λ. Around Λ we observe also the pres-
ence of peculiar structures related to the dominant resonances, that
we will explain in section 4. Here, we remark that these structures
are made by different petals centered at crossings of Λ with other res-
onances. Moreover, we observe that at different values of ǫ the domi-
nant structures which characterize the topology of the stable manifolds
are different, according to the local dominant resonances. In fact, for
ǫ = 6 10−6, 10−5 (top panels of figure 4) we detect two independent sets
of petals centered around two resonances which are located just outside
the upper side and the lower side of the picture. For ǫ = 4 10−5 (figure
4, bottom left panel) the two structures have increased their size with
respect to the previous cases, so that their petals overlap in the central
part of the picture. For ǫ = 4 10−4, one of these structures dominates
now the topology of this portion of the action plane, and the other
resonances (the horizontal lines) produce only slight modification of
the main petals.

These transitions in the topology of the stable manifold are clearly
related to the local dominant resonances, which are different at dif-
ferent values of ǫ. This fact can be related to the construction of the
resonant normal forms in the proof of the Nekhoroshev theorem. In

1The color version of all figures can be found on the electronic version of the paper so

that light gray corresponds there to yellow and darker grey corresponds there to red–violet.

To better appreciate the topology we uploaded high resolution pictures available also

at http://www.obs-nice.fr/elena/diffusion. In the final version of the paper the pictures

should be available on-line as supplemental material.
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fact, in the proof of the Nekhoroshev theorem, different domains of
the action space are considered related to different resonances accord-
ing to the value of a parameter K, which is of the order of an inverse
power of ǫ. We also observe that these transitions in the topology of
the stable manifold are correlated to the changes of the slopes char-
acterizing the dependence of the diffusion coefficient on ǫ in a log-log
scale, shown in figure 3. In fact, ǫ = 6 10−6, 10−5 are in the interval
characterized by D(ǫ) ∼ ǫm3, ǫ = 4 10−5 is in the interval character-
ized by D(ǫ) ∼ ǫm2 and ǫ = 4 10−4 is in the interval characterized
by D(ǫ) ∼ ǫm1. Therefore the intervals characterized by a given slope
correspond approximately to the different resonances dominating the
topology of the stable manifold.

A second set of numerical experiments concerns instead the map
(2) with c = 4 and a neighborhood of the resonance 2I1 = I2. The
reason to study this case is twofold: on the one hand this resonance is
generic, in the sense that it is not trivially related to a normally hy-
perbolic invariant manifold such as the resonance I1 = 0; on the other
hand it is the resonance which we studied in the papers [19],[20]. In
figure 5 we report the computation of the FLI for values of ǫ ranging
from 0.04 up to 0.4. The coordinates of the pictures are x = I2 − I1/2,
y = I1+2I2, so that the resonance is almost vertical. In all the pictures
we appreciate the presence of an hyperbolic structure which plays the
role of the normally hyperbolic invariant manifold Λ. We will refer
to this structure as to the hyperbolic set of the resonance. Around
this hyperbolic set we observe also the presence of the petals struc-
tures (which will be explained in section 4) related to the dominant
resonances. As for the previous case, at different values of ǫ the dom-
inant petals structures which characterize the topology of the stable
manifold are different, according to the local dominant resonances. In
fact, for ǫ = 0.04 (top left panel of figure 5) we detect only one petals
structure centered around a resonance which cross the hyperbolic in-
variant set in the middle of the figure. For ǫ = 0.1 (top right panel
of figure 5) in the same region of the phase–space we observe also the
petals of structures which do not belong to the central one, but are
centered around resonances which are outside the upper and the lower
sides of the picture. For ǫ = 0.22 (bottom left panel of figure 5) the
upper and lower structures have become dominant with respect to the
central one, which is no more evident in this picture. For ǫ = 0.4 the
upper and lower structures are overlapping in correspondence of the
central resonance. It is clear that these transitions in the topology of
the stable manifold are related to the local dominant resonances, which
are different at different values of ǫ. We also observe that these transi-
tions in the topology of the stable manifold are related to the changes
of the slopes characterizing the dependence of the diffusion coefficient
on ǫ, in a log-log scale (see figure 6 of [20]). In fact, ǫ = 0.04 is in the
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interval characterized by D(ǫ) ∼ ǫm3, with m3 ∼ 13.3; ǫ = 0.1 is in the
transition between the law D(ǫ) ∼ ǫm3 and the law D(ǫ) ∼ ǫm2, with
m2 ∼ 8.5; ǫ = 0.22 is in the interval characterized by D(ǫ) ∼ ǫm2 and
ǫ = 0.4 is in the interval characterized by D(ǫ) ∼ ǫm1, with m1 = 4.2.
Therefore the intervals characterized by a given slope correspond ap-
proximately to the different resonances dominating the topology of the
stable manifold.

4 Topology of the asymptotic manifolds

in the case of two weakly interacting res-

onances

We found in the previous section a topology very different from the
one detected for the a priori unstable cases. We find that stable and
unstable manifolds in quasi–integrable systems are characterized by
the presence at any scale of peculiar structures, made by many petals.
We will call these structures flower–like. We explain them as due to
the interaction among the resonances. In this section we show that a
model with two weakly interacting resonances of the same amplitude
can explain the presence of the flower–like structures. Precisely, we
consider the Hamiltonian system with Hamilton function:

H(I1, I2, ϕ1, ϕ2) =
I2
1

2
+
I2
2

2
−a1 cos(ϕ1)−a2 cos(ϕ2)−ǫ cos(ϕ1) cos(ϕ2) .

(11)
When a1, a2 are of order 1 this is an a priori unstable system, but
instability is present in both degrees of freedom. The interaction among
the two resonances is represented by the perturbation.

Remark. The normal form of a generic n degree of freedom Hamilto-
nian system H(I, ϕ) = h(I) + ηf(I, ϕ) near a double resonance takes
the form, in suitable scaled action-angle variables J, ψ [9],

H(J, ψ) = k(J)+g(ψ1, ψ2)+
√
ηu(J, ψ1, ψ2; η)+exp−

(η0
η

)
1

2n

v(J, ψ; η) .

(12)
In the frequent case of double resonances characterized by two domi-
nating harmonics the function g can be written in the form:

g = g1(ψ1) + g2(ψ2) + ǫg12(ψ1, ψ2) ,

so that the dominant part of (12) is very similar to (11).

Returning to Hamiltonian (11), we remark that it has the normally
hyperbolic invariant manifold:

Λ = {(I1, I2, ϕ2, ϕ2) : ϕ1 = π , I1 = 0} ,
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(as well as other ones) and we want to describe its asymptotic man-
ifolds. In figure 6 on the left we can appreciate that the asymptotic
manifolds have a peculiar flower–like structure. We now approximate
the equation for the variable ϕ1 as follows:

ϕ̈1 = − sin(ϕ1)
(

a1 + ǫ cos(ϕ0
2(t))

)

+ O(ǫ2)

where ϕ0
2(t) is the order–0 solution for ϕ2, i.e. ϕ̈0

2 = −a2 sin(ϕ0
2).

Therefore, we study the approximate equation:

ϕ̈1 = − sin(ϕ1)
(

a1 + ǫ cos(ϕ0
2(t))

)

(13)

and describe the topology of the asymptotic manifolds of the fixed
point (ϕ1, ϕ̇1) = (π, 0). In figure 6 on the right we can appreciate
that the asymptotic manifolds of Λ for the approximated systems are
accurately reproduced, except for the region very close to the resonance
I2 = 0, where the approximation (13) is not accurate. We now describe
the asymptotic manifolds of equation (13). For any initial condition
ϕ0

2(0) = π, ϕ̇2(0) = I2(0) the function ϕ0
2(t) is periodic with some

period T (I2(0)). For any fixed I2(0), we consider the Poincaré section
φT at time T of the Hamiltonian system:

H =
I2
1

2
− a1 cos(ϕ1) − ǫ cos(ϕ1) cos(ϕ0

2(t)) . (14)

The stable and unstable manifolds of the fixed point x = (ϕ1, I1) =
(π, 0) for the map φT are characterized by the well known structure
of the homoclinic tangle of 2–dimensional maps. We consider Ws(x)
and its first four intersections with the axis ϕ1 = π, which are marked
with stars in figure 7. By changing I2(0), the intersection points of
the unstable manifold with the axis ϕ1 = π change as well, describing
arcs on the section S. When a lobe of the homoclinic tangle becomes
tangent to the axis ϕ1 = π, two arcs of intersection points on the
section S are joint together, and they constitute the upper part of a
petal of the flower–like structure. By moving I2(0) towards zero, the
value of I2 of the intersection points goes to zero as well, because for
I2(0) = 0 the function ϕ0

2(t) is constant with respect to time, and
therefore the system is integrable and the unstable manifold does not
have lobes. Therefore, the generation of a petal of the flower–like
structure is the following: starting from the exact resonance we find the
basis of the petal; increasing I2(0), i.e. going away from the resonance,
a lobe intersects the section producing the two arcs of the petal, which
are joint together for the value of I2(0) at which that lobe is tangent
to the section.

It is important to remark that each petal is the intersection of the
stable/unstable manifold of Λ, i.e. of the single resonance ϕ̇1 = 0, with
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the section S, and not the intersection of S with the stable/unstable
manifold of a double resonance. Therefore, these structures are cen-
tered on the double resonances, but are part of the asymptotic mani-
folds of the single resonances.

In a fully interacting system, like the map φ, we can observe many of
these flower–like structures centered around the crossing of resonances,
as it is the case of figure 8.

5 Measure of the exponential splitting of

the homoclinic tangle

In the aim of finding a connection between the invariant manifold Λ
and the diffusion along the resonance I1 = 0 we computed the un-
stable manifold of Λ for ǫ 6= 0, c = 2.1, and we choose an interval
of I2 far from the main crossings of Λ with the other resonances.
For example, figure 9 (left panel) shows the phase portrait of the
plane (ϕ1, I1) for ǫ = −10−5 of a set of 40 orbits regularly spaced
in I1(0) ∈ (−0.008, 0.008). The other initial conditions are ϕ1(0) = π,
ϕ2(0) = 0, I2(0) = 0.397499949. The points of the 40 orbits satisfying
|ϕ2| ≤ 10−3 are plotted. We can observe the typical phase portrait
of single resonances, characterized by the presence of invariant KAM
tori, a libration island and a chaotic region generated by the hyperbolic
point at the origin and surrounding the libration island.

In the regime of validity of the Nekhoroshev theorem we expect
that a normal form like (6) is valid. For comparison, in figure 9
(right panel) we report also the phase portrait of the main part the
normal form (6), i.e. the phase portrait of the map generated by

I ′ · ϕ + I ′1
2
/2 + I ′2

2
/2 + ǫu0(ϕ1). The most evident difference among

the two phase portraits is the chaotic zone which appears around the
hyperbolic point of the complete map (figure 9 left), which is due to
the remainder R, i.e. the only part of the normal form which depends
on ϕ2. In fact, in the single resonance domain related to the reso-
nance I1 = 0, if one neglects the exponentially small remainder one
remains with a generating function of a two dimensional generalized
standard map. It is known (see [14],[15]) that in the limit of small ǫ the
thickness of the chaotic region related to the hyperbolic point of the
resonance decreases asymptotically exponentially with 1/

√
ǫ. In the

present case, with the actual value of ǫ, the phase portrait reported in
figure 9 (right panel) shows that this chaotic zone is indeed so small
that we do not detect it in the figure. If we consider the complete map
the chaotic region related to the hyperbolic fixed point of the resonance
can be larger, because now the normal form is in general corrected by
the additional exponentially small remainder depending also on I2, ϕ2.
With the actual value of ǫ it is clear that the chaotic zone in figure 9

14



ǫ N t̄ ∆ϕ1

−10−9 103 9 106 10−29

−10−8 103 3 106 10−24

−10−7 2 103 7 105 10−18

−10−6 5 104 105 10−5

−10−5 5 104 8 103 10−3

Table 1: Parameters for the detection of the unstable manifold of the hy-
perbolic point (ϕ1, I1) = (0, 0)

(left panel) is due to the remainder R. By changing the value of ǫ, we
find that the chaotic zone decreases approximately exponentially with
1/ǫ1/3. Though we are not aware of the existence of an asymptotic
formula describing the splitting of the stable/unstable manifolds in
this specific case (for the computation of the splitting in other models
see, for example, [16]), this behavior is due to the remainder R of the
Nekhoroshev normal form (6) for that resonance, which is therefore
exponentially small as well. Now we describe how we solved the prob-
lem of the numerical detection of this exponentially small quantity.
We expect that in the regime of validity of the Nekhoroshev theorem
the size of the chaotic zone at a distance d from the hyperbolic point
depends on ǫ approximately like:

Ld(ǫ) = f(d) exp
(

−
( ǫ∗

ǫ

)α)

, (15)

where the function f and the constants ǫ∗, α are unknown and must
be determined by a numerical fit.

We have detected the unstable manifold related to (ϕ1, I1) = (0, 0)
using the classical method of propagating a set of N initial conditions
taken in the neighborhood of size ∆ϕ1 of the hyperbolic point. Figure
10 shows the points of the N orbits intersecting the section |ϕ2| ≤ 10−3

for different values of ǫ. The number of orbits N , the integration time
t̄ and the interval ∆ϕ1 are suitably chosen for each value of ǫ and
the numerical values of such quantities are provided in Table 1. The
unstable manifold is characterized by typical lobes.

The zooms out around the origin, from the panel at top left to the
panel at bottom right, illustrate visually the strong decrease of the
size of the lobes of the unstable manifold by changing the perturb-
ing parameter. To measure the size of the chaotic zone we compute
the amplitude of the lobes detected in figure 10, i.e. we measure the
function Ld(ǫ) as the distance between the maximum and the mini-
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mum of a lobe located at a distance d from the hyperbolic point. In
order to obtain a numerical evidence of the exponential character of
S(ǫ) = Ld(ǫ)/f(d) we cannot simply fix d and measure Ld(ǫ) by chang-
ing ǫ, because, for fixed d, we would be able to measure effectively the
amplitude of the lobes only through a small interval in ǫ. In fact, due
to the strong decreasing of the amplitudes with ǫ, from figure 10 it
appears clearly that the lobes are detected up to a maximal distance
dmax from the hyperbolic point which reduces drastically with ǫ. In
order to obtain a numerical measure of S(ǫ) = Ld(ǫ)/f(d) through
many orders of magnitude in ǫ we need therefore a numerical fit for
f(d), so that, for any ǫ, we can suitably choose the distance d.

We fit the function f(d) using the numerical computation of Lǫ(d)
for different values of ǫ (figure 11). Each data set is well fitted by a
power law: dmǫ , and the set of the slopesmǫ has mean value m̄ = −1.25
and standard deviation σ = 0.06. We will consider the function dm̄ as
a good fit of f(d) in eq. (15).

Figure 12 shows the logarithm of 1/S as a function of the logarithm
of 1/ǫ. The exponential dependence of S on ǫ appears clearly. We have
repeated the experiment by filling the chaotic region as in figure 9 and
measuring its size at a suited distance d from the hyperbolic fixed
point. The distance dependence is normalized with the function dm̄

previously computed. Figure 12 shows that the size of the separatrix
splitting can be obtained both by directly measuring the lobes or the
size of the corresponding chaotic region.

Thanks to the fact that the measure spans 5 orders of magnitude
in ǫ, we could fit the parameter α by taking the double logarithm of
S(ǫ) (see fig. 13). The numerical computation confirms the validity of
eq. (15), with α = 0.33 ∼ 1/3.

6 Detection of the topological mechanism

for Arnold diffusion

In the previous sections we have shown that the topology of the sta-
ble/unstable manifolds of the invariant manifold Λ is correlated to the
diffusion properties along Λ: in section 3 we have shown that, by chang-
ing ǫ, the topology has transitions which approximately correspond to
the changes of the slopes of the diffusion coefficient versus ǫ in the
log/log representation; in section 5 we have shown that the amplitude
of the lobes of the homoclinic tangle is decreasing exponentially with
1/ǫ1/3, and we attributed this scaling to the exponentially decrease
of the remainder of the resonant normal form, as in the case of the
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validity of the Nekhoroshev theorem. These facts provide indications
of the correlations among the exponentially small remainder of the
resonant normal forms around Λ, the topology of the stable/unstable
manifolds of Λ and the diffusion coefficient along Λ. However, they
do not not allow one to understand how the stable/unstable manifolds
are directly related to the diffusion along Λ. In this section we will
explain this mechanism by showing that the unstable manifolds of the
points x ∈ Λ are unrolled along the I2 direction, with possible many
large oscillations, but with an average systematic drift. In fact, the
oscillations of the unstable manifolds along the I2 direction are similar
to the large oscillations that the single orbits do during their Arnold
diffusion along Λ, and also in that case we needed to perform averages
and filters on the data to show the existence of a very slow diffusion.
The existence of a systematic drift of the unstable manifold in the I2
direction shows how the diffusion along Λ takes place: given a generic
point x in the invariant manifold, the dynamics maps the points in a
neighborhood U of x along the unstable manifold of x, and because of
the spread of this unstable manifold, the set U spreads in the phase
space and some of its points return near the invariant manifold ’far
away’ from the orbit of x. This is the mechanism that we detect and
that is behind the Arnold diffusion phenomena shown in the papers
[18], [19],[20].

As for the a priori unstable case of [2], we do not directly detect
transitions of orbits from stable to unstable manifolds, but this is likely
due to the fact that the probability of finding an orbit which passes
near selected number of heteroclinic points is very small. The existence
of heteroclinic transverse intersections remains a possible way to prove
the spread of the asymptotic manifolds in certain situations.

We now describe our results on the computation of the parametriza-
tion of the unstable manifold Wu of the invariant manifold Λ for quite
a long arc–length s, for values of ǫ lower than the critical value for
the transition of the system to the Chirikov regime. Using the FLI
charts we have found that the transition between the Nekhoroshev
and the Chirikov regime occurs in the interval 3 10−4 < ǫ < 4 10−4.
This threshold is lower than the value ǫc ≃ 0.002 (see section 1) which
bounds diffusion on Λ, i.e. of the limit value for the validity of our
numerical method.

In this section our numerical experiments concern the two values
ǫ = 9 10−5 and 3 10−4, so that we first check if the invariant mani-
fold Λ is normally hyperbolic for these values of ǫ. We do it numer-
ically, following the technique that we introduced in paper [2]. Pre-
cisely, we choose the tangent vectors norm: ‖(ξϕ1

, ξϕ2
, ξI1 , ξI2)‖2 =

|ξϕ1
|2 + |ξϕ2

|2 + |ξI1 |2 + |ξI2 |2 and we check if the map φN is hyperbolic
for some integer N . For each point x of a grid of initial conditions with
I2 ∈ [0, 2], I1 = 0, ϕ1 = π, ϕ2 = 0 we first computed the Lyapunov
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exponents of the map φ (up to a N = 104 iterations) for initial tangent
vectors in the tangent space TxΛort orthogonal to TxΛ, i.e. for vectors
of the form ξ = (ξϕ1

, 0, ξI1 , 0). For ǫ = 9 10−5 we measured a positive
Lyapunov exponent bigger than 5 10−3 for all the points of the grid,
and of course a negative Lyapunov exponent smaller than −5 10−3,
while for ǫ = 3 10−4 we measured a positive Lyapunov exponent big-
ger than 8 10−3 for all the points of the grid (the negative Lyapunov
exponent is smaller than −8 10−3). This is an indication of the hy-
perbolic splitting of the space TxΛort as a direct sum of a stable space
Es(x) and an unstable space Eu(x). The numerical algorithm for the
computation of the Lyapunov characteristic exponents provides also
an estimate of the constants λ1 = µ1 and λ3 = µ3 which are related
to an iterate φN of φ (see paper [2] for the definitions). In fact, if N
is sufficiently large, the quantities 1/ exp(FLI(N)) and exp(FLI(N))
converge exponentially to λ1 and λ3 for almost any initial tangent
vector ξ ∈ TxΛort (FLI(N) denotes the Fast Lyapunov indicator com-
puted up to N iterations of the map φ). It remains to estimate the
constants λ2, µ2 (see paper [2] for the definitions) for the map φN in
the point x. Because in this case the growth of initial tangent vectors
ξ = (0, ξϕ2

, 0, ξI2) ∈ TxΛ is not expected to be always exponential,
we did not computed the Lyapunov characteristic exponents, but we
computed numerically the two dimensional matrix representing the re-
striction of DφN (x) to the space TxΛ. This can be done by computing
the evolution of a bases of two independent vectors of TxΛ. Once the
matrix DφN (x) was obtained, we computed directly the quantities:

λ2 ≤ inf
ξ∈TxΛ\0

‖DφN (x)ξ‖
‖ξ‖ ≤ sup

ξ∈TxΛ\0

‖DφN (x)ξ‖
‖ξ‖ ≤ µ2 .

Figure 14 shows the numerical computation of logλ2/N and logµ2/N
for N = 10000 and respectively ǫ = 9 10−5 (left panel) and ǫ = 3 10−4

(right panel). From the comparison of the four computed quantities
logλ1, logλ2, log µ2, log λ3 we infer that the invariant manifold Λ is
normally hyperbolic for both ǫ = 9 10−5 and ǫ = 3 10−4.

After having checked that Λ is normally hyperbolic, we computed
the parametrization:

s 7−→ (ϕ1(s), I1(s), ϕ2(s), I2(s))

of the unstable manifold Wu(x) of a point x = (ϕ1, I1, ϕ2, I2) =
(π, 0, 0, 0.324), with respect to its arc–length. The method used for
this computation is described in paper [2], section 2, and we refer to
that paper for the technical details. Here, we report the result of the
computations.

For ǫ = 9 10−5, the point x belongs to an invariant torus of φ|Λ
(see figure 15, left panel). Figure 15 (right panel) shows the result
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of the computation of I1(s) versus the arc–lenght s parametrizing the
unstable manifold Wu(x). To discuss the relation among the unstable
manifold Wu(x) and the diffusion properties along Λ the most inter-
esting quantity is the dependence of I2(s) on the arc–length s, which is
reported in figure 16, left panel. From that figure it appears that I2(s)
undergoes many large fluctuations, but it is very difficult to appreciate
the presence of an eventual systematic drift, which would be related to
the diffusion along Λ. In order to reveal an eventual drift of I2(s) we
need to filter with respect to ϕ1 the large variations of I2 by selecting
the points of Wu(x) characterized by −0.5 < ϕ1 < 0.5 and I1 > 0.
These selected points are reported in figure 16, right panel, and clearly
reveal a drift of I2(s) as a function of the arc–lenght s. Reducing the
tolerance on ϕ1 reduces the number of selected points but the drift of
I2 is still present.

The dependence of I2 on ϕ1 appears clearly on the 3-dimensional
representation of the manifold (figure 17, left panel). Also with this
representation we can appreciate the spread of the unstable manifold
by selecting the points in the interval −0.5 < ϕ1 < 0.5, with I1 > 0,
which are reported in figure 17, right panel. We can therefore infer
for this value of ǫ 6= 0 that the manifold is unrolled along the I2 di-
rection, thus supporting diffusion in the neighborhood of Λ. At our
knowledge this is the first computation of stable/unstable manifolds
of a quasi–integrable system which shows the topological mechanism
which produces diffusion of orbits, in the range of the perturbing pa-
rameters satisfying the hypothesis of the Nekhoroshev theorem.

In order to remark a systematic spread of the manifolds in the
I2 direction we computed also the quadratic average of the quantity
(I2(s) − I2(0)) with respect to many close initial points. As in the a
priori unstable case we use the fact that the arc-lenght and time are
approximately related through: s(t) ∼ s(0) exp(λt), where λ is the
Lyapunov exponent, which we computed over t = 109 iterations and
averaged over N = 20 orbits with initial conditions −10−5 < I1 <
10−5, ϕ1 = π, 0.3 < I2 < 0.4, ϕ2 = 0. In figure 18 (dashed line) we
represent the quantity:

G(t) =
1

N

N
∑

j=1,|ϕj

1
(s(t))|<0.1

(

Ij
2(s(t)) − Ij

2(s(0))
)2

(16)

versus t for ǫ = 3 10−4 (N = 40, the initial conditions are I1 = 0,
ϕ1 = π, 0.3 < I2 < 0.4, ϕ2 = 0).

It is clear that we measure a positive average quadratic spread of
the manifold, while we are not able to fit this quantity to estimate
the linear growth of G(t), as we did in the a priori unstable case,
although ǫ is very close to the threshold from the Nekhoroshev to
the Chirikov behavior. We have therefore compared this result to the
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classical method of diffusion of orbits [18],[19] in the phase space. To
this purpose we computed the average evolution of the mean squared
distance from the initial conditions for the same set of initial conditions,
same ǫ and same filter on the angles than figure 18 (dashed line).
The result is reported in figure 18 (continuous line), and it appears
that in order to obtain a systematic linear growth of G(t) the total
time must be about 5 times larger than the one which corresponds
to the manifold computation, and because of the exponential relation
among time and arch–length this is out of the present computational
possibilities. However we remark that the quantity G(t) computed on
the unstable manifold is very similar to that obtained with the diffusion
of particles.

Although we do not compute a ’geometric’ diffusion coefficient for
the stable case it is interesting to compare the spread of the manifold
of one orbit for two different values of ǫ. In this aim we studied the
orbit of figure 17 for ǫ = 2 10−4 (figure 19).

We appreciate the unrolling of the manifold in the I2 direction al-
ready on the global representation of the orbit (figure 19, left panel).
Comparing the zoomed pictures represented in the right panels of fig-
ures 17 and 19 we see that the square of the manifold spread (I2(s) −
I2(0))2 for ǫ = 2 10−4 is about 5 order of magnitudes larger than for
ǫ = 9 10−5. This is exactly the ratio among the corresponding diffusion
coefficients (see figure 3). This is a confirmation that the Arnold dif-
fusion that we measured in [18],[19],[20] is supported by the unrolling
of the manifolds along the resonance.

7 Appendix: the Fast Lyapunov Indicator

A precise numerical detection of the dynamical character of an orbit is
possible with the Fast Lyapunov Indicator whose definition is related
to the Lyapunov exponent theory. In the numerical computations of
the Lyapunov Characteristics Indicator (LCI hereafter) the attention
is focused on the length of time necessary to get a reliable value of
its limit, while very little importance is given to the first part of the
computation. Actually, this part is usually considered as a kind of
transitory regime depending, among other factors, on the choice of an
initial vector of the tangent manifold.

In 1997, Froeschlé et al. [11] have remarked that the intermediate
value of the largest LCI (which was called fast Lyapunov Indicator:
FLI hereafter), taken at equal times for chaotic, even weakly chaotic,
and ordered motions, allows one to distinguish between them. It turns
out that the FLI allows also to distinguish among ordered motions of
different origins, like resonant and non resonant motions [17]. This is
not possible with the LCI, which tends to zero when t goes to infinity
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in both cases.
Given a map φ from R

n to R
n, an initial condition x(0) ∈ R

n, and
an initial vector v(0) ∈ R

n of norm one, let us define the FLI function
FLI(x(0), v(0), T ), T > 0, as:

FLI(x(0), v(0), T ) = sup
0<t≤T

log ||v(t)|| , (17)

where v(t) is given by the system:

{

x(t+ 1) = φ(x(t))

v(t+ 1) = ∂φ
∂x (x(t)) v(t) .

(18)

The definition trivially extends to continuous flows. In the specific case
of quasi-integrable Hamiltonian systems:

Hǫ(I, ϕ) = h(I) + ǫf(I, ϕ) , (19)

for any initial condition (I(0), ϕ(0)) and any initial tangent vector
(vI(0), vϕ(0)), the FLI at time t is:

log ‖(vI(t), vϕ(t))‖ . (20)

In order to kill non significant fluctuations of (20), in formula (17)
we have considered the supremum of the logarithm of the norm of
the tangent vector. A running average could also have been used.
Actually, as far as the mathematical development is concerned, we
drop these averaging procedures, which however are useful in numerical
computations. For ǫ = 0 it is evidently:

v0
I (t) = vI(0) , v0

ϕ(t) = vϕ(0) +
∂2h

∂2I
(I(0))vI(0)t .

If ǫ is small we can estimate the evolution of ||v|| with Hamiltonian
perturbation theory. Following [17], if the initial condition is on a
KAM torus then the norm ||vǫ(t)|| satisfies:

||vǫ(t)|| =

∥

∥

∥

∥

∂2h

∂2I
(I(0))vI(0)

∥

∥

∥

∥

t+ O(ǫαt) + O(1) , (21)

with some α > 0. As a consequence, the FLI has approximately the
value of the unperturbed case on all KAM tori. Instead if the initial
condition is on a regular resonant motion then it is [17]:

||vǫ(t)|| = ‖CΛΠΛortvI(0)‖ t+O(ǫβt)+tO(ρ2)+O(
√
ǫt)+O(

1√
ǫ
) (22)

with some β > 0, Λort being the linear space orthogonal to an integer
lattice Λ (the integer lattice Λ ⊆ Zn defines the resonance, see [17] for
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details), CΛ is a linear operator depending on the resonant lattice Λ
and on the initial action I(0), ΠΛort denotes the projection over the
lattice Λort.

It is important to remark that the FLI on regular resonant motions
is different at order O(1) from the unperturbed case on regular reso-
nant motions. In fact, the linear operator CΛΠΛort is different from
the Hessian matrix of h at order O(1), i.e. CΛΠΛort does not approach
∂2h
∂I2 as ǫ approaches to zero. In this way, we detect the presence of
the resonances because the value of the FLI is different from the uni-
form value assumed on the KAM tori. Finally, for initial conditions on
chaotic resonant motions the FLI is higher (since the tangent vectors
growth exponentially with time) than the value characterizing KAM
tori. As a consequence the resonance structure of the phase space can
be detected computing the FLI with the same v(0) and the same time
interval t on a grid of regularly spaced initial conditions. The repre-
sentation of the set of resonances of a quasi–integrable Hamiltonian
system can be found in [13].

We have found in [2] a new application of the FLI method that
allows a sharp detection of the intersection of the stable and unstable
manifolds of the normally hyperbolic invariant manifolds with any two
dimensional section of the phase–space. The principle is the following.
We sample the two dimensional section of the phase space with a grid
of points. Then, for any point of the grid we compute the FLI up to
a time T . The points of the grid which will have the highest values of
the FLI are those points whose orbits approach an hyperbolic invariant
manifold within the time T , because the growth of tangent vectors is
bigger near the hyperbolic manifolds. Therefore, a short–time compu-
tation of the FLI allows to detect a neighborhood of a finite piece of the
stable manifold (for the unstable manifold one repeats the computation
using the inverse map).
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Ann. Inst. H.Poincaré, Vol. 60, 1–144, 1994.

[5] Chierchia L. and Valdinoci E.: A note on the construction of
Hamiltonian trajectories along heteroclinic chains. Forum Math.,
Vol. 12, 247–255, 2000.

[6] Delshams A., de la Llave R. and Seara T. M.: A geometric
mechanism for diffusion in Hamiltonian systems overcoming the
large gap problem: heuristics and rigorous verification on a model.
Mem. Amer. Math. Soc. 179, no. 844 (2006).

[7] Chirikov B.V.: An universal instability of many dimensional os-
cillator system. Phys. Reports, 52:265, (1979).

[8] Hasselblatt B. and Pesin Y.: Partially hyperbolic dynamical sys-
tems. Handbook of dynamical systems. Vol. 1B, 1–55, Elsevier B.
V., Amsterdam, 2006.

[9] Benettin, G. and Gallavotti G.: Stability of motions near reso-
nances in quasi–integrable Hamiltonian systems. J. Stat. Phys.,
vol. 44, 293–338, 1986.

[10] Guzzo M.: A direct proof of the Nekhoroshev theorem for nearly
integrable symplectic maps. Annales Henry Poincaré, vol. 5, n. 6,
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Figure 4: Computation of the FLI on the surface S for values of ǫ =
6 10−6, 10−5 (on the top) and ǫ = 4 10−5, 4 10−4 (on the bottom). The
coordinates of the pictures are x = I1, y = I2.
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Figure 5: Computation of the FLI for values of ǫ = 0.04, 0.1 (on the top)
and ǫ = 0.22, 0.4 (on the bottom). The coordinates of the pictures are
x = I2 − I1/2, y = I1 + 2I2, so that the resonance is almost vertical.
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Figure 6: On the left: asymptotic manifolds of the hyperbolic invariant
manifolds of Hamiltonian systems (11), for a = 1 and ǫ = 0.01. On the

right: asymptotic manifolds of the hyperbolic invariant manifolds of the
approximated system (13), for a = 1 and ǫ = 0.01.

28



-1

-0.5

 0

 0.5

 1

 2  2.5  3  3.5  4

"fort.16"
"Color/intersection.16"

Figure 7: On the top: zoom of the unstable manifold around the hyperbolic
fixed point obtained for a1 = a2 = 1, ǫ = 0.01, I2(0) = 0.65. The stars
represent some intersection points of the manifold with the section ϕ1 = π,
which are then reproduced also on the bottom panel. On the bottom:

Unstable manifold of Λ with the intersection points of the top panel.
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Figure 8: Detection of many of the flower–like structures for the map 2
computed for ǫ = 0.0001.
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Figure 9: Left: Phase space portrait in the plane (I1, ϕ1) of a set of 40
orbits regularly spaced in I1(0) with −0.008 < I1(0) < 0.008. The other
initial conditions are ϕ1(0) = π, ϕ2(0) = 0 , I2(0) = 0.397499949 . The
points crossing the section |ϕ2| ≤ 10−3 are plotted. As usual we can ob-
serve invariant KAM tori, libration islands and a chaotic orbit around the
hyperbolic point at the origin. The perturbation parameter is ǫ = −10−5.
Right: phase portrait of the main part the normal form (6), i.e. of the map
generated by I ′ · ϕ + I ′

1

2/2 + I ′
2

2/2 + ǫu0(ϕ1). The most evident difference
among the two phase portraits is the chaotic zone which appears around
the hyperbolic point of the complete map (left panel), which is due to the
remainder R, i.e. the only part of the normal form which depends on ϕ2.
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Figure 11: Variation of the size of the lobes as a function of the distance
from the hyperbolic point (0, 0) for different values of ǫ going from −10−4

to −10−9. Each set of data is well fitted by a power law : dmǫ . The set of
slopes mǫ has mean value m̄ = −1.25 and standard deviation σ = 0.06. The
function dm̄ is a good fit of f(d) in eq. 15.
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Figure 12: Variation of the normalized size of the lobes S(ǫ) as a function
of |ǫ|. The data are very well fitted by an exponential law as expected from
eq. 15. Two different numerical experiments are reported: 1) measure of
the size of the lobes (circle); 2) measure of the size of the chaotic region
(triangle). We also plot a fit of data set 1 just to remark its exponential law.
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Figure 13: Same as figure 12 but taking the double logarithm of the size of
the lobes. The data are well fitted by a linear law, as expected from eq. 15,
with a slope of α = 0.33.
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grid of 1000 initial conditions with I2 ∈ [0, 2], I1 = 0, ϕ1 = π, ϕ2 = 0 and
ǫ = 9 10−5 (on the left), ǫ = 3 10−4 (on the right).
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Figure 15: On the left: Representation of an orbit of the restricted map
(I1 = 0, ϕ1 = π, I2 = 0.324, ϕ2 = 0) for ǫ = 910−5. On the right:

representation of I1(s) for that orbit.
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Figure 16: On the left: Representation of I2(s) for the orbit of the re-
stricted map (I1 = 0, ϕ1 = π, I2 = 0.324, ϕ2 = 0) for ǫ = 910−5. On the

right: Representation of I2(s) for the same orbit but for a selected set of
data having −0.5 < ϕ1 < 0.5 and I1 > 0. The large fluctuations on the
left panel are mainly due to the excursion of I2 as a function of ϕ1. On the
selected set (right) we appreciate the variation of I2 due to the unrolling of
the manifold along the I2 axis.
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Figure 17: Representation of the unstable manifold of the orbit of figure 15
in the three dimensional space ϕ1, I2,I1 (left panel). In order to appreciate
the unrolling of the manifold in the I2 direction we have plotted on the right
panel a zoom of the manifold for values of −0.5 < ϕ1 < 0.5 and I1 > 0.
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Figure 18: Evolution with time of the average of the mean squared distance
from initial conditions for a set of 40 orbits with I1 = 0, ϕ1 = π, 0.3 < I2 <
0.4, ϕ2 = 0 for ǫ = 310−4.
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Figure 19: Representation of the unstable manifold of the orbit with initial
condition I1 = 0, ϕ1 = π, ϕ2 = 0, I2 = 0.324 for ǫ = 210−4 in the three di-
mensional space ϕ1, I2,I1. Contrary to figure 17 we appreciate the unrolling
of the manifold in the I2 direction already on the global picture (left). For
comparison with figure 17 we have plotted on the right panel a zoom of the
manifold for values of −0.5 < ϕ1 < 0.5 and I1 > 0.
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