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Abstract 9 

We determine the asymptotic dispersion coefficients in 2D exponentially-correlated 10 

lognormally-distributed permeability fields by using parallel computing. Fluid flow is 11 

computed by solving the flow equation discretized on a regular grid and transport triggered by 12 

advection and diffusion is simulated by a particle tracker. To obtain a well-defined asymptotic 13 

regime under ergodic conditions (initial plume size much larger than the correlation length of 14 

the permeability field), the characteristic dimension of the simulated computational domains 15 

was of the order of 103 correlation lengths with a resolution of ten cells by correlation length. 16 

We determine numerically the asymptotic effective longitudinal and transverse dispersion 17 

coefficients over 100 simulations for a broad range of heterogeneities [ ]9,02 ∈σ , where σ2 is 18 

the lognormal permeability variance. For purely advective transport, the asymptotic 19 

longitudinal dispersion coefficient depends linearly on σ2 for σ2<1 and quadratically on σ2 for 20 

σ2>1 and the asymptotic transverse dispersion coefficient is zero. Addition of homogeneous 21 
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isotropic diffusion induces an increase of transverse dispersion and a decrease of longitudinal 22 

dispersion.  23 

I. Introduction 24 

The determination of the large-scale dispersion coefficients has been widely debated in the 25 

last twenty years [Dagan, 1989; Gelhar, 1993]. The classical case is the lognormal 26 

permeability field with an exponential correlation function such as:  27 

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

λ
σ

r
rC exp2  (1) 28 

where σ2 is the log-normal permeability variance, r  is the distance between two points and 29 

λ is the correlation length. Solute transport processes are advection and homogeneous 30 

isotropic diffusion. We look at the asymptotic dispersion coefficient for large heterogeneity 31 

corresponding to [ ]9,12 ∈σ . Numerical simulations did not previously lead to definitive 32 

solutions because of the large times and equivalent domain dimensions required for the 33 

convergence to the asymptotic regime.  34 

Two types of numerical simulations have been performed according to the derivation method 35 

of the velocity field. The velocity field is classically computed either directly from 36 

discretizing and solving the flow equation or from the first-order approximation of the flow 37 

equation. The computational domain is of dimensions Lx and Ly in the two spatial dimensions 38 

x and y. Lx and Ly are counted in terms of correlation length. The correlation length λ is 39 

counted in terms of grid cells. If we note lm the dimension of the grid cell, the ratios Lx/λ, Ly/λ 40 

and λ/lm should be as large as possible. Discretizing the flow equation yields a linear system 41 

of order proportional to the number of grid cells whatever the finite difference or finite 42 

element scheme [Bellin, et al., 1992; Cvetkovic, et al., 1996; Hassan, et al., 2002; Salandin 43 
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and Fiorotto, 1998; Trefry, et al., 2003] (Details of numerical simulations are given in 44 

Table 1). It explains why the direct solving of the flow equation has been limited to some 105 45 

cells number. It corresponds to some tens of exploitable correlation lengths that turn out to be 46 

not enough for determining directly the asymptotic dispersion coefficient. Convergence to the 47 

asymptotic regime is slow requiring very large simulations [Bellin, et al., 1992]. This study 48 

also shows a pronounced realization effect also obtained in [Trefry, et al., 2003]. The 49 

realization effect consists first in large dispersion coefficient variations and secondly in 50 

deviations from the mean behavior. It has two implications. First, the second-order moment of 51 

the solute plume requires a large number of Monte-Carlo realizations and particles to achieve 52 

convergence. Secondly, it emphasizes the problem of the relevance of the mean behavior to 53 

natural cases which are inherently single realizations requiring conditioning on measurements 54 

and the use of an inverse problem methodology.  55 

The other simulation method consists in deriving the velocity field from the first order 56 

approximation of the flow equation and performing subsequently a particle tracking [Bellin, et 57 

al., 1992; Dentz, et al., 2002; Rubin, 1990; Schwarze, et al., 2001] (Table 1). This 58 

methodology does not require a grid and shortcuts the linear system solving step. Very long 59 

particle paths can be simulated and the asymptotic coefficients can be determined. In practice 60 

the average particle path length reached by this method is around hundred times larger than 61 

that obtained by the previous direct simulation method with a resolution five times finer 62 

(Table 1). However this methodology is limited to the validity domain of the first-order 63 

approximation (σ2<1). For larger heterogeneities, deviations of the velocity field from the 64 

normal behavior are non negligible and increase with σ2 [Salandin and Fiorotto, 1998]. The 65 

longitudinal velocity distribution becomes asymmetrical and is between the normal and 66 

lognormal distributions. The transverse velocity distribution becomes flatter with larger tails 67 

than that of the normal distribution. The first-order approximation of the velocity field does 68 
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not capture these effects. Moreover, the use of first-order approximated velocity field may 69 

lead to erroneous numerical results. In fact, for even not too large heterogeneity (σ2=1), the 70 

first-order approximation produces closed streamlines in which particles can enter either by 71 

advection or by diffusion increasing artificially dispersion [Dentz, et al., 2003].  72 

Neither the direct solution nor the first-order approximation of the flow simulation have led to 73 

direct numerical estimates of the asymptotic transverse and longitudinal dispersion 74 

coefficients for broad heterogeneous permeability fields (σ2>1). The only numerical estimate 75 

is provided by Salandin and Fiorotto [1998] and concerns the dependency of the asymptotic 76 

longitudinal dispersion coefficient DLA on σ2. They assume that the Lagrangian integral scale 77 

λux is independent of σ2 and estimate numerically the Lagrangian velocity variance uxx(0). As 78 

( )0xxuxLA uD ⋅≈ λ  in the asymptotic regime, they found βσ∝LAD  with β=2.06, 2.19, 2.29 and 79 

2.35 respectively for σ2 in the intervals [0.05,1], [1,2], [2,3] and [3,4].  80 

Analytical estimates of the dispersion coefficient come from first-order and second-order 81 

approximations of the flow and transport equations. First-order approximations yield a linear 82 

dependence of the asymptotic longitudinal dispersion coefficient DLA on σ2 and a zero 83 

asymptotic transverse dispersion coefficient DTA for purely advected solutes [Gelhar, 1993]: 84 

 0and2 =⋅⋅= TALA DuD σλ  (2) 85 

where u is the mean velocity. Adding diffusion slightly reduces the asymptotic dispersion 86 

coefficient DLA for isotropic diffusion and Pe larger than 10 [Fiori, 1996]. Second-order 87 

approximation of the transport equation has been taken into account and confirms the zero 88 

asymptotic transverse dispersion coefficient [Hsu, et al., 1996]. For the longitudinal 89 

dispersion coefficient and values of σ2 larger than 1 (σ2=1.6 in [Bellin, et al., 1992]), first-90 

order approximations of the flow and transport equations remain very close to numerical 91 
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results [Dagan, et al., 2003]. Adding a second-order term does not improve the approximation 92 

of the longitudinal dispersion coefficient but on the contrary deteriorates it. It has thus been 93 

deduced that the independent linearizations of flow and transport induce opposite deviations 94 

from linear theoretical results that partly cancel out each other. These conclusions concerning 95 

both the zero asymptotic transverse dispersion coefficient and the performance of the first-96 

order approximation were confirmed on slightly different heterogeneous media consisting in 97 

spherical inclusions in a homogeneous medium [Dagan, et al., 2003; Jankovic, et al., 2003]. 98 

Other theoretical frameworks have been used to estimate the 2D asymptotic transverse 99 

dispersion coefficient DTA. Using volume averaging, DTA is null like with the first-order 100 

approximation [Attinger, et al., 2004], whereas DTA is not null by using the conjecture of 101 

Corrsin [Dentz, et al., 2002].  102 

In this article, we compute the effective asymptotic longitudinal and transverse dispersion 103 

coefficients for large heterogeneities ( [ ]9,25.02 ∈σ ) both for pure advection and 104 

homogeneous isotropic diffusion cases. To reach the asymptotic regime, we use very large 105 

computational domains (100 times larger than the largest previously studied) under ergodic 106 

conditions (large plume sizes compared to the correlation length of the permeability field). 107 

We compare our results to the previous numerical results and analytical predictions.  108 

II. Numerical methods 109 

II.1. Assumptions and notations 110 

We study 2D heterogeneous permeability field following a lognormal exponentially 111 

correlated distribution as stated in the introduction (equation (1)). We perform the study on a 112 

large range of σ2 values ( [ ]9,25.02 ∈σ ) first because broad-range heterogeneities have been 113 

observed in the field (for example σ2~5 for the Columbus site [Rehfeldt, et al., 1992]) and 114 



  2D asymptotic dispersion 

 6 

secondly to test theoretical predictions. Solutes are transported by advection and diffusion. 115 

Diffusion is homogeneous with a diffusion coefficient noted d, the Peclet number Pe 116 

expressing the ratio between advection and diffusion is equal to ( ) duPe /⋅= λ , where u is 117 

the mean velocity.  118 

As seen in introduction, discretizing and solving the flow equation for obtaining the velocity 119 

field computation is necessary for large heterogeneities (σ2>1). From previous simulation 120 

results obtained by using the first-order approximated velocity field (Table 1), the necessary 121 

domain dimensions to asymptotic regime is around a thousand of correlation lengths with a 122 

resolution of around 10 cells by correlation length [Ababou, et al., 1989] leading to a number 123 

of cells of the order of 108. Such large domains require parallel computing.  124 

II.2. Permeability field generation 125 

The software must be fully parallelized as the computational domain itself cannot be stored on 126 

a unique processor. The computational domain is distributed from the beginning to the end of 127 

the simulation, according to a domain decomposition in vertical slices (figure 1). Each 128 

processor owns a well-defined part of the array corresponding to a sub-domain and keeps in 129 

local memory one layer of cells surrounding its sub-domain. These cells called “ghost cells” 130 

are necessary for the determination of the inter-cell permeability on sub-domain boundary 131 

cells. The additional cost of memory use is negligible and the communication cost between 132 

neighbouring processors is reduced.  133 

The generation of the correlated lognormal field is performed via a Fourier transform 134 

[Gutjahr, 1989]. We use the software FFTW [Frigo and Johnson, 2005]. This library has a 135 

variety of composable solvers representing different FFT algorithms and implementation 136 

strategies, whose combination into a particular plan for a given size can be determined at 137 

runtime according to the characteristics of the machine/compiler in use. The construction of 138 
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the permeability field ends up with filling up the ghost cells, requiring the management of 139 

some communication between the processors. Permeability, velocity components and head 140 

values are all stored on the same types of array. The permeability field obtained from the 141 

Fourier transform methodology gives the right correlation length. The obtained variance is 142 

generally slightly smaller than the targeted variance [Yao, 2004]. More precisely, the variance 143 

is lowered by half the value of the mean. To avoid this bias we first generate a Gaussian 144 

correlated random field with zero mean and unitary variance. As we use a zero mean, the 145 

output variance is equal to the input targeted one. To obtain the right field, we first multiply 146 

the generated field by the standard deviation and add the logarithm of the geometric mean. 147 

We secondly take the exponential of the result. We calculated the obtained variance and 148 

found a value close at 0,02% to the input one for 81922 grids.  149 

II.3. Flow computation 150 

We discretize the classical flow equation ( ) 0=∇∇ hK  with K and h the permeability and 151 

hydraulic head and apply permeameter-like boundary conditions consisting in fixed head on 152 

two opposite borders and no flow on the perpendicular borders (figure 1). The flow equation 153 

is discretized according to a finite-difference scheme with harmonic inter-cell permeabilities. 154 

For regular square grids, this scheme is equivalent to mixed hybrid finite elements [Chavent 155 

and Roberts, 1991]. This equivalence ensures to these finite differences the high precision of 156 

the mixed hybrid finite elements useful for large permeability contrasts [Mosé, et al., 1994]. 157 

The discrete flow equations end up to a linear system bAx = , where A is a symmetric 158 

positive definite sparse structured matrix. The order of A is equal to the number of cells. The 159 

choice of the linear solver is essential to achieve the CPU and memory requirements for such 160 

large computational domains.  161 
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Several methods and solvers exist for these linear systems. They can be divided into three 162 

classes: direct, iterative and semi-iterative [Meurant, 1999; Saad, 1996]. Direct methods are 163 

highly efficient but require a large memory space. Iterative methods of Krylov type require 164 

less memory but need a scalable preconditioner to remain competitive. Iterative methods of 165 

multigrid type are often efficient and scalable, well-suited to regular grids, used by 166 

themselves or as pre-conditioners, but are sensitive to condition numbers [Wesseling, 2004]. 167 

The condition number is related to the heterogeneities considered and increases very rapidly 168 

with the variance. Semi-iterative methods such as subdomain methods are hybrid 169 

direct/iterative methods which can be good tradeoffs [Toseli and Widlund, 2005]. For iterative 170 

and semi-iterative methods, the convergence and the accuracy of the results depend on the 171 

condition number which can blow up at large scale for a high variance (σ2>4). Because the 172 

memory space is more critical than the CPU time, we chose an iterative multigrid method. We 173 

used a numerical library HYPRE and more precisely Boomer-AMG (Algebraic MultiGrid) 174 

whose advantages are to be free, heavily used, portable and parallel [Falgout, et al., 2005]. 175 

With this method, the CPU time is indeed not sensitive to the permeability variance. For a 176 

grid of 1.3 108 nodes with σ2=6.25, the flow computation requires around half an hour on a 177 

cluster of a 32 bi-processor AMD Opteron 2.2 GHz with 2 Go RAM each interfaced by 178 

Gigabit Ethernet.  179 

II.4. Transport simulation 180 

Transport is simulated by a particle tracker algorithm [Delay, et al., 2005]. Particle tracking is 181 

well suited for pure advection and advection-dominated transport processes because it does 182 

not introduce spurious numerical diffusion. Advection is simulated by a first order explicit 183 

scheme. We tried higher-order schemes which led to very small differences. Under this 184 

assumption of homogeneous isotropic diffusion, this method correctly models diffusion and 185 
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does not require any correction of the velocity term necessary for taking into account 186 

diffusion discontinuities [Delay, et al., 2005]. Between t and t+dt, a particle moves from 187 

positions M(t) to M(t+dt) by advection and diffusion:  188 

 ( ) ( ) ( )[ ] rZdtddttMvtMdttM ⋅⋅⋅⋅+⋅+=+ 2  189 

where ( )[ ]tMv  is the velocity at the position M, d is the diffusion coefficient, Z is a random 190 

number drawn from a Gaussian distribution of mean 0 and variance 1 and r is a unitary vector 191 

with uniformly distributed orientation. The time step evolves along the particle path according 192 

to the velocity magnitude of the crossed cells. More precisely, the time step is either 193 

proportional to the local advection time equal to the cell size lm divided by the maximum of 194 

the velocities computed on the cell borders noted −+−+ yyxx vvvv ,,,  in the x and y directions or 195 

to the diffusion time necessary to cross the cell:  196 

 ( ) ⎥
⎥
⎦

⎤

⎢
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N
dt m
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m

2
,
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min1 2

α
.  197 

Να is a positive integer representing the order of the time step number performed by the 198 

particle in the cell. In the simulations Να is set to 10, meaning that the particle makes of the 199 

order of 10 steps to cross the cell. The velocity ( )[ ]tMv  is obtained from a bilinear 200 

interpolation as it is the sole interpolation method that ensures mass conservation [Pollock, 201 

1988]. It is important to find the exit position of the particle from the cell in order that 202 

particles always move in the cell with the velocity characteristics of the current cell and not of 203 

the previous one [Pokrajac and Lazic, 2002]. The exit point and time from the cell are found 204 

by linear interpolations. Diffusion is simulated by adding a random displacement of length 205 

proportional to the square root of time and of the diffusion coefficient [Tompson and Gelhar, 206 

1990].  207 
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To avoid border effects, particles are introduced at a distance 0.05 Lx from the left border 208 

(input border) of the computational domain (figure 1) corresponding for Lx=8192 lm and 209 

Ly=16384 lm and λ=10 lm (10 cells by correlation length) to respectively 40 and 80 correlation 210 

lengths downstream from the fixed head boundary. Particles are stopped when arriving at the 211 

same distance upstream from the right border (output border). For all simulations, the 212 

injection window is a thin line perpendicular to the mean flow direction of length equal to 213 

3277 lm (i.e. 0.4 Ly or around 328 correlation lengths for λ=10 lm). Particles are injected with 214 

a uniform distribution within the injection window. The extension of the injection window is 215 

large enough to ensure a broad sampling of the velocity field but narrow enough to prevent 216 

particles from sampling the zones close to the no-flow boundary conditions [Salandin and 217 

Fiorotto, 1998]. The number of particles approaching the no-flow border of the domain by 218 

less than 15% of the domain dimension (120 correlation lengths) is recorded and found to be 219 

null. This “exclusion zone” close to the no-flow boundaries is shown on figure 1. The 220 

particle-tracking algorithm has been adapted for parallel simulations with the domain stored 221 

on the different processors [Beaudoin, et al., 2007]. The time necessary for the simulation 222 

transport was at most equal to the time required for the computation of flow.  223 

III. Dispersion computation, convergence and validation 224 

Simulations give the first two moments of the particle plume distribution ( ) ix t< >  and 225 

( )2
ix t< > , here expressed in the longitudinal direction x:   226 

 ( ) ( )∑
=

=><
pN

j

k
j

p
i

k tx
N

tx
1

1  (3) 227 
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with i the simulation number, ( )jx t  the abscissa of the particle j, k the moment order (1 or 2), 228 

and Np the number of particles. We compute a normalized dispersion coefficient by using the 229 

classical formula 230 

 ( ) ( ) ( )( )
dt

txtxd
u

tD iii
L

22

2
11 ><−><

=
λ

 (4) 231 

and discretize it on the successive time steps. The normalization factor uλ is logical in terms 232 

of dimension to obtain a non-dimensional result. It is further justified for σ2<1 by the first-233 

order longitudinal dispersion coefficient linear in uλ (equation 2). In the following, the term 234 

dispersion coefficient will refer to this normalized dispersion coefficient. We normalized the 235 

time t as well by the characteristic time λ/u needed for the flux to cross a correlation length 236 

and denote it λ/uttN = .  237 

III.1. Asymptotic dispersion coefficient 238 

We determine the asymptotic dispersion coefficient i
LAD  from the time derivative signal (4) 239 

according to the two following methods. Both methods rely on the late time behavior of the 240 

dispersion coefficient ( )N
i
L tD . The first method consists in averaging ( )N

i
L tD  over the time 241 

range 0.5 ,fb fbt t⎡ ⎡⎣ ⎣  over which ( )N
i
L tD  is observed to have reached its asymptotic limit, where 242 

fbt  is the first breakthrough time (time for which the first particle arrives at a distance of 243 

0.05Lx from the output border). The asymptotic dispersion coefficient is the average noted 244 

( )avDi
LA . The second method is a simple fit of ( )N

i
L tD  over the whole time range by the 245 

exponential function 246 

 ( ) ( ) ( )( )i
NN

i
LAN

i
L ttfitDtD 0/exp1 −−⋅≈  (5) 247 
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where ( )fitDi
LA  is the asymptotic dispersion coefficient. i

Nt 0  is a characteristic convergence 248 

time to the asymptotic regime. For the transverse dispersion coefficient, we derived the 249 

realization-based coefficient ( )N
i
T tD  by using the same methodology applying equations (3) 250 

and (4) where we replace x by y. Because of the absence of any systematic time evolution, we 251 

determine the asymptotic dispersion coefficient by averaging over the second part of the time 252 

range 0.5 ,fb fbt t⎡ ⎡⎣ ⎣  like for the longitudinal dispersion coefficient. Whatever the method, the 253 

key point is to simulate transport in a sufficiently large domain to observe the stabilization of 254 

dispersion on a time range long enough. The relevance of the asymptotic dispersion 255 

coefficient depends on the domain dimensions counted in terms of correlation length Lx/λ and 256 

Ly/λ.  257 

The mean and standard deviations of the dispersion coefficients as a function of time 258 

( ) ( )
SNiN

i
LNL tDtD ..1=>=<   and ( )[ ] ( ) ( )[ ] 2/12

..1..1
2

SS NiN
i
LNiN

i
LNL tDtDtD == ><−><=σ  and the 259 

mean of the asymptotic dispersion coefficients 
SNi

i
LALA DD ..1=>=<  are thereafter determined 260 

over NS different realizations. The parameters controlling the determination of the asymptotic 261 

dispersion coefficients are the domain dimensions Lx/λ and Ly/λ, the number of particles Np 262 

and the number of simulations NS. First simulations have shown that domains should be of 263 

dimensions (Lx/λ, Ly/λ) equal to (820,820) and (1640,820) for respectively 42 ≤σ  and 264 

25.62 ≥σ to have a long enough signal. We use these values to study the convergence with 265 

Np and NS and verify after that these dimensions are indeed large enough. We study 266 

successively the convergence as functions of the number of particles Np and of the number of 267 

simulations NS. Two averaging methods are possible leading respectively to the effective and 268 

ensemble dispersion coefficients. The effective dispersion is obtained by first computing the 269 

derivative of the standard deviation of the plume concentration within a simulation and 270 
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secondly by averaging the computed standard deviations over the NS simulations. The 271 

ensemble dispersion is obtained by first computing the two first moments of the plume 272 

concentrations over the NS simulations and by secondly computing the derivative of the 273 

standard deviation from the previous moments. The ensemble dispersion is larger than the 274 

effective dispersion as it measures the plume dispersion with respect to the plume position 275 

averaged over all simulations whereas the effective dispersion measures the plume dispersion 276 

in each simulation with respect to the simulation mean plume position [Dentz, et al., 2000].  277 

III.2. Convergence with the number of particles Np 278 

Figure 2 displays the dispersion coefficients ( )N
i
L tD  and ( )N

i
T tD  for number of particles Np 279 

ranging from 100 to 10000. We choose an example in the most heterogeneous case (σ2=9) 280 

without diffusion (pure advection). For Np=100 (crosses), the dispersion coefficients are much 281 

more variable than for Np=1000 (stars). Increasing the number of particles over 1000 does not 282 

change the global tendencies of the dispersion coefficients. Finally between 5000 and 10000, 283 

differences are very small. At a given time, the dispersion coefficient can be well approached 284 

with Np=10000 particles. We computed also the asymptotic dispersion coefficients ( )avDi
LA  285 

and ( )avDi
TA  according to the number of particles Np in the most heterogeneous cases 286 

(σ2=6.25 and 9) for Peclet numbers Pe ranging from 100 to ∞. Pe=∞ corresponds to the pure 287 

advection case (without diffusion) (figure 3). For 2000≥pN , ( )avDi
LA  and ( )avDi

TA  do not 288 

vary much with the number of particles. More precisely, they vary respectively by less than 289 

5% and 10% whatever the case. There is no systematic tendency either with the number of 290 

particles or with the Peclet number. We kept for the pure-advection case 10000 particles and 291 

for the advection-diffusion case 2000 particles. As convergence is not faster without diffusion 292 

as shown by figure 3, this choice does not advantage the pure advection case more than the 293 
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5% and 10% precisions previously found. The global number of particles can be converted 294 

into number of particles by correlation length at injection time. For all cases the injection 295 

window was set to 3277 lm. For the pure-advection case Np=10000, the number of particles by 296 

cell is 3 on average and the number of particles by correlation length is 30 on average because 297 

there are 10 cells by correlation length (λ=10 lm). For the advection-diffusion case Np=2000, 298 

the number of particles by cell is 0.6 on average and with λ=10 lm, the number of particles by 299 

correlation length is 6 on average.  300 

III.3. Convergence with the number of simulations NS 301 

We study the convergence of the average and standard deviation of the dispersion coefficients 302 

with the number of simulations NS for the most heterogeneous cases σ2=6.25 and 9. The mean 303 

longitudinal asymptotic dispersion coefficient is very close to the mean of the dispersion 304 

coefficient taken at a given time tN=600 (figure 4a, solid and open squares compared to thick 305 

solid and dashed grey lines). The asymptotic dispersion coefficient converges very rapidly for 306 

20≥SN . The largest difference between values for 20 and 100 simulations is of the order of 307 

2.5%. The standard deviation of the longitudinal dispersion coefficient at the same given time 308 

tN=600 ( )( )600=NL tDσ  displays relative larger variations with the number of simulations NS 309 

(figure 4b, lines and symbols). The maximal variation between NS=20 and NS=100 is 20%. As 310 

variations are not monotonous, the value for the largest number of simulations cannot be more 311 

precise than 20%. We note that both the variability of the average asymptotic dispersion 312 

coefficients and the standard deviation of the dispersion coefficient decrease with more 313 

diffusion (smaller Peclet numbers). Convergence of the longitudinal dispersion coefficient 314 

with the number of simulations is thus faster with more diffusion. 315 
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Tendencies for the transverse dispersion coefficient are quite different. For 20≥SN , the 316 

asymptotic dispersion coefficient is very close to zero for the pure-advection case (figure 5a) 317 

whereas the standard deviation of the transverse dispersion coefficient at a given time is much 318 

larger around 0.6 (figure 5b). More diffusion corresponding to smaller Peclect numbers 319 

induces larger transverse asymptotic dispersion and standard deviation. The asymptotic 320 

transverse dispersion coefficient (figure 5a) converges quickly and its variations for 20≥SN  321 

are less than 10% of its mean value. The standard deviation (figure 5b) still varies non 322 

monotonously and the amplitude of its variations can reach 25% of its mean value. 323 

In the two previous sections, we have fixed the mesh size lm and analyzed the convergence of 324 

the random walker and the Monte-Carlo simulations. For a given simulation, we verified 325 

numerically that the random walker converges when we increase the number of particles. 326 

More precisely, the dispersion coefficients DL(t) and DT(t) converge. We can assume a 327 

convergence in an appropriate norm; in view of the numerical results, we can also assume a 328 

uniform convergence, independent of the simulations. For a given number of particles, we 329 

verified numerically that the Monte-Carlo simulations converge when we increase the number 330 

of simulations. More precisely, we observe the convergence of the approximate first moments 331 

of the dispersion, computed with a given number of particles. Therefore, we can assume that, 332 

for a given mesh size lm, our numerical Monte-Carlo simulations give an accurate estimation 333 

of the first moments of the two dispersion functions. However, in our simulations, the second 334 

moments do not converge correctly. There may be different reasons for this lack convergence. 335 

First the number of Monte-Carlo simulations NS may not be large enough. Secondly 336 

dispersion coefficient may be affected by the finite volume method used for flow computation 337 

and the use of a bilinear interpolation for the velocity in the particle tracker. Thirdly, it may 338 

come from the generation of the permeability field from a truncated Fourier expansion and the 339 

assumption of a constant permeability in each grid cell. The same lack of convergence of the 340 
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dispersion fluctuations has already been observed and related to the finite number of Fourier 341 

modes (figure 5 of [Eberhard, 2004]).  342 

In the following, we perform 100 simulations to ensure convergence of the first moments DLA 343 

and DTA for each parameter set. We keep the same parameters for all simulations. As the 344 

variations of both the longitudinal and transverse dispersion coefficients are stronger for σ2=9 345 

than for σ2=6.25, we checked that convergence is at least as good for lower heterogeneities 346 

corresponding to 25.62 ≤σ . 347 

III.4. Convergence of dispersion coefficients with time 348 

The domain dimensions were chosen in order to have a stabilization of the mean dispersion 349 

coefficient as a function time ( )NL tD  over at least half the time duration of the simulation, the 350 

maximal simulation time fbt  being the first breakthrough time (time for which the first 351 

particle arrives at a distance of 0.05Lx from the output border). The asymptotic regime is 352 

maintained over around 500 time units or equivalently on a spatial range of 500 correlation 353 

lengths. The simulations performed on domain of longitudinal dimension Lx=819,2 λ with 354 

λ=10 lm were large enough for 42 ≤σ . For σ2=1, the asymptotic regime is reached after some 355 

tens of correlation lengths (figure 6a). However for 25.62 ≥σ , domains had to be twice 356 

longer (Lx=1638,4 λ) to obtain the same stabilization time range (figure 6b). Such long 357 

stabilization times have also been observed in systems made of highly heterogeneous 358 

inclusions [Jankovic, et al., 2006]. Large domain dimensions are required not only for large 359 

values of σ2 but also for smaller values of σ2 (values around 1), although it is not obvious on 360 

figure 6a. In fact we performed the same simulations for domains of dimensions Lx=102,4 λ 361 

by Ly=51,2 λ and found that the asymptotic regime is far from being reached although the 362 

number of exploitable correlation lengths (~80) is large enough. There may be two reasons. 363 



  2D asymptotic dispersion 

 17 

First the asymptotic regime is difficult to identify over some tens of correlation lengths. 364 

Secondly, the injection window is smaller (20 correlation lengths at Ly=512 lm compared to 365 

327 at Ly=8192 lm) inducing from the beginning a lower sampling of the velocity field and a 366 

larger convergence time to the asymptotic regime.  367 

The mean ( )NL tD  and the confidence interval at 95% derived from the mean and standard 368 

deviation are represented on figure 6 (solid and dashed lines). ( )N
i
L tD  displays a large 369 

variability but no definite trend whatever σ2 as shown by figure 6 (square and circle symbols). 370 

The average ( )NL tD  of the dispersion coefficient over 100 simulations represented by the 371 

black line smoothens the variations and indeed reaches a constant value at small times (tN>30) 372 

for σ2=1 (figure 6a) and at larger times (tN>400) for σ2=9 (figure 6b). The asymptotic regime 373 

is well approached at least during the second half of the simulation time, i.e. in the interval 374 

0.5 ,fb fbt t⎡ ⎡⎣ ⎣ . The realization-based ( )tDi
T  displays a strong variability around 0 but no trend, 375 

not even at small times (square and circle points on figure 7). The average over simulations 376 

(solid line of figure 7) does neither show any trend whereas the standard deviation (dashed 377 

lines of figure 7) is large compared to the average values.  378 

We note that several studies have used the apparent dispersion coefficient 379 

( ) ( ) ttxtDapp /5.0 2 ><=  instead of the derivative (4) to remove the oscillations of the time 380 

derivative [Schwarze, et al., 2001; Trefry, et al., 2003]. Even though appD  tends to the 381 

effective dispersion coefficient (4) for large times, the differences between these two 382 

quantities are important and remain for very large times especially in the high variance case 383 

as shown by figure 6 on the simulation averages (dashed-dotted lines compared to solid lines). 384 

We thus decide to determine the asymptotic dispersion coefficient i
LAD  from the time 385 

derivative signal (4). 386 
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III.5. Validation 387 

We validate the numerical procedures by comparing them to theoretical and other numerical 388 

existing results. First, for σ2<1, we compare numerical results to first-order theoretical results 389 

of the correlation functions of the longitudinal and transverse velocity fields (equations 9 and 390 

10 of [Rubin, 1990]) and of the asymptotic dispersion coefficients. The velocity correlation 391 

function is highly close at less than 5% to the first-order prediction for σ2<1 and is close at 392 

less than 1.5% to the results of Salandin and Fiorotto [1998] for 1<σ2<4 (figure 8).  393 

For the asymptotic longitudinal dispersion coefficient, the normalization by λu enables a 394 

direct comparison of DLA numerical results with σ2 for σ2<1 with equation (2). The agreement 395 

is very good as, for σ2=0.25, equation (2) and numerical simulations give respectively 0.25 396 

and 0.26. We compare also our results of longitudinal asymptotic dispersion coefficient in the 397 

interval 1<σ2<4 to the variation of DLA with σ obtained by Salandin and Fiorotto [1998]. 398 

Salandin and Fiorotto [1998] found βσ∝LD  with β=2.06, 2.19, 2.29 and 2.35 respectively 399 

for σ2 in the intervals [0.05,1], [1,2], [2,3] and [3,4]. We find β=2.07, 2.37 and 2.62 for σ2 in 400 

the intervals [0.05,1], [1,2.25], and [2.25,4]. We find a close agreement in the first interval but 401 

a faster increase of the asymptotic dispersion coefficient for σ2>1. This could be linked to the 402 

number of correlation lengths limited to 20 in Salandin and Fiorotto [1998]. For advective-403 

diffusive transport, we validate the algorithm against the classical analytical solution obtained 404 

in the homogeneous medium case.  405 
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IV. Results of asymptotic dispersion coefficients 406 

IV.1. Pure advection (Pe=∞) 407 

We determine the effect of the resolution scale defined by the number of cells by correlation 408 

length λ/lm. We perform the simulations at λ/lm =5, 10 and 20 where previous simulations 409 

used a maximum of 8 cells per correlation length (Table 1). We verify that the asymptotic 410 

longitudinal dispersion coefficient depends linearly on λ for all values of σ2 (figure 9) 411 

justifying furthermore the normalization of the dispersion coefficients by λu. It also shows the 412 

weak dependency of the asymptotic dispersion coefficient on the resolution of the 413 

discretization even for high heterogeneities. 10 cells by correlation length give very similar 414 

results as 5 or 20 cells by correlation length. 415 

The asymptotic regime has been reached and maintained over at least 500 correlation lengths 416 

whatever the value of σ2 (figure 10) and the asymptotic values of the dispersion coefficients 417 

have been computed according to the procedure described in the previous section (figure 11). 418 

Both methodologies of exponential fitting and averaging lead to similar results within an 419 

interval of 0% to 3%. The first-order estimate of the dispersion coefficient (2) remains close 420 

to the numerical value even for σ2=1 and 2.25 where it is lower by respectively 10% and 421 

25%. This good performance of first-order results for values of σ2 significantly larger than 1 422 

has been previously observed and explained [Bellin, et al., 1992; Dagan, et al., 2003]. The 423 

independent linearizations of flow and transport induce opposite deviations from linear 424 

theoretical results and may partly cancel out each other. This conclusion was confirmed on 425 

slightly different heterogeneous media consisting of spherical inclusions in a homogeneous 426 

medium [Dagan, et al., 2003]. For larger heterogeneity, the departure from the first-order 427 

results increases with σ2. Numerical results are respectively 50%, 90% and 150% larger than 428 
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the linear estimates for σ2=4, 6.25 and 9. DLA(av) is well represented by the approximate 429 

function 42 2.07.0 σσ +  for large heterogeneities (σ2>1) (dashed curve on figure 11).  430 

For transverse dispersivity, numerical results show some variability around 0 without any 431 

systematic trend neither for the realization-based result nor for the average (figures 7 and 12). 432 

The similar transverse dispersion evolution with time for σ2=6.25 and 9 comes from the fact 433 

that realizations are performed with the same set of seeds for the random generator. The 434 

correlation patterns are thus identical while the magnitude of the heterogeneity changes. The 435 

asymptotic dispersion coefficients computed by averaging over the second half of the time 436 

chronicle DTA(av) are close to zero without being systematically positive or negative 437 

(figure 13) and the magnitude of the standard deviation is much larger than the average. 438 

These results lead us to conclude that the asymptotic transverse dispersion coefficient is zero 439 

on average whatever σ2. This confirms theoretical conclusions obtained by volume averaging 440 

[Attinger, et al., 2004].  441 

Figures 6 and 7 show a large variability around the average both for the longitudinal and 442 

transverse dispersion coefficients whatever the heterogeneity represented by the value of σ2. 443 

The standard deviation of the transverse dispersion coefficient converges (figure 14b) within 444 

the computation time, whereas the convergence is not obvious for the standard deviation of 445 

the longitudinal dispersion coefficient (figure 14a). The apparent increase of the longitudinal 446 

dispersion coefficient remains limited to at most 30% in the time interval [tfb/2,tfb], which is 447 

close to the imprecision of 20% obtained in section III.3 because of the use of a limited 448 

number of simulations (NS). Convergence would require both more realizations and longer 449 

systems. As the increase remains limited and as ( )( )NL tDσ  is not the main objective of the 450 

study, we did not go further on its characterization.  451 
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Finally, we derive from the exponential fit of the longitudinal dispersion coefficient the 452 

characteristic convergence time to the asymptotic regime tN0 (figure 15). tN0 does not have an 453 

absolute meaning as it depends on the width of the injection window. We rather use tN0 to 454 

compare convergence time between different values of σ2 in the same conditions. tN0 455 

increases exponentially with the permeability variance contrarily to the first-order theory 456 

prediction according to which tN0 does not depend on the medium heterogeneity σ2.  457 

IV.2. Advection and diffusion (Pe<∞) 458 

We computed the dispersion coefficient DL(tN) for the two Peclet number Pe=100 and 1000. 459 

DL(t) reaches its asymptotic regime whatever the value of σ2 (figure 16). The time to reach 460 

the asymptotic dispersion tN0 is smaller than in the pure-advection regime (figure 15) even if 461 

tN0 values are highly dispersed. Diffusion modifies only slightly the asymptotic longitudinal 462 

dispersion coefficient DLA for 12 ≤σ  and let it decrease for σ2>1 (Table 2). For small values 463 

of σ2 ( 12 ≤σ ), the influence of diffusion is negligible as previously found [Fiori, 1996]. For 464 

σ2=1, the additional dispersion induced by diffusion is not significant because the asymptotic 465 

dispersion coefficient for Pe=∞ (larger than 1) is ten times larger than 1/Pe. For 12 >σ , the 466 

asymptotic dispersion coefficient decreases surprisingly with more diffusion. More diffusion 467 

induces less dispersion. The decrease can be significant. For σ2=6.25, DLA is 25% lower at 468 

Pe=100 than its value at Pe=∞ (pure advection). For large heterogeneities, diffusion reduces 469 

the global dispersion. This behavior was expected by Gelhar [1993] (pages 221-222) and de 470 

Arcangelis et al. [1986] and may be explained by the following argument also invoked for 471 

percolation systems [Koplik, et al., 1988]. Large dispersion is induced by the widely-scattered 472 

velocity distribution. Diffusion introduces a cut-off to this distribution thus narrowing it and 473 

letting in turn the dispersion coefficient decrease. In other words, diffusion extracts particles 474 

from the very slow velocity zones and restricts the dispersion of particle in the medium. The 475 
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transverse asymptotic dispersion coefficient DTA keeps a more classical behavior by 476 

increasing with more diffusion (Table 2). However the increase of DTA can be much larger 477 

than the sole diffusion contribution 1/Pe. For large heterogeneities σ2=6.25 and for Pe=100, 478 

DTA is 20 times larger than 1/Pe. The effect of diffusion and advection cannot be simply 479 

superposed but interact to produce a larger transverse dispersion. 480 

V. Conclusion 481 

We determine the asymptotic dispersion coefficients for 2D exponentially correlated 482 

lognormal permeability fields on a broad range of lognormal permeability variance σ2 483 

( [ ]9,25.02 ∈σ ). We use parallel computing for simulating fluid flow and particle transport on 484 

large domains of typical dimension from 800 to 1600 correlation lengths with a resolution of 485 

10 cells by correlation length, where lm is the cell characteristic dimension. Such large 486 

domains turned out to be necessary to observe the asymptotic regime on a sufficiently long 487 

time range for determining unambiguously the asymptotic dispersion coefficients. The 488 

asymptotic longitudinal and transverse dispersion coefficient DLA and DTA have been 489 

estimated on a realization basis by averaging over a traveled distance of at least 400 490 

correlation lengths. We have tested an alternative derivation methodology for the asymptotic 491 

longitudinal dispersion coefficient DLA by fitting the dispersion coefficient by an exponential 492 

function. Estimates of DLA by both methodologies lead to very similar values. The 493 

characteristic time given by the exponential fit gives an estimate of the convergence speed to 494 

the asymptotic regime. Simulations show that it increases exponentially with the 495 

heterogeneity σ2 and decreases with diffusion.  496 

For pure advection (Pe=∞), the asymptotic longitudinal dispersion DLA is larger than the first-497 

order estimate for high heterogeneity. More precisely, for σ2 equal to 4, 6.25 and 9, DLA is 498 

larger by respectively 50%, 90% and 150% than the linear estimates. For σ2>1, DLA is well 499 
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fitted by the function 42 2.07.0 σσ +  showing a quadratic evolution in σ2 for large 500 

heterogeneities. This departure from the first-order theory is probably related to the extreme 501 

flow channeling observed for high heterogeneity [Le Borgne, et al., submitted; Moreno and 502 

Tsang, 1994; Salandin and Fiorotto, 1998]. Whatever the heterogeneity level, the asymptotic 503 

transverse dispersion coefficient is always zero as predicted by first-order theory for low 504 

heterogeneity and by volume averaging [Attinger, et al., 2004].  505 

The addition of diffusion to advection leads to two very different behaviors for longitudinal 506 

and transverse dispersions. For large heterogeneities (σ2>1), diffusion induces a significant 507 

longitudinal dispersion decrease and a transverse dispersion increase larger than expected. At 508 

most, for a Peclet number of 100 (advection on average hundred times larger than diffusion) 509 

and a permeability variance σ2=9, the longitudinal dispersion decreases by a factor of 2 and 510 

the transverse dispersion is 7.5 times larger than the local diffusion.  511 
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Figure captions 616 

 617 

Figure 1: Permeability field stored on four processors, boundary conditions, injection and 618 

exclusion zones. The characteristics of the computational domain are Lx=2048.lm=204,8.λ, 619 

Ly=1024.lm=102,4.λ, λ=10.lm and σ2=2.25 where λ is the correlation length and lm is the 620 

grid cell size. Permeability is increasing from blue to red. Computational domains used for 621 

asymptotic dispersion determination where 4 to 8 times longer and larger than this one.  622 

Figure 2: a) Longitudinal and b) transverse dispersion coefficients as functions of time for 623 

increasing particle numbers with σ2=9, λ=10 lm and Lx=819,2.λ and Ly=819,2.λ (pure 624 

advection case). 625 

Figure 3: Asymptotic longitudinal (a) and transverse (b) dispersion coefficients as functions 626 

of the particle number Np for Lx=1638,4 λ and Ly=819,2 λ. In this figure as well as in the 627 

following figures, the term advection in the legend refers to the pure advection case without 628 

diffusion and the legend is the same for both graphs.   629 

Figure 4: a) Asymptotic longitudinal dispersion coefficient and b) standard deviation of the 630 

dispersion coefficient at a given time tN=600 as functions of the number of simulations for 631 

Lx=1638,4 λ and Ly=819,2 λ. In a), the dispersion coefficient DL for tN=600 has been added 632 

for the pure advection cases. tN=600 is taken in the second half of the signal as the full signal 633 

length is around tN=1000. 634 

Figure 5: a) Asymptotic transverse dispersion coefficient and b) standard deviation of the 635 

dispersion coefficient at a given time tN=600 as functions of the number of simulations. Same 636 

parameters as in figure 6. 637 
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Figure 6: Normalized longitudinal dispersion coefficient for single realizations ( )N
i
L tD  638 

(points), their averages ( )NL tD  over 100 realizations (lines) and the confidence interval at 639 

95% on the dispersion coefficient (dashed line) (σ2=1 and 9, pure advection case). The 640 

dashed-dotted line represents the normalized apparent dispersion coefficient 641 

( ) ( ) ttxtDapp /5.0 2 ><= . Computational domain size are for σ2=1 (a) Lx=Ly=819,2 λ and 642 

for σ2=9 (b) Lx=1638,4 λ and Ly=819,2 λ. 643 

Figure 7: Normalized transverse dispersion coefficient. Same parameters as in figure 6. 644 

Figure 8: Velocity variance uxx and uyy as functions of σ2 obtained analytically in 645 

Rubin [1990] and numerically in the present study and in Salandin and Fiorotto [1998]. 646 

Figure 9: Asymptotic longitudinal dispersion coefficient as a function of the correlation 647 

length for the pure advection case. Lines are linear fit through 0. Same parameters as in 648 

figure 6. 649 

Figure 10: Longitudinal mean dispersion coefficient as a function of tN for the pure advection 650 

case (time in terms of correlation scales crossed by the plume). Dashed lines mark the 651 

asymptotic coefficients. Same parameters as in figure 6. 652 

Figure 11: Normalized longitudinal asymptotic effective dispersion coefficient DLA as a 653 

function of the variance of the log conductivity with pure advection. Vertical bars on data 654 

points represent the standard deviation on each side of the data point. DLA(av) and DLA(fit) 655 

are obtained respectively by averaging and fitting by an exponential function. Theoretical 656 

predictions [Gelhar, 1993] are represented by the line. The dashed curve stands for 657 

0.7 42 2.0 σσ + . Same parameters as in figure 6. 658 
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Figure 12: Normalized transverse dispersion coefficient as a function of the normalized time 659 

in the pure advection case. Same parameters as in figure 6. 660 

Figure 13: Normalized transverse asymptotic dispersion coefficient for the pure advection 661 

case.  662 

Figure 14: Standard deviation of a) the longitudinal and b) transverse dispersion coefficients 663 

in the pure advection case. 664 

Figure 15: Characteristic convergence time to the asymptotic regime tN0. 665 

Figure 16: Longitudinal dispersion coefficient as a function of normalized time for σ2 ≥ 4.  666 
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 FCM TP TCM σ2 λ/lm Lx/lm Ly/lm Nm MC  PT  

[Rubin, 1990] 1st A PT 0.79      300 

[Bellin, et al., 1992] full A PT [ ]6.1,0  8 36 18 4 104 1500PTMC =⋅  

[Cvetkovic, et al., 1996] full A PT [ ]4,0  4 24 18 7 103 500-1000 1 

[Salandin and Fiorotto, 1998] full A PT [ ]4,05.0  2,4,8 64 64 2.6 105 500 40 

[Schwarze, et al., 2001] 1st AD PT [ ]1,1.0  50 5000   3200 1 

[Hassan, et al., 2002] full A PT [ ]25.2,25.0 5 50 25 3 104 2000-3000  

[Dentz, et al., 2002] 1st AD PT [ ]2,1.0  20 1500   2000 100 

[Trefry, et al., 2003] full Aα NS [ ]4,25.0  8 
2 

256-1024 64-256 106 1  

this study full AD PT [ ]8,25.0  10 819-1638 819 7 107-
1.4 108 

100 2000

Table 1: Characteristics of 2D flow and transport simulations. FCM stands for flow computation method. It can be 1st order when flow 

is obtained by first order approximation of the flow equation or full when flow is obtained by solving directly the full discretized flow 

equation. TP is the transport processes accounted for (A for advection, D for diffusion, α for dispersion). TCM stands for transport 

computation method (PT for particle tracking, NS for numerical scheme). Nx and Ny are the number of correlation lengths within the 

domain respectively in the main direction of flow and perpendicularly to it. Nm is the total number of cells ( 2/ myxm lLLN = ). MC 

realizations is the number of Monte-Carlo realizations per parameter set. PT trajectories is the total number of analyzed trajectories 

per realization when particle tracking is used.  
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( ) ( )advectionDPeD LALA /  ( )PeDTA   

Pe=102 Pe=103 Pe=102 Pe=103

σ2=0.25 1.08 1.06 0.01 0.00 

σ2=1 1.05 1.06 0.00 -0.01 

σ2=2.25 0.98 1.01 -0.06 0.05 

σ2=4 0.90 1.01 -0.06 -0.09 

σ2=6.25 0.75 0.96 0.20 0.14 

σ2=9 0.57 0.84 0.24 0.16 

Table 2: Asymptotic longitudinal dispersion coefficient normalized by its pure advective 

counterpart ( ) ( )advectionDPeD LALA /  and asymptotic transversal dispersion coefficient as 

functions of σ2 and Pe. Dispersion coefficients are obtained with the averaging method.
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Figure 1: Permeability field stored on four processors, boundary conditions, injection and 

exclusion zones. The characteristics of the computational domain are Lx=2048.lm=204,8.λ, 

Ly=1024.lm=102,4.λ, λ=10.lm and σ2=2.25 where λ is the correlation length and lm is the grid 

cell size. Permeability is increasing from blue to red. Computational domains used for 

asymptotic dispersion determination where 4 to 8 times longer and larger than this one.   
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Figure 2 : a) Longitudinal and b) transverse dispersion coefficients as functions of time for 

increasing particle numbers with σ2=9, λ=10 lm and Lx=819,2.λ and Ly=819,2.λ (pure advection 

case). 
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Figure 3: Asymptotic longitudinal (a) and transverse (b) dispersion coefficients as functions of 

the particle number Np for Lx=1638,4 λ and Ly=819,2 λ. In this figure as well as in the following 

figures, the term advection in the legend refers to the pure advection case without diffusion and 

the legend is the same for both graphs.   
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Figure 4: a) Asymptotic longitudinal dispersion coefficient and b) standard deviation of the 

dispersion coefficient at a given time tN=600 as functions of the number of simulations for 

Lx=1638,4 λ and Ly=819,2 λ. In a), the dispersion coefficient DL for tN=600 has been added for 

the pure advection cases. tN=600 is taken in the second half of the signal as the full signal length 

is around tN=1000. 
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Figure 5: a) Asymptotic transverse dispersion coefficient and b) standard deviation of the 

dispersion coefficient at a given time tN=600 as functions of the number of simulations. Same 

parameters as in figure 6. 



  2D asymptotic dispersion 

 39 

a) 

0 250 500
0.0

0.5

1.0

1.5

2.0
D

L(t N
)

tN

σ2=1

 

b) 

0 500 1000
0

10

20

30

40

 

( )
( )

fb

t

t

i
L

i
L t

dttD
avD

fb

fb

5.0
5.0∫=

 DL

 DL
i'(t)

 DL
i(t)

 DL+1.96σ(DL)
 DL-1.96σ(DL)
 Dapp(t)

σ2=9

D
L(t N)

tN

 

Figure 6: Normalized longitudinal dispersion coefficient for single realizations ( )N
i
L tD  (points), 

their averages ( )NL tD  over 100 realizations (lines) and the confidence interval at 95% on the 

dispersion coefficient (dashed line) (σ2=1 and 9, pure advection case). The dashed-dotted line 

represents the normalized apparent dispersion coefficient ( ) ( ) ttxtDapp /5.0 2 ><= . 

Computational domain size are for σ2=1 (a) Lx=Ly=819,2 λ and for σ2=9 (b) Lx=1638,4 λ and 

Ly=819,2 λ.
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Figure 7: Normalized transverse dispersion coefficient. Same parameters as in figure 6. 
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Figure 8: Velocity variance uxx and uyy as functions of σ2 obtained analytically in Rubin [1990] 

and numerically in the present study and in Salandin and Fiorotto [1998].  
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Figure 9 : Asymptotic longitudinal dispersion coefficient as a function of the correlation length 

for the pure advection case. Lines are linear fit through 0. Same parameters as in figure 6.  
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Figure 10: Longitudinal mean dispersion coefficient as a function of tN for the pure advection 

case (time in terms of correlation scales crossed by the plume). Dashed lines mark the asymptotic 

coefficients. Same parameters as in figure 6. 
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Figure 11: Normalized longitudinal asymptotic effective dispersion coefficient DLA as a function 

of the variance of the log conductivity with pure advection. Vertical bars on data points represent 

the standard deviation on each side of the data point. DLA(av) and DLA(fit) are obtained 

respectively by averaging and fitting by an exponential function. Theoretical predictions 

[Gelhar, 1993] are represented by the line. The dashed curve stands for 0.7 42 2.0 σσ + . Same 

parameters as in figure 6. 
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Figure 12 : Normalized transverse dispersion coefficient as a function of the normalized time in 

the pure advection case. Same parameters as in figure 6. 
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Figure 13 : Normalized transverse asymptotic dispersion coefficient for the pure advection case.  
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Figure 14 : Standard deviation of a) the longitudinal and b) transverse dispersion coefficients in 

the pure advection case. 
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Figure 15 :Characteristic convergence time to the asymptotic regime tN0.  
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Figure 16: Longitudinal dispersion coefficient as a function of normalized time for σ2 ≥ 4.  

 


