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1. Introduction 

Submarine canyons have been considered for a long time to be the main transfer zone for 

continental-derived sediment to reach the deep sea (Shepard and Dill, 1966). Numerous 

studies documented the transit of gravity driven flows down, for instance in the Monterey, 

Capbreton, Kaikoura or Zaire canyons (Garfield et al., 1994; Khripounoff et al., 2003; Lewis 

and Barnes, 1999; Mulder et al., 2001; Paull et al., 2003). However, these canyons are either 

directly connected to a river system or located close to the shoreline and therefore under the 

influence of inner shelf and/or fluvial dynamics (Liu and Lin, 2004; Mullenbach and 

Nittrouer, 2000; Mullenbach et al., 2004; Puig et al., 2003; Segall et al., 1989; Shanmugam, 

2003; Shepard and Marshall, 1973; Snyder and Carson, 1986; Thorbjarnarson et al., 1986; Xu 

et al., 2002). 

In other cases, however, present day sea-level conditions prevent direct river connection with 

submarine canyons. Therefore, such canyons are presumed to be inactive. However, in such 

environments, several studies documented the transport of sand and fine-grained material at 

the shelf edge and into submarine canyons by hydrodynamic or climatic forcing (Durrieu de 

Madron et al., 2005; Frignani et al., 2002; Ivanov et al., 2004; Kenyon, 1986).  

In this study, a detailed investigation of the Bourcart canyon (also known as Aude Canyon) 

characterizes the wide-spread blanketing of the canyon head with a recent massive sand bed 

that formed presumably during episodes of intense shelf water cascading.   

 

2. Regional settings 

2.1. The outer shelf 

The Gulf of Lions constitutes the north-western part of the Mediterranean Sea (Fig. 1). The 

continental shelf reaches up to 70 km in width. This rather unusual width in the 

Mediterranean Sea is explained by intense progradation during Plio-Quaternary under the 

influence of the large amount of sediment supplied by the Rhône (Lofi et al., 2003). The outer 

shelf morphology results from the stacking of prograding wedges (Aloïsi, 1986; Rabineau, 

2001) deposited during “forced regressions” (Posamentier et al., 1992). The most recent 

wedge consists of lowstand sandy shoreface deposits that settled between 80 m and 120 m 

water depth, and of correlative offshore muds beyond 120 m. The transition between the 2 

facies is marked by a brink point in the sea-floor morphology reaching up to 25 m (Berné et 

al., 2004; Berné et al., 2002). The sea-floor roughness is attributed to subaerial erosion during 



the last glacial maximum, together with subsequent marine erosion during the transgressive 

phase. The transgressive deposits were subsequently reworked into dunes and sand ridges 

(Berné et al., 1998; Bassetti et al., this volume) 

 

2.2. 

3.1. 

The Bourcart canyon 

The shelf break is dissected by several submarine canyons that were mapped using swath-

bathymetry (Berné and Loubrieu, 1999) (Fig. 1).  

The Bourcart canyon is located in the widest part of the shelf, 70 km off the southern coast of 

France. The canyon is almost connected, to the West, with shoreface sands that formed during 

the Last Glacial Maximum turnaround (Jouët et al., this volume, and Fig. 1). The study area 

(10 km x 20 km, Fig. 2) corresponds to the head of the canyon, which consists of a main 

canyon, about 4 km wide and up to 400 m deep, partly filled by up to 300 m by sea-level fall 

and Last Glacial Maximum derived sediments (Fig. 3). This infill is incised by a meandering 

axial incision that formed during Last Glacial Maximum (Fig. 3), when the canyon was 

directly linked to a fluvial system (Baztan et al., 2005). The head of the canyon is topped, to 

the NW, by a 20 m-high relief made of cemented sands that are interpreted as beach rocks 

formed around 21 cal ka BP (Jouët, this volume). The erosion of the axial incision by 

hyperpycnal and turbidity flows generated small scale failures that evolved in retrogressive 

slumps (Baztan et al., 2005). The sea-level rise induced the disconnection of the river from 

the head of the canyon ending direct fluvial sediment supplies. 

 

3. Hydrodynamic framework 

The Northern Current 

The Gulf of Lions shelf break and continental slope are under the influence of the “Liguro-

Provencal” current or “Northern Current” (NC). The NC enters the Gulf of Lions on its 

eastern side and flows along the shelf break in a counter clockwise direction (Millot, 1991). 

Its velocity is maximum near the surface (~0.5 m/s) and decreases nearly linearly with depth 

to a few cm/s at several hundred meters depth (Lapouyade and Durrieu De Madron, 2001). 

However, its magnitude and direction can be modified by seasonal stratification and wind 

effects. In such cases, currents velocities up to 0.5 m/s were recorded in the water column at 

depth ~200 m, and clockwise inertial currents can be formed on the shelf along the 100 m 

isobath with lower current velocities (0.1-0.2 m/s) (Petrenko, 2003). The interaction between 



the NC and the complex morphology of the shelf break produces deviations of the bottom 

current generating up-canyon, down-canyon or oscillating currents within the canyon 

particularly in the Grand Rhône (Durrieu de Madron, 1992) , Lacaze Duthiers canyons 

(Frignani et al., 2002)or Blanes canyon (Ardhuin et al., 1999). 

 

3.2. Meteorological forcing 

Wave and wind regime constitute a driving force of local circulation in the northwestern 

Mediterranean Sea. Northern (Mistral) and northwestern (Tramontane) winds are known to 

generate classical oceanographic features such as up and downwelling currents (Millot, 1990) 

or inertial oscillations (Petrenko, 2003). Recent studies demonstrate the impact of exceptional 

events such as storms or intense period of cold and dry winds on the Gulf of Lions local 

hydrodynamic. The strong winds cool the surface water that become denser than the 

surrounding waters and sink. The cold waters transit across the shelf and are transferred 

deeper through submarine canyons until they reach their buoyancy equilibrium (Durrieu de 

Madron et al., 2005; Ivanov et al., 2004). This process called shelf water cascading mainly 

occurs during winter time.  

Another process contributing to increase current velocities in submarine canyon heads is the 

accumulation of water along the SW coastline of the Gulf of Lions during easterly storms. 

During the stratified season, despite a relatively light density, the load of water along the 

coastline induces downwelling and water escape in the SW corner of the Gulf of Lions 

(Palanques et al., this volume). However, according to these authors, this latest process 

restricted to the SW part, is combined with dense water cascading in winter and affects most 

of the Gulf of Lions submarine canyons usually between January-February and April. 

4. Data and Methodology 

The bathymetric map of the Bourcart canyon head was acquired with an EM1000 multibeam 

echo sounder during the Calmar and Strataform cruises in 1999 and 2002, with R/V 

“L’Europe” and “Le Suroît” respectively. An interface core device was used to collect well-

preserved samples of the upper 1 m of sediments. All together, 15 interface cores and 2 piston 

cores were recovered with the R/V "Le Suroît" during the Strataform and GMO2 cruises in 

2002 (Fig. 2). Coring in deep submarine channels is difficult because of uncertainties in 

position of the impact of the coring system (Paull et al., 2005). In order to minimize 

uncertainties, a D-GPS positioning system was used together with a Dynamic Positioning 



system for maintaining the ship at the position of the targeted coring site. The position of the 

cores was strictly controlled using swath bathymetry and sub-bottom profiling. The offset 

between the D GPS antenna and the frame of the piston coring system being of 9 m, and 

considering the relatively shallow water of the study area (between 110 m and 600 m) the 

resulting accuracy in the positioning of cores is estimated at about 50 m. 

 

Physical parameters (gamma ray, density, porosity, and magnetic susceptibility) were 

measured using a “Geotek” core logger located at Ifremer. Sedimentological analyses were 

performed at Bordeaux 1 University using a Malvern master-sizer for laser grain size analysis, 

and the SCOPIX system (Migeon et al., 1999) for X-ray imaging. 

In order to characterize the coarse and fine fraction contents in the sediments collected, a Q 

index is used.  

Q=S/C, where S= sediment fraction > 63 µm, and C= sediment fraction < 63 µm. 

It must be noted that the 63 µm corresponds for Facies 2 to 5, to a boundary between 2 grain-

size populations with modes around 5-7 µm and 200-300 µm.  

 

Radioisotopic measurements were made using a high resolution gamma spectrometer with a 

semi planar detector (Jouanneau et al., 2002). Counting of 210Pb (22.3 years half-life) and 
137Cs (30.2 years half life) was performed. It is possible to detect radioisotope activities up to 

five times the half-life of the isotopes considered, which corresponds to 134 years for 210Pb. 
137Cs is an artificial radionuclide coming from the nuclear tests made in the mid 20th century. 

Activity in 137Cs indicates a maximum of half a century.  

Radioisotope measurements were made on bulk sediment. However, the radio-isotopes are 

adsorbed on fine grained particles. For cores where grain size was not constant, a correcting 

factor inversely proportional to the grain size was applied in order to obtain a “clay-

equivalent” activity.   

 

Temporal series of currents and water turbidity were recorded at the Bourcart canyon head by 

deploying one mooring at 300 m depth within the axial incision (Fig. 2) as part of a study 

conducted in seven Gulf of Lions submarine canyons (Palanques et al, this volume). On that 

mooring, one Aanderaa RCM-9 current meter equipped with temperature, conductivity, 

pressure and turbidity sensors was installed at 4 m above the sea-floor from November 2003 

to May 2004 in order to record major sediment transport events occurring during the winter 

season. This period was divided into two consecutive deployments. The time sampling of the 



current meters was set to 20 minutes. Temperature and conductivity sensors were calibrated 

using contemporary CTD measurements. Turbidity data recorded in FTU were converted into 

suspended sediment concentration following the methods described in (Guillén et al., 2000). 

 

In order to estimate the capability of sand transport, the bottom shear stress (τ) associated to 

the observed currents is calculated under the assumption that velocity profile is logarithmic in 

the turbulent bottom layer (eq.1) 
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Where ρ is the water density (1027 kg.m-3), κ the von Karman constant (0.4), u(z) the current 

velocity, z the height above the sea floor (5 m) and z0 the roughness length of bed surface. z0 

ranges from 0.0002 m for mud to 0.006 m for rippled sand with 0.0007 m value for mud/sand 

complex (Soulsby, 1997). The size of particles the observed currents can move depend on the 

value of the bed shear stress. 

5. Results 

5.1. Sedimentary facies  

From the combined study of sedimentological and X-ray data, it is possible to determine five 

facies in the collected cores from bottom to top (Fig. 4). 

5.1.1. Facies 1 

Facies 1 is characterized by stiff grey clayey silt. Under X-ray, sediments are dark grey and 

are composed of alternating parallel sometime disturbed laminated areas and homogeneous 

areas (Fig. 4) 

5.1.2. Facies 2 

Facies 2 consists of homogeneous bioturbated muddy sand. Under X-ray, this facies is made 

of small bright sub-rounded patches enclosed in a darker matrix (Fig. 4). Patches are 

interpreted to result from bioturbation activity. Faunal content analyses show that foraminifers 

are a mixture of reworked benthic shallow water genus (Elphidium, Ammonia), and open 

ocean planktic foraminifers (Globigeroïdes, Globorotalidii). Very rare ostracods and valves of 

juvenile bivalves are also observed.  



5.1.3. Facies 3 

Facies 3 is defined by a shell lag in a muddy sand matrix. These sediments are too coarse for a 

suitable X-ray imaging, as they diffract the incident rays and give a too bright image. Despite 

cores taken from different physiographic settings, all samples display a very similar marine 

fauna, consisting of centimetric fragments of bivalves and echinoderms, gastropods and 

crustaceas. Abundant reworked shallow water benthic foraminifers are also observed.    

5.1.4. Facies 4 

Facies 4 is characterized by a fining upward sequence from muddy sand to sandy mud. Under 

X-ray, this facies is made of large bright sub-rounded patches enclosed in a darker matrix 

(Fig. 4). Patches are interpreted to result from bioturbation activity and are linked to the grain-

size as the size of the patches decreases with coarsening particles. 

5.1.5. Facies 5 

Facies 5 is composed of light brown sandy mud. X-ray imaging does not show any 

sedimentological structures but presents internal erosion surfaces, and bioturbation activity 

(Fig. 4).  

5.1.6. Grain-size analyses 

Facies 1 grain size data show a wide unimodal curve centered between 10 to 20 µm (Fig. 4). 

Grain size analysis of Facies 2, 4 and 5 displays a bimodal curve with a mode in clayey silt 

(5 µm) and the other one in medium sand (200 µm) (Fig. 4). Grain size analysis of the muddy 

sand matrix of Facies 3 (Fig. 4) also present a bimodal curve with a minor mode of clayey silt 

and a major mode of medium sand.  

Detailed grain size analyses performed in the fining upward succession of Facies 4, show that 

the fining upward trend is not linear but presents internal normal and inverse gradings. 

However, the overall normal grading does not typically show a shifting of the grain size curve 

from coarse to fine particles but results from variations in the proportion of one mode 

compared to the other. Grain size analyses indicate that from bottom to top of the sequence, 

the sand fraction (S) decreases, on average, from 60% to 20% with intra normal and inverse 

gradings underlined by Q index variations.  

In Facies 2, on average S represents approximately 60%, ranging from 35% to 78%, and the Q 

index displays quite high variations both intra-core and inter-core, reaching 20% in some 

cases. 



 

5.2. Distribution of sedimentary facies within the canyon head 

The facies described in 5.1 allow us to characterize in the study area, three different domains, 

proximal, central and distal in a down canyon direction; each domain is defined as an area in 

which similarities between cores are very strong.  

5.2.1. Proximal domain 

Proximal domain cores (KIGC10, 13, 14, 15, 16; STK10, 12, 15, 18) were sampled between 

180 and 225 m water depth (Fig. 2)and are composed, from top to bottom, of muddy sand 

(Facies 2), a few tens of cm thick (Fig. 5A), overlying stiff grey clayey silt (Facies 1). A 

few cm thick shell lag (Facies 3) interrupts Facies 2 in all cores (Fig. 5A). The contact 

between Facies 2 and 1 is sharp or erosional. This limit is also marked by intense bioturbation 

in top of Facies 1 that allows unambiguously identifying this surface on all cores as a 

burrowed lithological contact (Fig. 5A). In these cores, S fraction values are very high 

(> 75%) with a maximum in the eastern part (core STKI12 and STKI 18) where the major 

mode is larger and centered on 300 µm. 

 

5.2.2. Central domain 

Central domain cores (KGMO14, 15; KIGC17, 18, 19; STKI13) were collected between 

 225 and  330 m water depth (Fig. 2), the top of the cores located in the canyon axis consists 

of Facies 5 (very soft light brown clayey silt). They overlay a 30 to 40 cm thick Facies 4. 

Below Facies 4, more than 1 m of Facies 2 interrupted by 10 cm of Facies 3 is observed on 

core KGMO14. Facies 1 represents the lowest portion of this core (Fig. 5B).  

X-ray imaging of Facies 5 in core KIGC17, 19 and STKI13 allows distinguishing three sub-

sequences separated by rough erosive contacts expressed as slight color changes on KIGC17 

STKI13 and KIGC19 (Fig. 5B). Detailed grain size analyses underline a small difference 

between the upper two sub-sequences, expressed by a shifting of the clayey silt mode from 

5 µm (lower sub-sequence) to 7 µm (upper sub-sequence). The contact with the underlying 

Facies 4 is erosive. Facies 2 present high S values reaching 60% to 70%. 

Grain size patterns downcore KIGC17, 19 and STKI13 are very similar with a neat change of 

grain size slope between Facies 2 and 4 (Fig. 7). X-ray imaging of KIGC17 and 19 cores 

shows an unclear boundary between Facies 2 and 4 but bioturbation features makes this 



boundary speculative. STKI13 core imaging reveals a gradational boundary between the two 

facies. In addition, in this core, X-ray clearly shows a thin bright elongated zone 

corresponding to a worm indicating important bioturbation processes in the area.  

 

On the rim of the axial incision (KIGC18 and KGMO15), cores are composed of 10 cm of 

Facies 5 overlying 20 cm of Facies 2, interrupted at 20 cm by Facies 3. These facies overlie 

Facies 1. Facies 5 shows internal erosion delimiting two sub-sequences (with a very unclear 

third one). Similarly to the canyon axis core, grain size analysis presents a shifting of the 

clayey silt mode from 5 µm in the lower sub-sequences to 7 µm in the upper one. The 

boundary between Facies 5 and Facies 2 is erosive. Facies 5 S fraction is very high and 

reaches 30%, whereas it is only 35% in Facies 2 (KIGC18). 

 

5.2.3. Distal domain 

Distal domain cores (KIGC20, 21, 22; STKI19, 21, STKS20) are located from 380 to 510 m 

water depth (Fig. 2).  

In the axial incision, cores are composed (from top to bottom) of light brown silty clay 

(Facies 5) overlying in core STKS20 the fining upward Facies 4 and stiff grey silty clay 

(Facies 1) or directly lying on Facies 1 in core KIGC20 (Fig. 5C).  

X-ray imaging of STKI 19 reveals two sequences in Facies 5. The upper sequence is 30 cm 

thick, structureless in the upper 25 cm and displaying rough parallel laminations from 

25 to 30 cm. The lower sequence shows in the first 10 cm (from 30 to 40 cm) inclined parallel 

laminations (Fig. 5C). The two sequences present two main differences. Firstly, S values are 

very low (< 10%), but lower in the upper sequence (average at 2%) than in the lower 

sequence (average at 6%). Secondly, there is a shift of the clayey silt mode from 5 µm in the 

upper sequence to 7 µm in the lower sequence. 

Looking at the core transect KIGC20/KIGC21/KIGC22 (Fig. 2), KIGC21 and KIGC22 

sediments are composed of Facies 5 overlying Facies 4. Facies 4 thickness increases from the 

axis of the incised channel to its flank (from 20 cm in KIGC20 to reach 75 cm in KIGC22). 

Inside the overall fining upward Facies 4, fining and coarsening upward patterns are observed. 

X-ray imaging of KIGC21 shows that these patterns correspond to darker areas for coarser 

sediments and brighter areas for finer sediments. These areas are interpreted to be separated 

by very bioturbated erosive contacts. However, extensive bioturbation processes destroyed 



similar information within KIGC22 core. S fraction in Facies 4 is low ranging from 38% to 

23% in KIGC21 and 50% to 20% in KIGC22.  

 

5.3. 

5.4. 

Radio-isotope measurements  

 

Radio-isotope measurements performed on key cores allowed dating of the sampled 

sediments. The top sediments of each core present high 210Pbexc activity and significant 137Cs 

values which suggests an age younger than 50 years (Fig. 5).  

Further analyses performed downcore STKI12 (Fig. 5A) display a logarithmic decrease of 
210Pbexc activity within the upper 10 cm of the muddy sand facies. This indicates an age of 

deposition younger than 134 years. In addition, 137Cs activity (between 5 and 8 Bq/kg) in the 

upper 5 cm of sediment suggest they were deposited less than 50 years ago. Identical analysis 

downcore STKI18 confirm this time range.  

Core STKI13 has high 210Pbexc values in the upper sequence, and shows evidence for the two 

main sub-sequences identified in STKI13 Facies 5 in the central domain (Fig. 5B). 

Accumulation rates are 0.47 cm/y for the upper sub-sequence and 0.18 cm/y for the lower 

sub-sequence.  
210Pbexc values in core STKI19 slowly decrease from the top of the core down to 30 cm 

(Fig. 4C). Below 30 cm, no 210Pbexc is measured. Down canyon, measurements of 210Pbexc in 

the STKI21 core display constant high activity along the 30 cm-long core. 

An indirect way of dating was provided by a small piece of plastic material, identified to 

belong to some plastic bag, recovered at 7 cm below surface, within Facies 2 (massive muddy 

sand) in core STKI15. This implies an age less than about 50 years, consistent with ages 

indicated by 210Pbexc measurements.  

Depositional units  

 

The combination of X-ray imaging grain size analysis and radio-isotope measurements allow 

the defining of three main depositional units along the canyon course (Fig. 6). Despite 

different lithologies, the sediments deposited within each unit at different water depth are 

considered as coeval. These units are best developed in the central domain, where correlations 

are possible from core to core.  

 



The upper unit, A, corresponds to sediments younger than 134 years, where radioisotope 

activities are detected (Fig. 6). In the proximal domain the basal limit is only a timeline that is 

not supported by any sedimentological features. In the central and distal domains, the 

radionuclide activities limit corresponds to an erosive boundary that separates very different 

facies either in terms of X-ray response or in terms of grain size patterns.  

This unit is composed of Facies 2 in the proximal domain. In the central domain unit A 

consists of Facies 5 overlying Facies 2 on the canyon rim and of Facies 5 within the axial 

channel. In the distal domain unit A is composed of Facies 5. Facies are separated by erosive 

contacts and internal erosive surfaces are observed within Facies 5. Erosive boundaries are 

preserved within central and distal domain fine-grained sediments but no erosive features are 

observed in coarse-grained proximal domain sediments. Unit A thickens with increasing 

depth, from 10 cm in the proximal domain to 30 cm in the distal domain. Along the incised 

channel, this unit progressively changes from massive muddy sand to sandy silt and then to 

silt in a downward direction.  

 

Unit B corresponds to sediments older than 134 years. Unit B is characterized by (1) 

reworked material, (2) the occurrence of a coarse shell lag within the proximal and central 

domain, (3) very consistent grain size patterns in central and distal domain (shown by detailed 

grain size analyses in Fig. 7, and (4) little evidence of internal structures (erosion or 

bedforms). Unit B is composed from bottom to top of Facies 2 (containing Facies 3), Facies 4 

and Facies 5. In the proximal domain, only Facies 2 and Facies 3 are present and the unit 

thickness is up to a few tens of cm. This unit reaches its maximum thickness (1.5 m) in the 

central domain where Facies 2 to 4 are observed. Down canyon, the bottom coarser part 

(Facies 2 and Facies 3) progressively disappears, together with an overall fining of Facies 4 

(Fig. 6 and 7) and the progressive development of Facies 5. 

 

Unit C is made of Facies 1, its upper limit is an erosion surface. This unit is observed in every 

core and constitutes the basal unit in this area (Fig. 6).  

 

5.5. Mooring data 

 

The current meter recorded several episodes of variable near-bottom current velocities 

(>0.2 m/s). The highest velocities (up to 0.37 m/s) corresponded to cascading of cold water 



formed on the shelf during episodes of strong winds. These cascading events are clearly 

shown in the temperature and current direction records (Fig. 8A). Important temperature 

decreases are observed in early February, late February, mid March, early April, mid April 

and early May. They lasted between a few days and two weeks. The first two events in early 

February were associated with N and NW winds, but the following ones started during an 

eastern storm that produced waves from 3 to 7 m high near the coast and caused downwelling 

(Palanques et al., this volume). In the Bourcart Canyon the longer cascading events occurred 

in March and Early April, and the more intense one was in March. (Fig. 8A). All these 

cascading events were recorded simultaneously throughout the Gulf of Lions, with much 

higher near-bottom current velocities (from 0.6  to 0.8 m/s) in the western canyons (Cap de 

Creus, Lacaze-Duthiers) (Palanques et al., this volume). In the Bourcart canyon some of these 

events were correlated with increases of suspended sediment concentration ranging from 

0.5 to 5.5 mg l-1. However, the event that produced higher current speeds and suspended 

sediment concentrations was the one occurring in late February associated with an extremely 

strong eastern storm that generated waves higher than 7 m and lasted about 3 days. The 

currents with highest velocities were oriented toward SE (N135°, Fig. 8B) corresponding to 

the down channel direction at the position of the mooring (Fig. 2).  

In addition to the cascading process, there were also some episodes in December and January 

during which current velocities increased up to 0.25 m/s in the up canyon direction (NW) 

suggesting upwelling. An episode of downwelling of warmer water was also observed in 

relation to the major easterly storm that occurred in early December, 2003 (Palanques et al., 

this volume). In the Bourcart canyon this episode induced increases of current velocities (up 

to 0.25 m/s) as well as slight suspended sediment concentration (SSC) increases. 

 

The calculation of the bottom shear stress for the peak current (0.37 m/s) is very dependent on 

the roughness length (z0) utilized for the calculation. Therefore, we did the calculation for a 

broad range of roughness values, corresponding to mud (lowest z0) to rippled sands (highest 

z0) (Soulsby, 1997). The resulting shear stress ranges from 0.20 N/m² to 0.53 N/m² (Fig. 9). 

Such shear stresses are large enough to erode particles ranging from 0.35 mm to 1.02 mm 

respectively, as calculated for sea water temperature and salinity similar to our study area 

(Fig. 21 of (Soulsby, 1997)).  

 

 



6. Discussion 

6.1. 

6.2. 

Evidence for coarse-grained sediment deposition and by-passing within the 

Bourcart canyon head during the Holocene 

 

Unit C (Fig. 6) corresponds to our basal unit and interpreted to result from alternating fine-

grained turbidites and hemipelagic fallout. Using chirp seismic profiles shot in the canyon 

head and on the Bourcart/Hérault interfluve, it is possible to correlate unit C to units U151, 

U152 or U154 of Jouët et al., (this volume), dated between 28 and 15 cal kyr BP. This time-

interval is characterized, within the canyon head, by a very high sedimentation rate, because 

of the vicinity of fluvial systems. 

 

Unit A and B present completely different patterns compared to unit C. The analyses 

performed on the sediment suggest that they come from the same source area and most likely 

that they resulted from reworking of littoral sands of the Last Glacial shoreline, situated along 

the 120 m bathymetric contour line, mixed with offshore muds. The sand fraction that 

compose units A and B is similar to the Holocene “mobile carpet” that reworks the LGM 

shoreface during periods of high energy, especially those related to easterly winds (Bassetti et 

al, this volume), see 6.2.2. 

Potential sediment transport mechanisms  

The possible mechanisms for sediment transport in the Bourcart canyon head are (a) gravity 

processes, (b) the impact of a geostrophic contour current (the Northern Current), (c) bottom 

currents induced by easterly winds, and (d) cascading events. 

6.2.1. Gravity flows  

In present day highstand conditions in the Gulf of Lions, gravity flows are not believed to be 

significant features at shelf edge, especially in the Bourcart canyon head located 70 km off 

direct continental inputs. In situ geotechnical measurements carried out around the canyon 

head demonstrated that the upper 2 m of sediment are constituted by stable over-consolidated 

material not prone to failure (factor of safety > 1) (Sultan et al., Accepted). In addition, 

detailed bathymetric and seismic data do not exhibit any slump scar cutting across sediments 

younger than 20 kyr (Jouët et al., this volume).  

 



6.2.2.  Intensification of the Northern Current  

Detailed studies aiming to characterize the NC showed that the intensification of the NC can 

produce current velocities of 0.5 m/s at a depth of 200 m in the water column (Petrenko, 

2003). This author also shows the role of sea-floor morphology in the orientation of the 

current, with up-canyon currents observed in the Bourcart canyon, but no measurement of 

current velocities are available for the sea-floor. However upcanyon-downcanyon current 

inversions are observed at the present time. The frequency of these inversions is variable, with 

a 6-10 day periodicity observed in the Foix Canyon associated with passage of atmospheric 

pressure cells (Puig et al., 2000) or a 3 day periodicity (Palamós canyon) associated with 

topographic waves (Jordi et al., in press; Palanques et al., in press). This periodic process 

could be explained by the meandering of the Northern Current, as the wavelength and the 

period of the meanders have been estimated as 30–60 km and 3–6 days respectively (Sammari 

et al., 1995). These processes could be at the origin of up-canyon currents of up to 0.25 m/s 

recorded between mid-December and the end of January (Fig. 8A). 

 

6.2.3.  Intensification of shear stress during easterlies  

Model analysis (André et al., 2005); (Bassetti et al, this volume) suggests that, under the 

influence of constant wind from the east, intense bottom currents can be produced in the 

coastal zone, as expected, and also in the westernmost area of the shelf and at the shelf break. 

This model also indicates that, for the entire Gulf of Lions, the maximum bed shear stress 

created by these events occurs in a zone situated immediately upstream of the Bourcart 

canyon (Bassetti et al., this volume). The maximum shear stress on the bed is predicted at the 

beginning of the events, reaching maximum values of 0.24 N/m² in the area of sand dunes 

situated between 90 and 100 m water depth. The simulation of the bottom currents during 

several days demonstrates that the tensions become progressively weaker on a 7 day time 

frame, whereas the zone of maximum shear stress moves as the area of highest bottom shear 

stress is moving toward the SW. The shear stress on the bed is probably also increased by the 

combined effect of large swells generated by easterlies reinforcing near-bed currents. This 

process induces large enough bottom stresses to erode medium-grained sand on the outer shelf 

(Bassetti et al., this volume).  

 



6.2.4.  Dense water cascading  

Cascading events of variable intensity constitute classical features of Gulf of Lions 

hydrodynamic (Durrieu de Madron et al., 2005). Bethoux et al. (2002) identified four major 

cascading events over the 1971-2000 period, contributing to the formation of western 

Mediterranean deep water. During the last major event, that lasted from February 24 and 

March 12, 1999, cold water cascading in the Lacaze Duthiers canyon produced up to 0.6 m/s 

current velocities at 1000 m water depth (Bethoux et al., 2002). In the Cap de Creus canyon, 

during 2004-2005 winter, cascading events maintained from late January to early March down 

canyon steady currents between 0.4 m/s and 0.8 m/s down to 750 m water depth (Puig et al., 

2005). 

The importance of cascading, even in the less energetic Bourcart canyon, is confirmed by our 

mooring data that show several week lasting events during 2003-2004 winter period. Currents 

velocities are less than 0.2 m/s in average and therefore too low to account for erosion and 

transport of coarse-grained particles (Fig. 8 and 9). However peak currents can reach up to 

0.37 m/s for a few hours and produce large enough bottom shear stress to erode and transport 

medium-grained sand.  

Nevertheless current velocities measured at the same time in the Cap de Creus and Lacaze 

Duthiers canyons with peak velocities up to 0.8 m/s (Palanques et al., this volume) suggest 

that larger velocities can be expected in the Bourcart canyon head during colder winters, such 

as the 2004-2005 one. 

 

In summary, cascading events are considered as being at the origin of the observed sand beds, 

as they can produce high velocity and long lasting currents in the Bourcart canyon head.  

 

6.3. Sediment deposition in the canyon head 

6.3.1. Sediments younger than 134 years 

Radioisotope measurements performed in the cores show that unit A corresponds to deposits 

accumulated during the last 134 years. Erosive contacts are remnant imprints of these multiple 

depositional events. Down canyon, the unit presents a fining trend: Muddy sand found in the 

proximal domain correlates to sandy silt and silt in the central and distal domains, 

respectively. Cold water cascading events similar to those recorded in the 2003-2004 winter 

possibly triggered and/or enhanced by easterly winds (Bassetti et al., this volume: Palanques 



et al. this volume) are presumed to be the driving force for sediment transport down the 

canyon as they have a shelf origin and are known to produce high current velocities.  

Depending on intensity of these events they can transport and accumulate sands from the 

outer shelf into the canyon head or they can even resuspend and erode sands deposited by 

previous events.  

During the winter cascading season and the eastern storms, the proximal domain acts as a 

depocentre for medium-grained sediments. Bottom currents are large enough but not 

sustained enough to transport sand further down than the uppermost part of the canyon head. 

The central and distal domains constitute bypass or erosive areas as fine-grained sediments 

are winnowed away by the strong currents.  

During the rest of the year, currents are lower and only fine-grained sediments are 

transported. This could be the fine fraction that is contained in the sediment within the unit A.  

From our data, it is not possible to determine whether the muddy sand and its time correlative 

sandy silt and silt result from one or more mechanisms that acted during the last 134 years.  

In any case, the sediments that compose unit A are considered to be the imprint of shelf-break 

and upper slope modern hydrodynamic conditions and constitute the background 

sedimentation for the last 134 years in the canyon head. The presence of erosive features, 

especially in the fine material, evidences that this modern sedimentary activity is made of 

alternative phases of deposition and erosion.  

6.3.2. Massive sand beds 

Unit B comprises sediments that are older than 134 years and younger than the underlying 

Pleistocene deposits. This unit consists of massive (up to 1.50 m thick) homogeneous 

medium-grained sand, including a distinct shell lag observed on all cores of the proximal and 

central domains overlain by a fining upward sequence. These sedimentary facies imply large 

enough long lasting steady currents reaching velocities higher than 0.35 m/s (Fig. 9), similar 

to those measured in the Cap de Creus canyon (Puig et al., 2005). Considering the limited 

time constraint, we may propose two scenarios for the deposition of massive sand beds.  

 

6.3.2.1 Mono-event hypothesis 

The first scenario suggests that the unit B corresponds to one strong single cascading event, 

lasting from a few days to several weeks. 



From bottom to top of the sand bed, the coarsening upward (including the shell lag) would be 

formed by a waxing (accelerating with time) flow (Kneller, 1995) (KIGC19/KGMO14 cores 

on Fig. 5 or 6). This flow is also depletive (decelerating with distance), as demonstrated by 

the down-canyon fining trend. The maximum flow velocity, probably linked to a burst of 

current similar to that observed on the mooring during the cascading events (Fig. 8), would 

result in erosion followed by deposition of the shell lag. Afterwards, the flow velocity 

decreased progressively (overall fining upward) but remained strong enough to transport 

medium sand. Within this overall fining upward interval, episodes of increasing and 

decreasing flow can be inferred from grain-size changes. The episodes can be correlated from 

core to core in the distal and central domain thanks to very similar changes in X-ray facies 

and grain size (Fig. 3 and 7). The central domain acts as the main depocentre for medium-

grained sand. 

This scenario implies that exceptional cascading events may occur at a scale larger than the 

century. During such exceptional events all sediments previously deposited above the 

Pleistocene mud (unit C) were eroded. 

 

6.3.2.2 Multi-events hypothesis 

In this scenario, unit B represents the stacking of sand beds deposited by several major 

cascading events that occurred during the Holocene.  

Above the Pleistocene mud, the deposition of Facies 2 muddy sand results from the stacking 

of several beds that cannot be distinguished from each other because of (1) subsequent 

bioturbation, (2) similar sources of sediment for each event. The proximal and especially the 

central domain act as sand depocentres whereas the distal domain constitutes a bypass or 

erosive area. The shell lag (Facies 3) would correspond to the peak flow velocity. During this 

period, strong currents prevented sand deposition, the canyon head constituting a bypass zone 

where only shells remained. The shell lag also preserved the underneath sediment from 

erosion because of its “armouring effect”. The Bourcart canyon situation at this time was 

similar to the present day Cap de Creus and Lacaze Duthiers canyons situations.  

The transition of Facies 2 to 4 and finally 5 is linked to a reduction of the intensity of 

cascading events with internal grain size variations marking different events. The deceleration 

of average cascading event velocity can be related to historical changes, at unknown time 

scale. However, detailed analysis of a long core on the Bourcart/ Hérault interfluve (core 

MD992348) shows that sedimentation was affected by secular variations in the temperature 



with a magnitude of 3-5 °C and periodicities of 250 and 750 years (Flores et al., 2005). These 

fluctuations in sea-water temperature, that are linked by these authors to fluctuations of the 

polar circulation index (Mayewski et al., 1994), certainly have an impact on deep-water 

formation and cascading as observed nowadays.  

6.4. Cascadites 

Cascading events constitute the driving force for present day sedimentary activity within the 

western Gulf of Lion shelf. This process is at the origin of a massive sand bed observed in the 

Bourcart canyon head. In fact, this sand bed is also observed on one interface core sampled at 

135 m water depth on the Bourcart-Hérault canyon interfluve. These sands constitute a new 

type of deposits that could be named “cascadites”, by comparison with other slope deposits 

such as turbidites, hyperpycnites, or contourites. Cascadites, in our study area, differ from 

turbidites and hyperpycnites as they show a bimodal grain size pattern that could not be 

explained by typical waxing and/or waning flows. The two grain size modes probably 

underline the sudden variations in current velocity during the general waxing and waning 

pattern of the cascading event as shown in Fig. 8. The sedimentological characteristics of 

cascadites and their location at relatively shallow water depths (between 160 and 520 m in our 

case) suggest that cascadites are more similar to shallow water contourites, named shallow-

water bottom-current sands by Viana et al. (1998).The diagnostic features of cascading 

sequences and their comparison to other slope deposits is summarized in Table 1 (modified 

from Mulder et al. (2002). However, our data do not show peculiar structures allowing a 

better discrimination between cascadites and shallow-water bottom current sand. More 

examples are needed to characterize the nature of cascading induced bottom currents and to 

detail the structure of cascadite deposits. 

 

Another open question is to know how such cascadites may evolve downslope into “regular” 

gravity deposits. During intensification of cascading events, transported sediments bypass the 

upper slope and continue their route downslope as recorded at 1000 m water depth in the 

Lacaze Duthiers canyon (Bethoux et al., 2002). The downslope flow which erodes and 

transports sediments can than evolve into a typical turbidity flow. This process could be one 

of the processes at the origin of Holocene sandy deposits described on the Rhone neofan at 

2500 m water depth (Bonnel et al., 2005), and of 210Pbexc activity recorded in the Pyreneo-

Languedocian Sedimentary Ridge that drains the western Gulf of Lions submarine canyons 

(Buscail et al., 1997). 



 

7.  Conclusion 

The analysis of interface cores recovered in the head of the Bourcart canyon shows that this 

part of the Gulf of Lions shelf is presently subject to active sedimentary processes. Although 

the Bourcart canyon head is located at 110 m water depth and is considered to have a shape 

inherited from the Last Glacial Maximum, this study demonstrates the presence of modern 

deposits blanketing of the study area down to a depth of 400 m. These deposits consist of 

muddy sand to clayey silt sediments, the coarse-grained fraction probably originating from the 

erosion of the LGM lowstand shoreface sands and transgressive deposits situated immediately 

upstream, whereas the fine-grained part corresponds either to suspended sediment supplied by 

rivers and/or reworked slope deposits. Massive sand beds are interpreted as the result of 

sediment transport and deposition during periods of dense water cascading at the shelf edge. 

They represent a new type of deposit (“cascadite”) that differs from slope gravity  deposits 

such as turbidites in that they are more likely to form during highstands of sea-level, when 

dense cold water may form on a broad continental shelf. But in our study their structure 

cannot be differentiated from shallow water bottom current sand. The canyon head represents 

a preferential pathway for reworked sediments transiting from the outer shelf to the deep sea, 

as demonstrated by the thicker sand accumulation observed within the meandering axial 

incision.  
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Figure captions 

 

Fig. 1: Bathymetric map of the Gulf of Lions and position of the study area on the outer shelf 

(Fig. 2). CdC, Cap de Creus, LDC, Lacaze-Duthiers Canyon; PvC, Pruvot Canyon; BC, 

Bourcart Canyon; HC, Hérault Canyon; SC, Sète Canyon; MaC, Marti Canyon; PRC, Petit-

Rhône Canyon; GRC, Grand- Rhône Canyon; EC, Estocade canyon. 

 

Fig. 2: Bathymetric map of the Bourcart canyon head showing the piston and interface core 

locations. Cores with the same dot color present strong similarities in terms of facies 

association and grain-size analyses and belong to a same domain: proximal, central or distal.  

 

Fig. 3: (A) Sparker seismic profile, CAL-083 (see location on Fig. 2) (B) Line drawing of the 

seismic profile. The sequence boundaries correspond to glacial/interglacial cycles defined by 

Rabineau et al. (2005) and Jouët et al. (this volume). Due to seismic resolution, the modern 

sediments are enclosed within the water/sediment strong reflector. 



 

 

Fig. 4: X-ray imaging of core samples showing the different types of facies. The image tones 

are in grey level. Increasing darkening is related to increasing density due to coarser particles 

or more consolidated material. Facies 3 materials do not allow a suitable X-ray signature. 

Grain size diagram shows the representative grain size curves of Facies 1, 2, 4, 5 and the 

muddy sand matrix part of Facies 3 (Facies 3 shell fragments are not shown but centimetric in 

size) . Facies 1 curve is a poorly sorted unimodal curve centered on 10 µm. Facies 2, 4, 5 and 

Facies 3 muddy sand matrix (MSM) display a bimodal curve with 5-7 µm and 250 µm modes.  

 

Fig. 5: Stratigraphic log, sedimentary facies and radioisotope measurements (210Pbexc and 
137Cs) of cores representative of the 3 morpho-sedimentary domains of the Bourcart canyon 

head. A: proximal domain; B: central domain; C: distal domain. D: close-up view of KIGC20 

from the distal domain. Data show the recent deposition of sediments in the canyon head with 

coarse-grained particles (medium sand) blanketing the proximal domain part.  

 

Fig. 6: Down canyon correlation within the study area of depositional units in core log 

transects in the axial channel (A) and on the flank (B). 3 units are defined from radioisotope 

measurements, X-ray description and sedimentological analyses. 

 

Fig. 7: Detailed mean grain size data on interface cores within unit B in the study area. The 

grain-size curves are very similar from core to core in the central domain. Correlation with a 

distal domain core displays an overall decrease in mean grain-size. In the distal domain, 

Facies 3 directly lies on Facies 5 (Fig. 5). Distances between cores (horizontal axis) are 

measured along-channel. 

 

Fig. 8: (A) Time series of current velocity, water temperature and suspended sediment 

concentration (SSC) recorded at the head of the Bourcart Canyon during winter 2003-2004. 

Light grey shaded areas indicate cold water cascading events with associated down canyon 

current velocities and SSC increases. Dark grey shaded area shows a “hot” water cascading 

events. Cascading events induce a general waxing and waning flow pattern with important 

internal variations. (B) Polar plot of combined current directions and velocities showing the 

main current directions. 

 



Fig. 9: Plot of current velocity (log scale) versus bottom shear stress (log scale) depending on 

roughness length of bed surface (z0). The peak currents observed in our data gives bottom 

shear stress values (light grey shaded area) ranging from 0.2 N/m² to 0.53 N/m² for the 

different z0 values. The main body of current velocities does not exceed 0.2 m/s 

corresponding to up to 0.15 N/m² bottom shear stress.   

 

Table 1: Recognition criteria of turbidite, hyperpycnite, contourite and cascadite. Modified 

and complemented from (Mulder et al., 2002). This table applies to margins where 

continental shelf is broad (canyons are disconnected from fluvial systems during sea-level 

highstands). 
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