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The results of an experimental study of limestone assimilation by hydrated basaltic 

magmas in the range 1050-1150°C, 0.1–500 MPa are reported. Alkali basalts doped with 

up to 19 wt% of Ca,Mg-carbonates were equilibrated in internally heated pressure 

vessels and the resulting phase relationships are described. The major effects of 

carbonate incorporation are: 1) generation of CO2-rich fluid phases; 2) change in 

liquidus phase equilibria; the crystallization of Ca-rich clinopyroxene is favored and the 

other phases (e.g. olivine, plagioclase), present in the absence of carbonate assimilation, 

are consumed. As a consequence of the massive clinopyroxene crystallization, the 

residual melt is strongly silica-depleted and becomes nepheline-normative. 

Compositional and mineralogical evolutions observed in Mt.Vesuvius eruptive products 

match those documented in our experiments with added carbonates, suggesting the 

possibility that carbonate assimilation increased during the last 25ka of activity. In 

Central-Southern Italy, carbonate assimilation at shallow levels probably superimposes 

on deeper source heterogeneities. 

 

 

 

1. Introduction 

 

Daly (1910) first proposed that alkali-rich, desilicated magmas could be generated by 

assimilation of sedimentary carbonates. The desilication of the magma was suggested to be a 

consequence of limestone dissolution in the magma accompanied by pyroxene crystallization 

(Daly 1910). Such a mechanism was mainly deduced from the frequent association between 

alkaline magmas and carbonate rocks (marble, limestone). Since 1910, this carbonate 

assimilation hypothesis has been vigorously debated by means of numerous field and 

experimental studies. Despite numerous descriptions of basaltic intrusions in carbonate rocks 

showing clear magma-limestone exchanges with silica-depletion of the residual liquid (Daly 

1910; Rittmann 1933; Shand 1945), Daly’s hypothesis was mainly discarded on the basis of 

few experimental studies on simple synthetic compositions, which are summarized in Wyllie 

(1974). In brief, such studies showed that a transition from “granitic” to “feldspathoidal” 

liquids (i.e. over-saturated to under-saturated in silica, in the sense of Peccerillo 2005a) by 

limestone assimilation was precluded by the existence of a thermal barrier (Watkinson and 

Wyllie 1969). Following these studies, limestone assimilation was therefore relegated to a 

very local process, merely restricted to the vicinity of the side-wall and unable to significantly 
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affect the whole magma body. From a geochemical point of view, the distinctive trace 

elements and isotopic signature of alkaline magmas has been interpreted in terms of deep 

source heterogeneities, rather than of shallow carbonate assimilation (Foley 1992; Buhn and 

Trumbull 2003). The current dominant viewpoint attributes the origin of silica-undersaturated 

alkaline magmatic suites to melting of heterogeneously enriched mantle regions (Wyllie 1974; 

Thibault et al. 1992; Foley 1992; Buhn and Trumbull 2003; Elkins-Tanton and Grove 2003). 

However, some recent petrological studies have documented in details the effects of carbonate 

assimilation by magmatic dikes intruding limestone or marble series (Baker and Black 1980; 

Wenzel et al. 2002; Barnes et al. 2005 and references therein, Coulson et al. 2007). Magma 

contamination is marked by the overgrowth of Ca-rich phases (mainly calcic clinopyroxene, 

but also Ca-amphibole, wollastonite, scapolite, grossular-rich garnet, etc.) on primary 

minerals (essentially olivine); as a result, the magma becomes progressively depleted in silica 

and enriched in alkali (Baker and Black 1980; Barnes et al. 2005). These interactions are 

mostly described at the meter scale; however they affect plutonic bodies up to several 

kilometers wide, and degrees of assimilation of carbonate rocks in the range of 20 wt% or 

higher have been proposed (Barnes et al. 2005). Such studies clearly show that previous 

conclusions about the negligible importance of carbonate assimilation need to be re-evaluated. 

In this paper, we first re-examine experimentally the mechanism of carbonate assimilation by 

basaltic magmas.  Second, we use the magma compositions erupted by Italian volcanoes to 

test limestone assimilation as a possible natural differentiation mechanism. The widespread 

presence of limestone and dolostone in the sedimentary basement (5 to 20 km thick), the 

abundance of high temperature skarns in the eruptive products and the important CO2 

emissions make carbonate assimilation a possible process occurring in the plumbing system 

of Italian volcanoes (Iacono Marziano et al. 2007). 

 

2. Experimental and analytical methods 
 

2.1 Starting materials and strategy 

 

The experiments were performed on two natural basalts from Stromboli volcano (Aeolian 

Islands, Italy), ST18 and PST9. The selected basalts, which represent two of the most 

primitive products from the recent activity of this volcano (Peccerillo 2001; Di Carlo et al. 

2006), are among the few primitive compositions available in Italy that are close to silica-

saturation. Stromboli is seated on a thin continental crust supposedly devoid of sedimentary 
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carbonate rocks (Bonardi et al. 2001). The two chosen basalts can therefore be considered as 

representative of liquids that did not experience carbonate assimilation. Recent volcanic 

products of Stromboli share many geochemical features with the magmas of the Campanian 

Province, particularly Mt. Vesuvius (Peccerillo 2001). However, in contrast to Campanian 

volcanoes, Stromboli does not emit strongly silica-undersaturated magmas. Both starting 

basalts are indeed nearly silica-saturated and alkali-rich (Tables 1-2). The shoshonitic 

composition (ST18) has a higher K/Na ratio than the high-K calc-alkaline one (PST9). The 

CaO content is higher in PST9 than in ST18. 

San Carlos olivine (Fo91) was added in selected runs (#7 and #8) to adjust the MgO content of 

the starting bulk silicate composition to the most primitive melt inclusions found in volcanic 

products of Central-Southern Italy (ca. 9-10 wt %; Marianelli et al. 1995; Kamenetsky et al. 

1995). To investigate the consequence of different degrees of carbonate assimilation on basalt 

phase relations, variable amounts of Ca- and Mg-carbonate were systematically added to the 

silicate component. Pure Ca-marble from Carrara (Italy) and synthetic Mg-carbonate were 

used in various proportions (Tables 1-2). The amount of added carbonates ranged from 0 to 

19 wt% of the total charge. For most experiments, 1-3 wt% water was added, encompassing 

the range of water content in most primitive melts found in Central-Southern Italian 

volcanoes, such as Mt. Vesuvius (Marianelli et al. 2005). In addition, the effect of water on 

the mechanisms of assimilation was investigated by performing both anhydrous runs (#1 and 

#2) and water-rich runs in which between 4-5 wt% (#4 and 5) and 5-6wt% water was added 

(#3).  

This study is aimed at the experimental characterization of the process of carbonate 

assimilation by mafic magmas in general. Experimental variables considered include the 

magma composition of the magma (in particular the alkali and MgO contents), the pressure, 

the temperature, the water content, and the Mg content of the carbonate. 

 

2.2  Experiments 

 

The effects of carbonate assimilation were essentially examined at moderate pressures and in 

presence of water (Table 1 and 2). A pressure of 200 MPa was adopted for most experiments 

(run # 4, 5, 6, 7 and 8), which is consistent with an average depth of crustal magma storage 

beneath Italian volcanoes mostly between 3 and 10 km (Barberi and Leoni 1980; Auger et al. 

2001; Chiarabba et al. 1997; Marianelli et al. 2005; Di Carlo et al. 2006). A few experiments 

were also performed at 500 MPa (run # 3) to test the influence of pressure and of high water 
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contents on the carbonate assimilation mechanism. Furthermore, two runs were conducted at 

1 atm (run # 1 and 2) to provide additional information on the effect of pressure and to test the 

assimilation mechanism in absence of water. The 1 atm experiments were performed at the 

Bayerisches Geoinstitut of Bayreuth (Germany) using gas mixing furnaces flushed with Ar-

CO2 gas mixtures. The carbonate and silicate components were loaded as powders in noble 

metal crucibles. Au70Pd30 was selected to minimize Fe loss. Two temperatures were 

investigated, 1100 and 1150°C (Table 2). Redox conditions were monitored using zirconia 

electrochemical cells at values close to the Hematite-Magnetite redox buffer. The high-

pressure experiments were conducted both at the Bayerisches Geoinstitut and at the Institut 

des Sciences de la Terre d’Orléans (France) in internally heated pressure vessels equipped 

with rapid quench device (as described in Roux and Lefèvre 1992). Pure Argon was used as 

pressure medium; no hydrogen was added to Ar and redox conditions are estimated to lie in 

the range NNO+1 to NNO+3 depending on the amount of water present in the charges 

(Gaillard et al. 2003). Au80Pd20 capsules were used as containers. Between 1 to 6 wt% water 

was added with a micro-syringe and the carbonate and silicate components were both loaded 

as powders (50-100 µm grain size). Temperatures of 1050, 1100 and 1150°C were 

investigated at 200 MPa, and of 1050°C at 500 MPa (Tables 1-2). Run durations ranged from 

5 to 40 hours depending on temperature. Experiments were terminated by drop-quenching the 

charges (Di Carlo et al. 2006). 

 

2.3 Analytical methods 

 

Rapidly quenched run products were observed using optical and electron microscopy (Jeol 

WINDSET JSM 6400 at Orléans) and analyzed by electron microprobe (Jeol JXA-8200 at 

Bayreuth and SX 50 at Orléans). Analytical conditions used were 15 kV, 6 nA, 10 sec on peak 

and 5 sec on background. H2O and CO2 concentrations were measured by Fourier transform 

infrared spectroscopy (FTIR) in glasses from run #4 and #5 (ISTO, Orléans). These charges 

are the only ones suitable to FTIR analyses due to their low proportion of crystals. For the 

other charges, the water content was estimated using the by-difference method (following Di 

Carlo et al. 2006), with an analytical error of ~ 1 wt% H2O (Devine et al. 1995). 

The FTIR spectra were collected on a Nicolet Magna 760 spectrometer equipped with an IR 

microscope and an MCT detector. Absorption spectra were acquired with 128 scans and a 

resolution of 4 cm-1, using a tungsten white light source and a CaF2 beam-splitter for the NIR 

region and a Globar source and a KBr beam-splitter for the MIR region. The total water 
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content of the glass was determined as the sum of structurally bonded hydroxyl groups and 

molecular water, calculated from the absorbances of the 4500 cm-1 and 5210 cm-1 bands, 

respectively, using the Lambert-Beer law. The linear extinction coefficients for these bands 

were taken from Dixon et al. (1995). Concentrations of dissolved carbonate in glasses were 

measured from the intensities of the bands at 1515 and 1435 cm-1 using the linear extinction 

coefficients in Dixon et al. (1995) and Thibault and Holloway (1994). The use of extinction 

coefficients calibrated for MORB (Dixon et al. 1995) and Ca-rich leucititic compositions 

(Thibault and Holloway 1994) does not substantially change CO2 determinations (Table 1).  

Mass balance calculations were performed to compute proportions of phases present in the 

charge (glass, minerals but also fluid phase in the case of high pressure experiments) and to 

evaluate Fe loss to the capsules. For this purpose, masses and compositions of starting 

mixtures, and compositions of experimental glasses and mineral phases were used. In the 

high-pressure runs, the amounts of loaded H2O and CO2 (the latter coming from the 

breakdown of carbonate) were mass-balanced between glass and fluid using H2O and CO2 

amounts dissolved in the glass measured by FTIR, when available, or H2O amounts estimated 

using the by-difference method (Table 1 and 2) and arbitrarily assigning a CO2 concentration 

of 0.2 wt% to the other carbonate-added runs. Although CO2 glass concentrations, determined 

by FTIR, may reach values up to 0.6 wt% (Table 1), 0.2 wt% is considered as a reasonable 

average CO2 concentration in our high-pressure experimental glasses (see section 3.1). 

Variations in the CO2 content of the glasses within the measured range (0.19-0.62) have a 

negligible effect on the mass balance calculations because most of the CO2 partitions into the 

fluid phase. The most important source of error in these calculations is the water content in 

the glass, which, propagated through the mass balance equations, gives us an averaged 

uncertainty of ±1 wt% on the fluid phase proportion and of ±5 wt% on the fluid phase 

composition. 

 

3. Results 

 

Tables 1 and 2 summarize experimental conditions, phase assemblages and compositions for 

the PST9 and ST18 starting materials. A total of 41 experimental charges are reported, 

including 7 from the 1 atm experiments, 31 from the ca. 200 MPa experiments and 3 from the 

500 MPa experiment. The effects of carbonate assimilation are essentially characterized at a 

pressure of ~200 MPa and water contents of 1-3 wt% (runs #6, 7, 8). These experiments 

illustrate the variation of phase relations with temperature and carbonate content. Two 
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experiments at similar pressure (runs #4 and 5) but higher water contents (up to 5 wt%) 

present very low crystal contents (0-8.7 wt%) and therefore illustrate the near-liquidus magma 

behavior. Two experiments at 1 atm (run # 1 and 2) and one at 500 MPa qualitatively 

illustrate the combined effect of pressure and water content on the carbonate assimilation 

mechanism.  

Experimental samples were all observed to be free of quench crystals on the basis of SEM 

examinations. Therefore the analyzed glass compositions can be considered as representative 

of the high-T, high-P melts. Mineral and glass compositions are generally homogeneous for a 

given sample, except for the clinopyroxene crystals that are sometimes slightly 

heterogeneous. Calculated crystal-melt exchange coefficients for clinopyroxene (Kd = [Fe/Mg 

in Cpx] / [Fe/Mg in melt], calculated with FeO=FeOtot) are similar to those found in a recent 

experimental study of near-liquidus crystallization of the PST9 composition in hydrous 

conditions (Di Carlo et al., 2006) and in other experimental studies of hydrous basaltic 

compositions (Sisson and Grove 1993; Pichavant et al. 2002). This suggests that crystal-liquid 

equilibrium was attained in our experiments. 

Mass balance calculations revealed iron losses to the containers ranging from 0 to 7 wt%, 

depending on temperature and on redox conditions. This shows that iron loss can be neglected 

in this study, consistent with the use of Au-Pd containers, the relatively short duration and the 

oxidizing conditions of our carbonate interaction experiments.  

 

3.1 Volatiles 

 

A fluid phase is present in all carbonate-bearing charges from the high-pressure experiments; 

it appears with the addition of a few weight percent of carbonate and reaches  proportions up 

to 9 wt% for samples where 21 wt% of carbonate is added (Table 1-2;  Fig.1). Conversely, 

most carbonate-free charges are fluid-absent (charges 5-1, 6-1, 7-1, 8-1, 6-6, 7-4, 8-4, Tables 

1-2) because the amount of loaded water was lower than the water solubility value at the 

experimental pressure. The only exception is charge 4-1 (Table 1) which contains about 1 

wt% fluid. Calculated fluid phase compositions are all carbonic, with wt% CO2 ranging 

between 95 and 70 (5-30 wt% H2O). In glasses from run #4 and #5, H2O concentrations 

determined by FTIR are in general agreement with estimates using the by-difference method 

(Table 1), with the exception of two run products (5-1 and 5-2). With the progressive addition 

of calcite, H2O concentration decreases and CO2 concentration increases. This increase in 

dissolved CO2 with calcite addition probably reflects the combined influence of the enhanced 
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CO2 fugacity in the fluid phase and of the progressive change of the melt composition toward 

higher CaO contents (Table 1).  Thibault and Holloway (1994) have shown that, for a Ca-rich 

leucititic composition, CO2 solubilities are substantially higher than for MORB compositions 

(Pan et al. 1991; Dixon et al. 1995). Melts from charges 4-4, 5-4 and 5-5 (Table 1) are 

characterized by CaO contents well exceeding 15 wt% (Table 1). However, such extreme 

compositions are not representative of the less calcic melts from the other experiments (#3, 

#6, #7 and #8), which are believed to contain much lower CO2 contents (on average 0.2 wt%).  

 

3.2 Carbonate assimilation: influence on phase relations 

 

The effect of carbonate assimilation is essentially the same for both studied compositions. In 

all experiments, carbonate completely breakdowns, calcium and magnesium are incorporated 

in silicates (crystal + melt), while CO2 is partitioned between the fluid phase and the silicate 

glass, with a strong preference for the fluid. No newly formed carbonate phase (such as an 

immiscible carbonate melt) has been observed. With increasing carbonate addition the degree 

of crystallization of the magma increases (Table 1-2; Fig.1) and clinopyroxene (Cpx) becomes 

the dominant crystallizing phase. At given experimental conditions (P, T, wt% H2O, wt% 

carbonate), composition PST9 always crystallizes significantly more Cpx than composition 

ST18, probably owing to its higher initial CaO content. All the other phases that are stable in 

calcite-free samples (plagioclase and Fe-Ti oxides at 1 atm; olivine, plagioclase and Fe-Ti 

oxides at ~200 MPa; amphibole and phlogopite at 500 MPa) progressively disappear as the 

amount of added calcite increases (Table 1-2;  Fig.1). For > 10 wt% carbonate addition, Cpx 

is nearly the only crystallizing phase at any pressure and temperature. At low temperature 

(1050°C) and ~200 MPa, runs with calcite contents > 9 wt% show also traces of wollastonite 

and apatite (Table 1, 2 and 4). 

The olivine-added experiments (runs #7 and #8) provide further evidence on the behavior of 

olivine in presence of progressively increasing amounts of calcite. In these runs, the calcite-

free charges are all olivine-saturated. Olivine may be accompanied by cpx and plagioclase 

depending on temperature and starting composition (Tables 1-2). With the progressive 

addition of calcite, the proportion of olivine and plagioclase present progressively decreases 

(Tables 1, 2; Fig. 1), and olivine disappears as a crystallizing phase for proportions of added 

calcite between 9 and 17wt%. The net effect of calcite addition is, therefore, to remove 

magnesian olivine from the liquidus, clinopyroxene becoming the liquidus phase for basaltic 

magmas having assimilated ~ 15 wt% calcite. 
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3.3 Carbonate assimilation: compositional effects 

 

The composition of pyroxene that crystallizes in our experiments (Wol.: 44-50%; En.: 30-

42%; Fs.: 7-30%) is very sensitive to carbonate addition. Globally, the composition of 

clinopyroxene becomes richer in CaO as calcite is added in the charge (Table 3). As the 

amount of added calcite increases from 0 to ~20 wt%, the CaO content in the Cpx varies from 

21 to 24 wt%, reaching 25 wt% in weakly crystallized samples (run #4 and #5). Along with 

this increase in CaO content, the Al2O3 content systematically increases, whereas the SiO2 

content decreases (Table 3). Silica partitioning between Cpx and liquid is sensitive to 

temperature: at low T (1050°C), the SiO2 content of the Cpx is lower than that of the liquid, 

while at high T (1100-1150°C), both are nearly equal. Therefore, Cpx crystallization increases 

the silica content of the residual liquid at low T and leaves it almost unaffected at high T. The 

olivine composition is not greatly influenced by the amount of calcite addition: the CaO 

content remains below 0.5 wt%, while the MgO content slightly increases with calcite 

addition (Table 4).  

The chemical composition of the residual liquid is greatly affected by calcite incorporation. In 

samples from runs #4 and #5, the addition of CaCO3 results in a significant increase in the 

CaO content of the liquid. This is because the degree of crystallization remains low in these 

charges owing to their relatively high water content (Table 1). On the contrary, in charges 

from the other runs, most of the calcium coming from the breakdown of calcite is 

accommodated by Cpx crystallization. With no olivine added  (runs #1, #2, #3, #6), a slight 

CaO enrichment in the residual liquid (and the appearance of trace amounts of wollastonite) is 

observed for samples with more than 10 wt% calcite (Table 1, 2). When olivine is added (runs 

#7 and #8), higher amounts of calcite (up to 17 wt%) can be assimilated without a substantial 

increase in the CaO content of the melt (Table 1, 2): the resulting increase in the bulk CaO 

content is accommodated by further crystallization of Cpx. In addition to CaO, concentrations 

of other major oxides in residual melts show large variations with the progressive addition of 

carbonate, these latter being directly linked to, and controlled by, Cpx crystallization. A 

strong “passive” enrichment in alkalis is observed, due to the enhanced Cpx crystallization 

with carbonate addition. Alkalis do not enter Cpx composition and are therefore significantly 

enriched in the melt. Both SiO2 and MgO usually decrease and Al2O3 slightly increases when 

progressively higher amounts of calcite are assimilated at constant temperature (Table 1, 2), 

although the decrease in MgO with calcite addition is less marked in olivine-added charges. 
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The evolution with temperature of the residual liquid in absence and in presence of carbonates 

is illustrated in Figure 2, where the melt compositions obtained at 200 MPa are plotted in a 

TAS (Total Alkali vs. Silica) diagram. If the proportion of carbonates assimilated is 

progressively increased at constant temperature, the silica content of the residual liquid 

decreases (desilication trends indicated by the arrows in Fig. 2). Figure 3b shows how, in all 

calcite-free runs, residual liquids become substantially enriched in silica and, to a lesser 

extent, in alkali: when crystallization proceeds in absence of carbonate, residual melts have 

trachytic composition. If calcite is added, the alkali enrichment of the residual liquid becomes 

progressively more pronounced while the silica enrichment is less marked (Fig. 3b): when 

crystallization proceeds in presence of carbonates, residual liquids have phonolitic 

compositions (Fig. 3b). 

 

4. Discussion 
 

Conversely to what has been described in simple silicate systems such as the albite-CaCO3-

H2O one (Watkinson and Wyllie 1969; Wyllie 1974), calcite can be massively incorporated in a 

mafic hydrous magma.  

The two basaltic systems that were used in our experiments responded in a very consistent 

way to the addition of calcite, despite differences in major element compositions (e.g. 

K2O/Na2O). The observed differentiation trends typically lack silica-enrichment and are 

marked by silica-depletion if amounts of carbonates higher than 14 wt% are assimilated (Fig. 

2-3). Although most of  the critical evidence for carbonate assimilation comes from  

experiments performed at 200 MPa with 2-3wt % water, carbonate assimilation was also 

observed  both at 1 atm in absence of water and at higher pressure (500 MPa) under water rich 

conditions (6 wt%). In both cases, carbonate interaction has essentially the same effects, with 

slightly lower intensity, as documented at 200 MPa with 2-3wt% water: the melt undergoes a 

strong alkali-enrichment at progressively decreasing silica content (Table 2, Fig. 3). 

Therefore, the carbonate reaction mechanism appears to be essentially the same whatever the 

experimental conditions and the composition of the starting material. Below, we focus on the 

characteristics of the carbonate assimilation mechanism.  

The major effects of calcite assimilation, illustrated by our experiments, are the enhancement 

of Cpx crystallization, the progressive desilication of the residual melt with increasing 

carbonate content and the strong enrichment in alkali. The entire process is controlled by the 

amount of Cpx that crystallizes in response to calcite assimilation. Because olivine reacts out 
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during this process (Fig. 1), Cpx is the most Mg-rich crystalline phase produced as a result of 

carbonate assimilation. Therefore, the extent of the assimilation process is controlled by the 

amount of MgO available in the magma (Barnes et al., 2005). Different cases may be 

distinguished, depending on the availability and concentration of MgO in the bulk magmatic 

system. In an olivine-saturated basaltic system, the calcite assimilation process, according to 

our experiments (run #7 and #8), can be written schematically as: 

2 CaCO3 + 3 SiO2
melt + Mg2SiO4 olivine → 2 CaMgSi2O6

cpx + 2 CO2
fluid   (1) 

This destabilization of olivine in favor of Cpx with progressive carbonate assimilation has 

been described in petrological studies (Barnes et al. 2005 and references therein). In the case 

of a magma that is not olivine saturated (run #6), the calcite assimilation mechanism can be 

written as: 

CaCO3 + MgOmelt + 2 SiO2
melt → CaMgSi2O6

cpx + CO2
fluid                             (2) 

Reaction (1) and (2) implies that the extent of calcite assimilation is principally controlled by 

the MgO content of the bulk magma (olivine plus melt). Mechanism (2) leads to a faster 

depletion in the MgO content of the residual melt than mechanism (1). Indeed, experiments 

with no olivine added show a much stronger decrease in the MgO content of the liquid than 

the olivine-added ones (Table 1, 2). However, it should be pointed out that natural carbonates 

may comprise an important fraction of dolomitic component, thus providing an additional 

source of MgO to be considered in the assimilation chemical budget. 

Both reactions (1) and (2) imply that calcite incorporation in the magma will consume the 

SiO2
melt component to form Cpx. The net result of this process will be a progressive lowering 

of the silica content of the melt (desilication) with assimilation of progressively higher 

amounts of carbonate, as observed in our experiments. Figure 4 illustrates how the degree of 

silica saturation of the residual liquid (∆Q, after Peccerillo 2005a) decreases with carbonate 

addition. The MgO content of the assimilating basalt (olivine + melt) plays an important role 

in this process: the higher the initial MgO content, the more pronounced the silica depletion of 

the residual melt for a given amount of carbonate added because a higher proportion of Cpx 

crystallizes.  

If olivine is absent and the MgO melt component is not high enough to crystallize Cpx, or in 

the case of a system under-saturated with respect to Cpx, then calcite will initially dissolve as:  

CaCO3 → CaOmelt + CO2
fluid         (3) 

leading to the formation of calcium-rich liquids. This process is clearly revealed by runs # 4 

and #5 in which the CaO content in the residual liquid reaches values as high as ~20 wt%. 

Mechanism (3) leads to melts with CaO/Al2O3 >> 1 (charges 4-4, 5-5, Table 1) at relatively 
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elevated MgO concentrations (i.e., 6-7 wt%). Danyushevsky et al. (2004) have stressed the 

common presence of CaO-rich melt inclusion compositions in subduction-related lavas. Such 

compositions have also been found at Mt. Etna and Mt. Vesuvius (Kamenetsky and 

Clocchiatti 1996; Marianelli personal communication). Calcite assimilation was suggested as 

one of the possible mechanisms responsible for the generation of these anomalous 

compositions (Danyushevsky et al. 2004). Our results thus provide an experimental 

confirmation of this process. Note that, in this case also, the silica-saturation index of the 

residual liquid decreases with carbonate addition, because of a dilution effect that arises from 

the increase in the melt CaO content. The energetic cost of mechanisms (1) and (2) is much 

less than that of mechanism (3). At 1200 K, the enthalpy changes associated with reaction (1) 

and (3) are 64 kJ/mol and 166 kJ/mol respectively (Robie et al. 1978). In nature, olivine-

saturated magmas are the hottest, therefore favoring chemical exchanges with wall-rocks. 

Hence, reaction (1) probably represents the most common and efficient mechanism of 

carbonate assimilation in nature. Note that, during magma evolution, carbonate assimilation 

will become less efficient, because of cooling and decreasing MgO content of the melt 

(Barnes et al. 2005).  

It is important to stress that, for the two basaltic systems studied in this paper, large amounts 

of carbonate (up to ~20 wt%) were assimilated according to mechanisms (1) and (2). The melt 

fraction was kept at values above 23% and desilication of the melt was systematically found. 

In contrast, the experiments of Watkinson and Wyllie (1969) were performed on hydrous 

albitic systems (i.e. magnesium-free), and the carbonate assimilation mechanism is notably 

different from those identified here, being dominated by massive plagioclase crystallization as 

a result of the progressive addition of CO2 to the system. Limited desilication of the melt was 

observed and complete solidification occurred for ~25wt% of calcite added. Their 

experiments are applicable to the assimilation of carbonate by relatively low-temperature 

hydrous felsic magmas but we show here that other mechanisms need to be considered in the 

case of higher-temperature, magnesian magmas such as basalts.  

As illustrated in reactions (1), (2) and (3), carbonate assimilation systematically liberates large 

quantities of CO2 gas. For our experimental pressures, the CO2 liberated during calcite 

assimilation cannot completely dissolve in the melt because its solubility does not exceed 0.3 

and 0.6 wt% CO2 in calcic and hypercalcic melts respectively (Table 1, see also Dixon et al. 

1995; Thibault and Holloway 1994). This explains the presence of a CO2-rich fluid phase in 

our experiments (up to 9 wt%, Table 1, 2). In natural systems, the liberation of important 

amounts of CO2 as a result of carbonate assimilation may promote the formation of a free 
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fluid phase at depth. This will cause a redistribution of components between melt and fluid 

(run #4 and #5 suggest that calcite addition drains water out of the melt, Table 1). Depending 

on the porosity of the wall rocks, this fluid phase may coexist with the magma or rapidly 

separate from it. If coexisting with the magma, its presence would undoubtedly affect the 

degassing behavior of the magma (Iacono Marziano et al. 2007) and both its density and 

viscosity: Assimilation of 9wt% carbonate would liberate a CO2-rich fluid (90% CO2 and 

10% H2O) increasing by 20% the volume of the magma at 200 MPa and 1150°C. Ultimately, 

whenever the CO2-rich fluids produced by limestone assimilation are dissipated through the 

fault system of the surrounding rocks, CO2 emissions in volcanic areas (soil diffuse degassing, 

CO2 content in groundwaters, plume degassing) must be affected (Iacono Marziano et al. 

2007). 

 

5. Italian quaternary volcanoes as a case study 

 

5.1. General  
 

Central-Southern Italy is a volcanic region active since 1 million years (Peccerillo 2005a) and 

currently characterized by massive CO2 diffuse degassing of debated origin (Chiodini et al. 

2001; 2004). Italian volcanoes are emplaced on sedimentary sequences mostly composed of 

carbonate rocks, whose thickness often exceed 5 km (Barberi et al. 1994; Peccerillo 1998; 

2005; Mazzotti et al. 2000; Neri et al. 2005). Magma reservoirs are located in or at the base of 

the sedimentary pile (Barberi et al. 1994; Chiarabba et al. 1997; Auger et al. 2001; Aloisi et 

al. 2002). Intense interactions between the magma and the host carbonate rocks are 

documented by numerous metamorphosed carbonate and high temperature skarn xenoliths 

commonly occurring in volcanic products of the Campanian, Roman, Intra-Apennine 

Provinces and at Mt. Etna (Joron et al. 1987; Federico et al. 1994; Nappi et al. 1995; Michaud 

1995; Peccerillo 1998; 2005; Gilg et al. 2001; Fulignati et al. 2000; Del Moro et al. 2001; Di 

Battistini et al. 2001).  

From South to North, the K/Na ratio of Italian volcanic products generally increases yielding 

ultrapotassic lavas in the northernmost part (Tuscan Province and Intra-Apenninic centers, 

Fig.5, after Peccerillo 2005a). Potassium-enriched magmas have been interpreted to derive 

from variably metasomatised phlogopite-rich mantle (Conticelli and Peccerillo 1992). 

Complex trace elements and isotope trends have also been largely recognized and explained 

in terms of both contamination of the mantle source by entrainment of upper crust material in 
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the subduction process and contamination during magma transfer and storage within the crust 

(Dallai et al. 2004; Civetta et al. 2004; Peccerillo 2005a). However, this scenario is not 

unanimously accepted and an intra-continental, passive rifting is also defended by some 

authors (Lavecchia and Stoppa 1996).  

Both quartz-normative and strongly silica-undersaturated magma can be emitted at the same 

volcanic center and such changes in the degree of silica-saturation are uncorrelated with the 

variations of the K/Na ratio (Fig. 5; after Peccerillo 2005a). These changes in the degree of 

silica-saturation do not correlate with any significant change in the isotopic composition 

(Ayuso et al. 1998; Peccerillo 2005a; Di Renzo et al. 2007; Frezzotti et al. 2007). For 

instance, Mts. Vulsini (Roman Province) and Mt. Vesuvius (Campanian Province) show large 

changes in their degree of silica-saturation (Fig.5), without any clear isotopic indication 

suggesting a variation of the composition of the source (Ayuso et al. 1998; Peccerillo 2005a; 

Di Renzo et al. 2007). Although several mechanisms have already been proposed to explain 

such variations in the degree of silica-saturation (variable pressures, degrees of partial melting 

and H2O/CO2 ratio of the mantle source; see Panza et al. 2007 and references therein), our 

experimental results indicate that carbonate assimilation at shallow level is an additional 

mechanism that can account for the changes in silica-saturation observed in these volcanic 

areas. Indeed, carbonate assimilation described in our experiments has a negligible influence 

on the K2O/Na2O ratio of the magma (Table 1-2; Fig.5), which is probably inherited from the 

melting conditions in the mantle. On the contrary, carbonate assimilation deeply affects the 

degree of silica-saturation of the concerned magmas, consistent with the substantial variations 

in ∆Q observed in the eruptive products of a single volcanic center (Fig.4-5). Expected 

variations in the Sr isotopic signature of magma resulting from different amounts of carbonate 

assimilation are relatively small for most Italian volcanoes as we show in detail for Mt. 

Vesuvius (see section 5.2 and Fig.7). Indeed, sedimentary carbonates, which are strongly 

depleted in trace elements and isotopes, leave a very slight fingerprint in the magma; 

particularly in the case of Central-Southern Italian magmas, which have high radiogenic 

strontium content and high LILE contents, elements that are classically used to quantify 

assimilation (Del Moro et al. 2001; Fulignati et al. 2004; Civetta et al. 2004; Peccerillo 2005a; 

Piochi et al. 2006; Di Renzo et al. 2007). 

Clearer geochemical signatures of carbonate assimilation come from oxygen isotopic studies, 

due to the strong enrichment in 18O of carbonate rocks (δ18O= 25-28‰; Turi, 1970). δ18O 

measurements in clinopyroxenes from the Alban Hills and Mt. Vesuvius present values up to 

8.33‰ and 7.30‰ respectively, which are substantially higher than in mantle rocks (Dallai et 
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al. 2004; 2007). These values approach the ones measured in Cpx from thermometamorphic 

ejecta in the Alban Hills area (8.4±0.20 ‰) and most likely reveal magma contamination by 

sedimentary carbonates (Dallai et al. 2004; 2007). The highest oxygen isotope values have 

been measured in the Intra-Apennine ultrapotassic volcanic rocks (kamafugites) and in the 

associated carbonate-rich rocks (Stoppa and Woolley 1997; Peccerillo 1998). δ18O values in 

the kamafugites are in the range 11.9-14.4 ‰ (Holm and Munskgaard 1982; Taylor et al. 

1984), while in the carbonate-rich rocks are 21.1-25.4, very similar to the one of limestone 

(Stoppa and Woolley 1997) and very different from the one of mantle-derived carbonatite 

(Hoefs 1987). The strong silica-undersaturated nature of the kamafugites (Fig. 5) corroborates 

the conclusion of Peccerillo (1998) that these magmas probably assimilated ca. 20 wt% of 

carbonate even if other mechanisms cannot be excluded (Stoppa and Woolley 1997; see 

discussion in Peccerillo 2005a).  

Hereafter, we focus on Mt. Vesuvius and we describe in detail the trends in major and trace 

element compositions of its eruptive products, summarized in Table 5, which result to be 

consistent with the petrological mechanisms of carbonate assimilation identified in our 

experiments.  

 
5.2. Mt. Vesuvius 

 

Mt. Vesuvius eruptive products are characterized by important temporal variations in the 

degree of silica-saturation. In the last 25 ka, three periods/eruptive cycles have been 

recognized (Joron et al. 1987; Ayuso et al. 1998): the younger the lavas, the more silica-

undersaturated (Fig 3a). Comparison between Figures 3a and 3b suggests that the evolution 

from slightly (Period I: 25-14 ka) to strongly (Period III: 79 AD-recent) silica-undersaturated 

compositions is consistent with a progressively increasing degree of carbonate assimilation. In 

this respect, it is worth noting that the decrease in the silica content of the most primitive 

rocks (MgO>6 wt%) from Period I to Period III (SiO2 from 50 to 47wt%, on average) is 

balanced by an increase in the CaO content (from 8-9 to 11-13 wt%), the other chemical 

elements being otherwise unchanged (data available in Joron et al. 1987 and Ayuso et al. 

1998). Such increase in the degree of carbonate assimilation with time would be consistent 

with the nearly continuous injection of hot magma during the last 25 ka, which would have 

resulted in an increase in the temperature of the carbonate wall-rocks (Civetta et al. 2004). 

Further evidence of increasing carbonate assimilation with time comes from mineral 

parageneses. Slightly silica undersaturated rocks (shoshonitic compositions, mainly belonging 
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to Period I) typically show plagioclase and olivine as major phases, whereas strongly 

undersaturated rocks (phonotephritic compositions, mainly belonging to Period III) do contain 

essentially Cpx with rare plagioclase and olivine (Joron et al. 1987; Piochi et al. 2006; Di 

Renzo et al. 2007). Furthermore, near-liquidus experimental phase assemblages for primitive 

(7-8 wt% MgO) Mt. Vesuvius lavas from the recent period typically lack olivine (Pichavant et 

al. in progress). This is consistent with the change in phase equilibria documented in our 

experiments: plagioclase and olivine are destabilized as carbonate is added to the magma. The 

progressive disappearance of plagioclase from the mineral assemblage explains the change in 

Sr behavior from compatible to incompatible between rocks of Period I and III (Peccerillo 

2005b). Indeed, plagioclase concentrates 3000-5000 ppm of strontium (Joron et al., 1987; 

Civetta et al. 1991) and therefore strongly depletes in Sr the coexisting melt. In contrast, 

clinopyroxene contains less than 300 ppm Sr (Civetta et al. 1991; Del Moro et al 2001; Piochi 

et al. 2006) and its crystallization enriches the residual melt in Sr (see Fig. 6.6 in Peccerillo 

2005b). The Europium anomaly, relatively well marked in the ancient rocks of Period I, 

disappears in the more recent products (Ayuso et al. 1998), clearly marking the destabilization 

of plagioclase from the early crystallizing assemblage.  

Compositions of primitive (MgO > 6 wt%) melt inclusions from the Period II (Avellino, 3400 

BP, Cioni et al 1998) and III (AD 79, AD 472 and recent, Cioni et al 1998; Cioni 2000; 

Fulignati et al. 2004; Marianelli et al. 1995, 2005) are shown in Figure 6. These melt 

inclusions were interpreted by the authors as entrapped at shallow level, most likely in the 

sedimentary carbonate. Their MgO contents are >8 wt% in the silica-rich, alkali-poor region, 

and decrease down to 6wt% with decreasing silica content. This suggests that, with 

progressive magma evolution and fractionation, liquids evolve towards silica-poorer and 

alkali-richer compositions (Fig. 6a). This evolution is accompanied by a continuous 

progressive increase in CaO/MgO (Fig. 6b). Such chemical trends cannot be explained by 

crystal fractionation alone, because they would require the massive crystallization of a 

strongly silica-rich phase which does not exist at Mt. Vesuvius. The olivine-doped 

experiments at 1150°C (with melt MgO > 6 wt%) remarkably plot on the trend drawn by the 

melt inclusions on Figure 67a,b. This strongly suggests that the inclusion chemical trend is 

controlled by the assimilation mechanism (1), and indicates degrees of assimilation up to 15-

17 wt% of limestone in the Period III (1794-1944). In detail, degrees of assimilation recorded 

by the magmatic inclusions appear to vary for a single eruptive period, but the inclusions from 

the Avellino eruption (Period II) are, on average, more silicic than inclusions from the Period 

III (Fig. 6), again suggesting an increasing degree of carbonate assimilation with time. Glass 
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inclusions in high temperature skarns (MgO = 3-4.5 wt%; Fulignati et al. 2004) extend the 

trend toward higher alkali (Fig. 6a), CaO/MgO (Fig. 6b) and lower silica contents. This 

suggests that the same evolutionary mechanism (1) still applies, and indicates proportions of 

assimilated carbonates > 17 wt % at the contact with the wall-rock, where the high 

temperature skarns are formed. It is important to retain that the contamination process 

essentially occurs during the early magmatic stages, when the magma has T>1100°C and 

MgO content of 10-5 wt%. At lower temperatures and MgO contents, assimilation can still 

occur, but it is partial, as evidenced by skarn assemblages, and it probably remains a more 

localized process (as observed by Del Moro et al. 2001 and Fulignati et al. 2004). 

Hereafter, we test the carbonate assimilation mechanism for the primitive melts of the most 

recent eruptions (1794-1944), in terms of Sr variations. We consider a shoshonite (SiO2 ~52 

wt%; MgO ~8-9 wt%) that differentiates into a tephrite (SiO2 ~48 wt%; MgO ~5-6 wt%). 

According to our experimental results, the assimilation-differentiation process can be 

summarized as: 

SHOSHONITE + CaCO3 => TEPHRITE + Cpx + CO2                    (4) 

Unfortunately, the Sr isotopic ratio in shoshonitic melt inclusions is unknown. Typical bulk 

rock 87Sr/86Sr values and Sr concentrations for Mt. Vesuvius shoshonites are respectively ca. 

0.7067 and 737 ppm (Fig. 7; Di Renzo et al. 2007). These shoshonites are considered as one 

of the least differentiated compositions at Mt. Vesuvius (Di Renzo et al. 2007), but their MgO 

content (~6 wt%) suggests that they have already suffered from olivine fractionation. Lower 

Sr contents are therefore likely for more primitive magmas having MgO=8-9wt%. Figure 7 

shows the expected trends from mechanism (4) in a plot 87Sr/86Sr vs. bulk Sr. Two types of 

limestone have been considered, given that the Sr content of Campanian carbonates is thought 

to vary between 500 and 1000 ppm and its isotopic ratio between 0.7075 and 0.709 (Piochi et 

al. 2006 and references therein; Di Renzo et al. 2007): limestone L1 (Sr= 500 ppm; 87Sr/86Sr= 

0.708) and limestone L2 (Sr= 1000 ppm; 87Sr/86Sr= 0.709). Mixing curves between the 

shoshonite (SHO) and the two types of limestone are shown: in both cases, limestone 

assimilation increases the strontium isotopic ratio of the shoshonite. Typical values for the 

recent 1944 phonotephrites (PTph 1944) are Sr= 1312 ppm; 87Sr/86Sr= 0.707191 (Del Moro et 

al. 2001; Civetta et al. 2004). Cognate cumulates (clinopyroxenite, CPX 1944) have similar 

isotope ratios, but much lower strontium concentrations (respectively 0.70729, <200 ppm; Del 

Moro et al. 2001; Piochi et al. 2005). A combination of the two end members in proportions 

35-50 wt% Cpx and 50-65 wt% phonotephritic melt is reproduced by an assimilation of 45-50 

wt% of limestone L1 or 15-20 wt% of limestone L2. The type of limestone, i.e. values of Sr 
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concentrations and isotopic compositions of the assimilated carbonate rocks, crucially affect 

this kind of calculation. Although a quantitative estimate of the degree of assimilation via this 

method needs more accurate measurements of Sr concentrations and isotopic signature of 

both primary magmas and carbonate rocks, the mechanism (4) appears to bridge the gap 

between the Sr radiogenic composition of older shoshonites and the one of recently erupted 

phono-tephrites. To better visualize the effect of reaction (4) in Figure 7, we plotted the 

theoretical position of experiments #7-4 to #7-6 and #8-4 to #8-6. Their Sr concentration and 

isotopic composition was calculated by mass balance, considering SHO and L2 as initial 

component, their percentage and the resulting phase proportions (olivine + Cpx + melt). This 

representation shows both the enrichment in strontium and the increases in its isotopic ratio 

consequent to 8-9 and 15-17 wt% of limestone L2 assimilation. Mechanism (4) reproduces 

major element trends and can potentially explain the variation in strontium concentration and 

isotope ratio between Shoshonite and Phonotephrite. This conclusion corroborates recent 

results obtained using AFC modelling by Di Renzo et al. (2007), who concluded that Sr and 

Nd variations between Mt. Vesuvius shoshonites and phonotephrites can be accounted for by 

14 wt% of limestone assimilation accompanied by 38% crystallization. 

 

6. Conclusions and outlooks 
 

Previously discarded on the basis of experimental and geochemical constraints, limestone 

assimilation by basaltic magma is here demonstrated as a physically possible magmatic 

process. We characterized the petrological consequence of such assimilation, showing that it 

induces desilication of the residual liquid and leads to strongly silica-undersaturated melts. 

Similar desilication trends are recognized in the primitive melt inclusions of Mt. Vesuvius 

eruptive products, consistently with up to 15 wt% limestone assimilation. This process also 

accounts for observed minor variations in trace and isotope signatures that accompany clear 

changes in the degree of silica-undersaturation. In conclusion, increasing amounts of 

carbonate assimilation from Period I (25-14 ka) to Period III (79 AD-recent) may explain 

variations in bulk rock and melt inclusion compositions, mineral assemblages, Sr and Eu 

behavior during fractionation at Mt. Vesuvius (Table 5).  

Iacono Marziano et al. (2007) have shown that also Alban Hills volcanic rocks have most 

likely undergone important degrees of carbonate assimilation. Limestone assimilation is 

probably a regional process occurring in the plumbing system of Italian volcanoes explaining 

the genesis of strongly silica-undersaturated rocks. This implies that important magmatic 
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features of Italian volcanoes are probably not exclusively inherited from the mantle. 

Moreover, the large quantity of gaseous CO2 liberated during the carbonate assimilation 

process has certainly profound effect on the magma chamber dynamics and volatile transfers 

toward the surface that needs to be further investigated.  
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Figure Captions: 
 

Figure 1:  

Phase proportions of selected experiments as a function of the amount of calcite added for 

both starting composition (ST18 and PST9). All phase proportions are expressed in wt%. 

Different temperature conditions are shown. High-temperature results (1100 and 1150°C) 

represent olivine-added experiments, whereas the low temperature data (1150°C) are from an 

olivine-free experiment. Note the enhancement in the crystallization rate (the melt field 

decreases) and the dominance of clinopyroxene over all the other crystallizing phases with 

calcite addition. 

 

Figure 2: 

Experimental residual liquids obtained at 200 MPa are plotted in a TAS (Total Alkali vs. 

Silica) diagram. For clarity, other experimental liquids are not shown here but are plotted in 

figure 3b. Squares and diamonds respectively represent experiments done from PST9 and the 

ST18 starting materials. The different colors stand for: light gray = 1050°C; dark gray = 

1100°C (olivine added); black = 1150°C (olivine added); white = starting glasses. Gray 

triangles represent experimental runs with PST9 composition that contained higher water 

contents (run #4 and 5). Fields regroup desilication trends by mechanisms 1, 2, 3 (see part 4 in 

the text). The arrows in the inset indicate the desilication effect of carbonate assimilation as 

opposed to the effect of olivine and Cpx crystallization in a closed system.  

 

Figure 3: 

a) Whole rock compositions of Mt. Vesuvius eruptive products plotted in a TAS diagram. 

Fields marked by I, II and III represent the 3 Periods indicated after Ayuso et al. (1998). I: 25-

14 ky; II: 8 ky-AD79; III: AD79 (Pompeii eruption)-1944 (last eruptive event). Note the 

increasing degree of silica-undersaturation of the erupted products from Period I to Period III. 

b) Experimental residual liquids plotted as a function of the different amount of added 

carbonates: diamonds=carbonate-free; squares=2-5 wt% carbonates; circles= 8-14 wt% 

carbonates; triangles=15-19 wt% carbonates. Full symbols represent experiments at 
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~200MPa, while open symbols correspond to the experiments at 1 atm or 500 MPa. Contours 

for each 200 MPa series are shown to facilitate the understanding of the figure. “Near 

liquidus” points represent runs #4 and #5, which present very low crystal contents and 

therefore illustrate near liquidus conditions. 

 

Figure 4: 

Degree of silica-saturation of experimental residual liquids obtained at 200 MPa 

(∆Q=Quartznorm-Olivinenorm-Leucitenorm-Kalsilitenorm-Nefelinenorm, calculated after Peccerillo, 

2005a). Different initial MgO contents of the starting silicate mixture are shown in the legend. 

Mechanism (1) in the text is mainly illustrated by the olivine-doped experiments with ~10 

wt% MgO, while mechanism (2) and (3) are better exemplified by olivine-free experiments 

with 5.74 and 7.82 wt % MgO.  

 

Figure 5: 

Plot of K/Na versus the degree of silica-saturation (∆Q, calculated as in Fig. 4) of Central-

Southern Italian volcanic rocks with MgO>4wt% (after Peccerillo 2005a). The influence of 

limestone assimilation on ∆Q, deduced from our experimental results (see Fig. 4), is 

illustrated by the thick arrow. The inset shows the effects of different source processes that 

have been proposed for Italian volcanoes: 1) increasing phlogopite content of the mantle 

source (Conticelli and Peccerillo 1992) and 2) increasing pressure, decreasing degree of 

partial melting and decreasing H2O/CO2 ratio of the mantle source (Panza et al. 2007 and 

references therein).  

 

Figure 6: 

Comparison of experimental residual liquids with primitive melt inclusions data from Mt. 

Vesuvius (after Cioni 2000; Cioni et al. 1998; Fulignati et al. 2004; Marianelli et al. 1995, 

2005) in a TAS diagram (a) and in a CaO/MgO vs. SiO2 diagram (b). Experimental data 

(filled circles) are from olivine doped experiments at 1150°C. Primitive melt inclusions data 

(MgO>6wt%) are grouped according to the eruptive period to which they belong (indicated in 

the legend). Period II and III defined after Ayuso et al. (1998) as in Fig.3a. Melt inclusions in 

high temperature skarn (MgO = 3-4.5 wt%) are also shown (empty squares, Fulignati et al. 

2004). In both diagrams (a and b) the evolution of the experimental residual liquids with 

increasing calcite addition, up to 15-17 wt%, well reproduces the trend of melt inclusion data. 
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The arrows indicate how calcite addition, crystallization of leucite, clinopyroxene and olivine 

shift the liquid composition in the diagram. For all eruptive period, the most primitive 

compositions are the silica richest. 

 

Figure 7: 

Geochemical modeling of Sr at Mt. Vesuvius. Natural compositions of recent shoshonites 

(SHO; Di Renzo et al. 2007), 1944 phontephrites (PTph 1944; Del Moro et al. 2001; Civetta 

et al. 2004), cognate cumulates of clinopyroxenite associated to the shoshonites and the 

phonotephrites (CPX SHO and CPX 1944 respectively; Del Moro et al. 2001; Piochi et al. 

2005; Di Renzo et al. 2007) and Campanian limestones (L1 and L2; Piochi et al. 2006; Di 

Renzo et al. 2007) are shown. Open squares represent the mechanical mixing between 1944 

phonotephrite and clinopyroxenite (a square every 20 wt%), illustrating the effect of cpx 

crystallization on the Sr content of the magma. The dotted line simulate the mechanical 

mixing between the shoshonite and the two limestones (a dot every 5 wt%), illustrating the 

effect of limestone addition on the Sr content and isotopic composition of the magma. A 

combination of ca. 50 wt% of CPX and 50 wt% of PTph is reproduced by mixing 15-20 wt% 

of L2 with the shoshonite, whereas a combination of ca. 35 wt% of CPX and 65 wt% of PTph 

is reproduced by mixing 45-50 wt% of L1 with the shoshonite. The theoretical position (see 

text for explanation) of experiments #7-4 to 7-6 (open circles) and #8-4 to 8-6 (filled circles) 

illustrate the combined effect of carbonate assimilation + cpx crystallization (mechanism 4 in 

the text). 
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