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ABSTRACT 

 

In order to better understand the mechanics and dynamic of landslides, it is of primary interest 

to image correctly their internal structure. Several active geophysical methods are able to 

provide the geometry of a given landslide, but were rarely applied in 3 dimensions in the past. 

The main disadvantages of methods like seismic reflection or electrical tomographies are that 

there are heavy to set up, require for some heavy processing tools to implement, and 

consequently are expensive and time consuming. Moreover, in the particular case of soft-rock 

landslides, their respective sensitivity and resolution are not always adequate to locate the 

potential slip surfaces. The passive methods, which require lighter instrumentation and easier 

processing tools, can represent an interesting alternative, particularly for difficult accessible 

landslides. Among them, the seismic noise based methods have shown increasing applications 

and developments, in particular for seismic hazard mapping in urban environment. In this 

paper, we present seismic noise investigations carried out on two different sites, a mudslide 

and a translational clayey landslide where independent measurements (geotechnical and 

geophysical tests) were performed earlier. Our investigations were composed of H/V 

measurements, which are fast and easy to perform in the field, in order to image shear wave 

contrasts (slip surfaces), and seismic noise array method, which is heavier to apply and 

interpret, but provides S-waves velocity profile versus depth. The comparisons between 

geophysical investigations and geotechnical information proved the applicability of such 

passive methods in 3D complexes, but also some limitations. Indeed interpretation of these 

measurements can be tricky in rough and non-homogeneous terrains.  
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CARACTERISATION DE GLISSEMENTS ARGILEUX PAR DES METHODES DE BRUIT 

DE FOND SISMIQUE 

 

 

Mots clés : bruit de fond sismique, glissement argileux, caractérisation in-situ, géométrie 3D 

 

RESUME 

 

Afin d’identifier les mécanismes de contrôle et de caractériser la dynamique de glissements de 

terrain, il est impératif d’imager correctement leur structure interne. Plusieurs méthodes 

géophysiques actives sont utilisables pour identifier la géométrie d’un glissement de terrain, 

mais leurs potentialités ont été rarement testées dans des environnements fortement 3D. Les 

principaux inconvénients de méthodes géophysiques telles que la sismique réflexion ou la 

tomographie électrique sont la difficulté de mise en œuvre et la complexité des traitements de 

données, ce qui les rend chères et consommatrices en temps. De plus, pour le cas particulier 

de glissements argileux, leur sensibilité et résolution ne sont pas toujours adaptées à la 

détection des surfaces de glissement. Les méthodes géophysiques passives, qui offrent 

l’avantage d’une instrumentation légère et d’un traitement des données plus simple, 

représentent ainsi une alternative intéressante, particulièrement pour des sites difficiles 

d’accès. Parmi celles-ci, les méthodes de bruit sismique ambiant connaissent depuis quelques 

années des développements et applications intéressants, notamment pour le zonage de l’aléa 

sismique en milieu urbain. Nous présentons dans ce papier des investigations par bruit de 

fond sismique effectuées sur deux sites instables, un glissement-coulée et un glissement 

translationnel, où des investigations géotechniques et géophysiques indépendantes ont été 

réalisées. Nos investigations se composent (1) de mesures H/V, simples, légères et rapides à 
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installer sur site, afin de cartographier des contrastes de vitesse d’onde S (surface de 

glissement) et de (2) de mesures de bruit de fond réseau, plus délicate et complexe à déployer 

sur site et à interpréter, mais qui permet d’accéder à des profils de vitesses d’ondes S en 

fonction de la profondeur. Les comparaisons entre nos investigations géophysiques et les 

sondages géotechniques prouvent l’applicabilité des méthodes géophysiques passives dans 

des environnements 3D, mais indiquent également certaines limites. En effet, l’interprétation 

des données peut s’avérer difficile dans des terrains hétérogènes et à forte rugosité. 
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The authorities with the responsibility of protecting livelihood and infrastructure from the 

threat of landslide hazard must be particularly concerned with three critical aspects: (1) the 

spatial distribution of the processes, (2) the understanding of their mechanisms, (3) their 

magnitude and temporal frequency. These purposes imply to accurately assess the 

characteristics of the landslides and to evaluate their controlling factors (climate, seismology) 

in a dynamic dimension. For these reasons, 2D and 3D mathematical models have been 

developed during the last decade in order to simulate the complexity of landslide mechanisms 

[Commend et al., 2004; Malet et al., 2005; Tacher et al., 2005]. At this time, one of their main 

weaknesses lies in the large uncertainty of parameters describing the unstable area. For 

example, critical information, such as the 3D geometry of a landslide and of its surrounding 

geology, its geomechanical and hydrological properties, or its internal discontinuities, as well 

as the uncertainties associated to these parameters are rarely available.  

 

Landslides are generally studied using geotechnical investigations (boreholes, 

penetrometric tests, etc), local instrumentation placed in boreholes (piezometers, 

inclinometers), as well as detailed geomorphological observations [Giraud et al., 1991; 

Flageollet et al., 2004]. Even if these studies are essential because they provide direct 

information of the landslide material, their cost and limited spatial representativeness hinder 

their use for 3D studies. In particular, except by multiplying the number of tests, these 

methods are not able to image the lateral variability of landslide characteristics. To address 

this problem, a large choice of geophysical methods is available on a broad spatial scale. An 

increasing trend to apply geophysical studies for landslides characterization has been recently 

observed, mainly thanks to the improvement of data acquisition systems and of data inversion 
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softwares. A critical review of these methods is discussed by Jongmans and Garambois [2006, 

this issue], who point out the need of combining geophysical methods [see also Israil and 

Pachani, 2003] and of validating geophysical data by geotechnical information [Maquaire et 

al., 2001; Flageollet et al., 2004]. In practise, the high cost, time consuming efforts and 

difficulties in implementing 3D geophysical investigations can only be considered for active 

landslides presenting a high level of risk or for research purposes. Consequently, fast 

methods, easy to deploy and presenting lower costs have to be developed in the future, at least 

to locate the slip surfaces and characterize bedrock geometries in 3D. Methods based on 

seismic noise measurements, which were extensively applied for seismic hazard mapping in 

the recent years, fill close criteria [Asten, 2004].  

 

In this paper, we present two examples of seismic noise investigations performed on two 

soft-rock landslides of the South French Alps (fig. 1), ie. the Super-Sauze mudslide in the 

black marls of the Ubaye valley and the Saint-Guillaume translational landslide in the varved 

clays of the Trièves region. At both sites, the slip surfaces are located within a homogeneous 

clay formation. The purposes of our studies are to evaluate the potential of seismological data, 

first to detect the slip surfaces using the H/V spectral ratio and second, to derive S-wave 

velocity profiles using seismic noise networks. To our knowledge, only a few seismic noise 

investigations were performed in the past on landslides. Galippolli et al. [2000] briefly 

mentioned the use of H/V methods on the large Giarossa landslide (southern Italy) which 

helped to interpret electrical tomography images. Recently, Méric et al [2005] failed to 

identify the slip surface of the large rocky landslide of Séchilienne using H/V measurements. 

They however noted a clear correlation between amplitude of the seismic noise and the 

landslide displacement rate explained by fracture density. 
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As both Super-Sauze and Saint-Guillaume landslides were characterized and monitored 

using geotechnical and geophysical measurements, a critical discussion of results provided by 

seismic noise methods is thus possible.  

 

SEISMIC NOISE THEORY 

 

The H/V method consists in computing the spectral ratio between horizontal and vertical 

components of the seismic noise recorded simultaneously at a given location with a 3D 

seismometer placed at the ground surface. Nogoshi & Igarashi [1972] first proposed the use 

of the H/V method as a tool for the estimate of the seismic response of the surface layers. This 

method has since been widely diffused around the world by Nakamura [1989]. Since 1989, 

because of its low-cost and its fast deployment, the use of the H/V method has become 

widespread, mainly with the objective of detecting the sedimentary zones that could amplify 

seismic ground motion. The validation of the H/V spectral ratio using noise has been since 

confirmed both experimentally [Lermo and Chávez-García, 1993; Field and Jacob, 1995; 

Guéguen et al., 2000; Lebrun et al., 2001] and from theoretical and numerical studies [Field 

and Jacob, 1993; Lachet and Bard, 1994; Cornou et al., 2004; Bonnefoy-Claudet, 2004]. In 

the case of a stratified soil profile composed of a soft layer at the top of a stiffer layer, the 1D 

amplified frequency f0 may be estimated according to the equation f0=Vs/4Hs, where Hs is the 

thickness and Vs the shear wave velocity of the topmost layer, respectively and when the S-

wave contrast is sufficiently large [Bonnefoy-Claudet, 2004]. As outlined by the equation 

linking f0 to Hs, knowing the shear wave velocity Vs of the upper layer is fundamental to 

deduce the thickness of this layer. This information can be derived from S-wave refraction or 

surface wave analyses. Nevertheless, the simple relation linking fundamental frequency, shear 

wave velocity and depth is valid according to a 1D model assumption that is not the geometry 
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of most valleys. For example, while Bard & Bouchon [1985] discussed the 2D model shapes 

of a theoretical valley, Steimen et al. [2003] and Roten et al. [2004] recently showed 

experimentally the strong 2D effect of valley shape on the resonance frequency deduced from 

ambient seismic noise. 

The shear wave velocity profile can also be obtained from seismic noise measurements 

recorded by an array of seismometers. This configuration allows to define the dispersion 

curve of the Rayleigh-wave phase velocity [for example, Tokimatsu, 1997; Satoh et al., 2001; 

Scherbaum et al., 2003].  

In the following, all dispersion curves deduced from active surface wave or from seismic 

noise network analyses, were computed using the conventional semblance-based frequency-

wavenumber method [Lacoss et al., 1969; Kvaerna and Ringdahl, 1986; Ohrnberger, 2001], 

which provides a semblance map of the velocity (or slowness) and frequency of the waves 

travelling with the highest energy. The maximum of each semblance map has been picked. 

The obtained dispersions curves were then inverted to obtain the S-wave vertical velocity 

profile (and eventually VP). For this, we used a neighbourhood algorithm inversion method 

where the computation time has been optimized [Wathelet et al., 2004]. The method is a 

stochastic direct search method for finding models of acceptable data fit within a 

multidimensional parameter space [Sambridge, 1999a & 1999b]. Four parameters were 

investigated, ie. thickness, density, P-wave velocities and (above all) S-wave velocities of 

each layer. Thousands of direct models were tested and only those exhibiting lower RMS 

errors were kept. It should be noted that to reduce the number of models, the H/V resonance 

frequency of the central station was added as a priori information during the inversion 

process. 

 

INVESTIGATION OF THE SUPER-SAUZE MUDSLIDE 
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Geological, geomorphological and geotechnical setting of the mudslide 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

 

The Super-Sauze mudslide (Ubaye valley) is one of the persistently active landslide (since the 

1970’s) occurring in black marls [Malet and Maquaire, 2003]. Its geological environment is 

very complex and is the consequence of the geological history of this alpine zone 

characterized by an overthrust of allochtonous sandstone and limestone formations over the 

autochtonous black marl bedrock. From the highest to the lowest elevations, the geological 

levels comprise: (1) the calcareous Klippe of Lan which overhangs the mudslide, (2) the 

moraine deposited by the Ubaye glacier during the Quaternary age, (3) the autochtonous 

bedrock consisting of Callovo-Oxfordian black marls with a grey clayey schist facies, very 

finely laminated and highly tectonized. 

 

It is a clayey flow-like landslide characterized by a complex vertical structure associating a 

slip surface and a viscoplastic plug. Multidisciplinary observations (geology, geomorphology, 

geotechnics, hydrology) carried out since 1991 [Weber and Hermann, 2000; Flageollet et al., 

2004] provide numerous information about its geology and geometry. The mudslide material 

consists of a silty-sand matrix mixed with moraine debris. It extents over an horizontal 

distance of 850 m and occurs between an elevation of 2105 m at the crown and 1740 m at the 

toe with an average 25° slope. Its total volume is estimated at 750,000 m3 and velocities range 

from 0.01 to 0.4 m.day-1 [Malet and Maquaire, 2003]. A detailed morphological description of 

the mudslide since its genesis can be found in Weber and Herrmann [2000]. The bedrock 

topography corresponds in the upper part to a succession of more or less parallel crests and 

gullies and in the medium and lower parts to a narrow and deeply incised channel. 

Consequently its thickness is highly variable and varies between 0 and about 20 m. This 
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geometrical scheme plays an essential role in the dynamics of the landslide by delimiting 

preferential water and material pathways and creating sections with differing kinematical, 

mechanical and hydrological characteristics. Its geotechnical structure consists in two 

superimposed units [Flageollet et al., 2004; Malet and Maquaire, 2003]. The topmost unit, 5 

to 9 m thick, is a very wet muddy formation, whereas the lowermost unit, with a maximum 

thickness of 10 m, is a stiff compact, relatively impervious and apparently stable formation. 

The hillslopes delimitating the lateral extension of the mudslide are characterized by moraine 

deposits, 3 to 15m thick, especially on the eastern flank.  
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Electrical Tomographies 

 

Six electrical tomographies were carried out on the mudslide allowing a pseudo-3D view of 

its internal structure (fig. 2, white lines). The tomographies were acquired using a Wenner 

configuration chosen for its high signal to noise ratio property and its sensitivity to horizontal 

contrasts, although the configuration is not adapted to precisely image lateral contrasts 

[Dahlin & Zhou, 2004]. Transverse profiles A1, A2 and A3 were acquired using 64 electrodes 

spaced every 4 m in the upper part of the mudslide. Transverse profiles C1 (80 electrodes, 4 

m spacing) and C2 (48 electrodes, 5 m spacing) were acquired in the medium part of the 

mudslide. Finally, the longitudinal CA profile (64 electrodes, 5 m spacing) was acquired 

between transects C1 and A1. The raw data were inverted separately in 2D using the 

RES2DINV inversion software [Loke and Barker, 1996], considering an L2-norm for 

optimisation. Derived resistivity images present RMS errors lower than 3% after 5 iterations. 

 

These electrical images (fig. 3) show a clear contrast between the mudslide material with 

low resistivity values (less than 90 Ω.m) and the stable black marls bedrock with higher 
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resistivity values (more than 150 Ω.m). These resistivity values are comparable to those 

obtained by Schmutz et al. [2000] from joint-inversion of VES and TDEM data, who found a 

resistivity range of 2 to 50 Ω.m for the active unit and more than 400 Ω.m for the substratum. 

The increase of resistivity values with depth observed in the mudslide material can be 

explained by a decrease of the hydraulic conductivity with depth due to both the presence of 

water-saturated cracks in the topmost layer and compaction of the lowermost layer. On the 

eastern part of profiles C1 and C2, higher resistivity values (more than 700 Ω.m) are 

observed; they correspond to stable hillslopes formed of moraine deposits. These electrical 

tomographies correctly image the transverse and to a lesser degree the longitudinal thickness 

changes of the mudslide, underlying its complex bedrock topography.  
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In the medium part of the mudslide, the electrical images indicate a total thickness ranging 

from 24 m to less than 5 m along the C1 and C2 profiles; this geometry is consistent with the 

depth variations proposed by Malet & Maquaire [2003] for this section on the basis of 

geotechnical tests. In the upper part of the mudslide, a more or less constant thickness of 18 m 

is found along the A1 profile, while the A2 and A3 profiles indicate strong lateral changes 

due to the presence of in-situ buried bedrock crests. These profiles point out a deeper bedrock 

(more than 30 m) than in the medium part. Although geotechnical in this part of the mudslide 

are more scarce, the resistivity variations seem in accordance with the combined 

geomorphological-geotechnical interpretation suggested by Malet [2003]. As these 

tomographies were acquired in the autumn season, the surface formations present larger 

resistivity values probably due to dryer hydrological conditions. Finally, the longitudinal 

electrical image indicates smooth vertical variations, with a maximum depth reaching 18 m at 

the intersection with the C1 profile.  
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To summarize, the tomography profiles provided valuable and continuous information 

about the pseudo-3D geometry of the mudslide. These data will be used in zones lacking of 

geotechnical measurements for interpreting seismic noise interpretation. 
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H/V method 

 

Three H/V seismic noise profiles were performed on the mudslide (fig. 2). Two of them (C 

and B) were acquired in the transverse direction, along the C and B geotechnical cross-

sections, considering 15 m and 10 m spacing between each seismometer, respectively. A 

longitudinal profile (CA) was acquired between the A and C geotechnical cross-sections, with 

a 10 m spacing. In our experiments, we used six 3D Lennartz sensors (5 seconds), which gave 

flat responses in the [0.2-50 Hz] frequency range. They were connected to a CitySharkTM II 

acquisition system developed for noise measurement [Chatelain et al., 2000]. Ambient 

vibration data were sampled at 200 Hz and recorded for 30 minutes. Among these 30 minutes, 

a maximum of short time windows (about 40 seconds) are selected through an anti-trigger 

process in order to select the more stable signal of noise ratio, ie. without transient high-

frequency waves. Finally, Fast Fourier Transforms were processed for the three components 

and the spectral ratio was computed for each horizontal component (ie., H1/V and H2/V) as 

well as the quadratic average of the spectral ratio (H/V). Interesting recommendations for 

acquisition and processing tools dedicated to H/V measurements can be found in the 

conclusions of the SESAME European Research Project [2005]. To investigate complex and 

irregular structures, Uebayashi [2003] suggested orientating one component of the 

seismometer parallel to the structure variations because the frequency peak amplitude is 

sensitive to the orientation of the horizontal component. Therefore, on profiles CA and C the 
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spectral ratio was computed using the E-W component, as the most important change is 

expected to occur along the longitudinal axis of the mudslide. On profile B, the spectral ratio 

was computed using the N-S components the geotechnical investigations indicate large lateral 

variations in the bedrock depth.  

 

Figures 4a, 4b and 4c present H/V spectral ratios calculated in the [0.2-20 Hz] frequency 

range for the 3 profiles. The frequency is represented on the vertical axis, point numbers are 

indicated on the horizontal axis and colours represent the Naperian logarithm of the horizontal 

to vertical spectral ratio. The black dot points correspond to the picked frequency peaks and 

the white dot lines represent the intersections with other profiles. Figure 4d maps the spatial 

variation of the picked frequency (colour scale) including those concerning the seismic noise 

network.  

 

On profile CA, a clearly distinguishable dominant frequency can be easily picked; this 

dominant frequency varies smoothly along the profile. For some points, higher frequencies 

exhibiting higher H/V amplitudes could have been wrongly picked (eg., like for point 7, with 

two major frequencies around 10 Hz and 15 Hz; but also lower frequencies at some points). 

Even if the structure along this profile is 3D, the dominant frequency varies continuously and 

this feature can be explained by the smooth variations of the thickness along the profile, and 

by a well-adapted spatial sampling (10 m). In this case, no 3D effects significantly disturb 

both data acquisition and data processing, implying that surface waves propagation can be 

considered as 1D [Bonnefoy-Claudet, 2004]. On the contrary, it is clear that problems arise 

for profile B, where different resonance frequencies can be picked for a single point 

measurement, probably generated by different layers. In this case of large lateral thickness 

variations at a small-scale, the chosen spatial sampling (every 10 m) is too large to identify 
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continuous variations of the suitable frequency. A blind frequency picking performed 

considering the maximum H/V amplitudes resulted in too large heterogeneities. 

Consequently, we decided to pick two frequencies on some points, and propose a non-unique 

interpretation (fig. 5), considering the presence of several layers. To overcome this problem, a 

more adapted sampling scheme may improve the interpretation. In our case, the low-

frequencies appearing mainly on the flanks of the mudslide must be related to a deeper 

interface (probably linked with the presence of former coarse mudslide), which was identified 

on electrical images. Other points (11, for example), exhibited unexplained low frequency 

amplification, probably due to acquisition problems linked with coupling effects or local 

subsurface heterogeneities, disturbing the surface wave propagation. Profile C1 is a mix 

between the two previous examples. The observed variations are smoother, and the pickings 

appear realistic (fig. 5) except in the eastern part of the profile (from tests 1 to 5, where tests 1 

to 3 are located outside of the mudslide). Again, this ambiguity must come from the presence 

of former coarse mudslide. Finally, the seismic noise measurements recorded for the network 

experiment (fig. 4d) exhibit consistent frequencies with those deduced from the profiles, 

underlying a smooth geometry in this part of the mudslide. 

 

Figure 5 presents the interpretation of the picked frequencies in term of thickness (red 

points). The thickness was computed by using the formula f0=Vs/4Hs and considering a 

constant shear velocity Vs = 260 m.s-1 in the mudslide. This velocity was deduced from the 

surface waves and from the seismic noise network analyses (fig. 6, fig. 7). The presence of 

two peaks in some H/V ratios (fig. 4b, fig. 4c) resulted in two possible interpretations, 

although lower frequencies are expected to be due to the presence of deeper interfaces (former 

coarse mudslide), acquisition problems or local heterogeneity. The bedrock geometry was 

deduced from geotechnical data when available (black points), photogrammetric stereo-
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restitution of the topography before and after the mudslide [Weber and Herrman, 2000], and 

H/V interpretation. The surface topography changes between 1996 (when the geotechnical 

investigation was carried out) and 2005 (when the geophysical acquisition was carried out) 

were taken into account. Finally, the blue dashed line corresponds to the interpretation of 

electrical tomographies (fig. 3). The limit was adjusted using geotechnical measurements. 

These results show that the interpretation of the picked frequency in term of thickness is 

particularly consistent with other measurements, even if the structure is 3D. However, it is 

clear that when H/V spectral ratios exhibit more than one peak in the interesting frequency 

range, interpretation is more doubtful and a spatial over-sampling is needed. Variability of the 

mudslide shear wave velocity can also explain the small differences between the known 

geometrical model and the estimated thickness. It should be noted that electrical interpretation 

is well consistent with the deduced interface on the bottom of the CA profile, but less on the 

C profile. These differences must be due to the lack of precision of smooth electrical 

tomography, particularly when lateral variability is present for the used Wenner 

configuration.  

 

17 

18 

19 

20 

21 

22 

23 

24 

Seismic noise network 

 

An array noise experiment was performed in the middle part of the C cross-section (fig. 2), 

consisting of three circle arrays (radius of 10, 25 and 50 m) each composed of 6 seismic 

stations. To compare the dispersion curve derived from these measurements, a longitudinal 

active seismic line was recorded along the CA profile (fig. 2) using 24 4.5 Hz-vertical 

geophones placed every 10 m. 
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Figure 6e displays the dispersion curve computed from the passive seismic noise arrays 

and associated error) and the semblance map of the energy of the active surface waves. It 

must be underlined that only two seismic noise arrays (radius of 10 and 25 m) were used 

(transition frequency around 7 Hz on the dispersion curve), the larger one (50 m radius) 

presenting no dispersion effect (certainly due to 3D effects for these wavelengths). These 

dispersion curves are well consistent and display the same variations except for low 

frequencies. This demonstrates that the seismic noise measurements are mainly composed of 

surface waves which is one of the major assumptions for seismic noise interpretation (with the 

1D hypothesis). 

 

The inversion results are displayed on figures 6c and 6d for the seismic noise and figure 6a 

and 6b for the active surface waves. During the inversion process, the H/V peak was added as 

a priori information only for the seismic noise inversion. On figures 6b and 6d, the 

experimental inverted dispersion curve computed from real data are superimposed to the 

models derived after inversion, the low RMS errors being presented in red. For both 

inversions, best models show S-waves velocity ranging between 260 and 300 m.s-1 for the 

topmost layer. They also show a well-defined thickness between 19-22 m for the noise and 

not well defined thickness between 16 and 20 m for the surface waves. All these results are 

consistent with other data acquired on this smooth area, which was densely imaged from 

electrical measurements and H/V data. It is noticeable that both results also showed thin 

contrasts inside the mudslide, which could be related to the observed superimposed units 

discussed before. The shear wave velocity of the bedrock is not so well retrieved. It varies 

between 600-700 m.s-1 for the surface waves and between 1100-1300 m.s-1 for the seismic 

noise. Considering the large uncertainty on the dispersion curve of the seismic noise at low 

frequencies, it may be reasonable to keep the velocity deduced from surface waves. 
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To summarize, combined seismic noise arrays were able (1) to derive consistent surface 

wave dispersion curves compared to those provided from active surface wave analysis, and 

(2) to propose inversion models constrained with H/V information which retrieved precisely 

S-wave velocity and thickness of the mudslide. With lower frequencies (network radius 

>20m), thickness and S-wave velocity of the bedrock may have been more precisely 

investigated. 

 

 

INVESTIGATION OF THE SAINT-GUILLAUME TRANSLATIONAL LANDSLIDE 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

Geological, geomorphological and geotechnical setting of the translational landslide 

 

The Saint-Guillaume landslide is located in the Trièves basin (fig 1) where many clayey 

landslides have occurred in the past in the so-called varved clays; these clays are finely 

laminated glacio-lacustrine deposits dating from the Pleistocene (Wurmenien) period 

[Antoine et al., 1981; van Asch et al., 1996]. The observed landslides present slip surfaces at 

different depths [Antoine et al., 1981; Nieuvenhuis, 1991] from almost shallow ones (4 to 

8 m) to more deeper ones (20 to 40 m).  

 

The investigated landslide is a slow (1-5 cm.year-1) translational landslide affecting the 

small village of Saint-Guillaume. The geological basement is composed of Oxfordian marly 

limestone covered with 40 to 50 m of varved clays. The landslide is limited to the South by a 

limestone cliff overhanging a scree-covered hillslope (fig. 7). A umbilical zone of limestone 

is also visible to the East sub-dividing the clay formation in two parts. To the North the 

landslide is limited by the Gresse torrent which has incised a narrow channel in the varved 
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clays. In the Western part of the landslide a geomorphological survey (geomorphological 

map, topographic control points) and a geotechnical investigation (three inclinometers, one 

piezometer) have been carried out in the late nineties. The boreholes have pointed out the 

existence of an interface between the uppermost varved clay and the marly limestone bedrock 

at 38.5 m, 61.7 m and 33.1 m depths at I1, I3 and I4 boreholes respectively (fig. 7). The 

inclinometers detected sometimes several slip surfaces inside the clay formation; the main slip 

surfaces were located at 34.5 m, 37.0 m, and 27.0 m depth, respectively. This monitoring 

system has been complemented since 2003 by geophysical investigations. Those are described 

in Garambois et al. (submitted). As a consequence, only a sum up of the main characteristics 

of the landslide is developed hereafter. As for the Super-Sauze mudslide, seismic noise 

measurements (H/V and seismic noise network) were tested (fig. 7). The comparison with 

Super-Sauze is interesting because Saint-Guillaume presents smoother bedrock geometry and 

thinner S-wave contrast.  
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H/V method 

 

The H/V profile was carried out along an East-West direction perpendicular to the main 

displacement of the landslide. Measurements were made every 20 m, including in the village 

and on the marly limestone bedrock arising at the surface (tests 70 to 80). Figure 8a highlights 

the presence of two resonance frequencies, respectively around 1.3 Hz and 2 Hz. They are 

joined between tests 55 and 76 (high single frequency) and on the edges of the profiles (low 

single frequency). When the bedrock arises to the ground surface, both frequencies vanished. 

Considering S-wave refraction [Garambois et al., 2006, submitted] and surface wave analysis 

(fig. 9), the S-wave velocity of the upper layer is around 260 m.s-1. We consequently 

interpreted the higher frequency in term of thickness with this velocity (fig. 8b). The interface 
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lies between 0 (where the bedrock reaches the surface) and 50 m. Black dots located on 

test 32 represent the known slip surface and bedrock depth in the I3 inclinometer. The lower 

frequency is more difficult to interpret. As it vanishes when bedrock reaches surface, it may 

correspond to the signature of the clay/marly limestone interface located at 61 m at 

inclinometer I3 (fig. 8b). For the frequency to depth conversion, we used a velocity profile as 

a function of depth, which was deduced from S-wave refractions analysis and surface waves 

analysis (fig. 9). Both showed that the undisturbed clays exhibit a velocity around 550 m/s. 

Using an equivalent velocity (Vsequivalent = (Vsdisturbed clays * Hdisturbed clays + Vsundisturbed clays * 

Hundisturbed clays)/( Hdisturbed clays + Hundisturbed clays)), the low frequency was picked and converted 

into depth, allowing to obtain an image of the bedrock geometry. The derived curve is 

relatively well consistent with the I3 deduced bedrock depth and remarkably with an electrical 

tomography image reaching 80 m depth [Garambois et al., 2006, submitted]. All the results 

suggest that the landslide develop first at the clay/bedrock interface when bedrock reaches the 

surface, and then within the clay layer (as confirmed by inclinometer monitoring). Compared 

to the Super-Sauze mudslide, frequency picking was easier certainly because the structures 

are less 3D and present less heterogeneity.  
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Seismic noise network 

 

Seismic noise arrays, performed around inclinometer I3, are composed of three arrays, 

with radius of 20, 40 and 60 m (fig. 7). Again, this investigation was combined to an active 

seismic experiment using 24 4.5 Hz-vertical geophones. All data were processed in the same 

way than in the Super-Sauze investigation. Figure 9 presents the results derived from both 

passive and active seismic surveys. The frequency range of the dispersion curves largely 

differs depending on the method. Indeed, the passive method provided useful information in 
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the [2.5-6.5 Hz] frequency range and the active method in the [4-12 Hz] frequency range. In 

the [4-6.5 Hz] frequency range, both dispersion curves are remarkably consistent, as 

displayed on figure 9c. This observation shows that the larger part of the energy contained in 

the seismic noise is made of surface waves. The inversion process was performed using the 

H/V constrain for the passive network. 

Both best models (low RMS) are consistent with the geotechnical and geophysical data. 

The S-wave velocity of the topmost layer is well constrained in both experiments, ranging 

from 260 to 280 m.s-1, although seismic noise dispersion curve exhibited few high 

frequencies. It corresponds to the unstable clayey zone highly affected by deformation. Its 

thickness is also relatively well-defined, ranging from 31 to 34 m for the passive seismic 

noise method and from 28 to 30 m thick for the active method. The difference may arise from 

the 3D homogenisation property of the array, which integrates the information on a larger 

zone and includes variability in landslide thickness. Moreover, it must be noted that the 

surface wave acquisition was performed on the N-W edge of the array. 

As discussed before, S-wave velocity varies around 550 m.s-1 (Vp=1800 m.s-1) in the 

stable part of clays, and reaches more than 800 m.s-1 (Vp > 2500 m.s-1) in the marly limestone 

bedrock. Figure 9 clearly outlines that both methods found best models displaying S-wave 

velocity around 600 m/s for the second layer (the stable clays). However, they were unable to 

detect and characterize the bedrock interface, although there is a large increase of Rayleigh 

velocity at low frequencies for the seismic noise network (but with a large uncertainty).  

 

CONCLUSIONS 

 

Two seismic noise experiments were performed on two landslides presenting different 

characteristics: (1) a mudslide characterized by abrupt 3D variations in the bedrock geometry 
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and large S-wave velocity contrasts, and (2) a translational landslide where the slip surface 

geometry as well as the S-wave contrasts are smoother. H/V measurements showed their 

efficiency in characterizing the contact between the stable and unstable material for both 

landslides, as well as the bedrock interface for the translational landslide. Difficulties arise on 

the mudslide, as multiple resonance frequencies appeared. Some of them may be due to 

deeper interfaces, heterogeneities or bad coupling effects during the acquisition. To increase 

interpretation confidence, an adapted spatial sampling must be adapted to the 3D structure 

effect.  

Inversions of dispersion curves obtained from seismic noise arrays on both sites were 

compared to geotechnical data, as well as to results provided by active surface wave 

investigations. First, a clear correlation between active and seismic dispersion curves 

indicated that in both cases seismic noise was mainly composed of surfaces waves. Second, 

large arrays are not always efficient. For the Super-Sauze mudslide, the larger array enabled 

to record consistent dispersive waves at low frequencies.  

In soft-rock landslides, slip surfaces appear to generate large S-wave velocity contrasts that 

seismic noise methods are able to detect and characterize properly. Consequently, combined 

to theoretical studies, seismic noise methods may be of high interest to identify and map slip 

surfaces in 3D.  
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FIGURE CAPTIONS 

 

Figure 1: Locations of the two test sites: translational landslide of Saint-Guillaume and 

mudslide of Super-Sauze, South French Alps. 

 

Figure 2: 3D topography image of the Super-Sauze mudslide and locations of the geophysical 

and seismic noise measurements. White lines: electrical tomography; black dots: seismic 

noise measurements (H/V); black triangles: seismic noise network.  

 

Figure 3: Electrical tomography images derived after inversion of data acquired using a 

Wenner acquisition at the Super-Sauze mudslide. 

 

Figure 4: H/V and seismic noise network results obtained at the Super-Sauze mudslide along 

the B profile (a), the C profile (b) and the CA longitudinal profile (c). The picked frequency is 

displayed in colour (d), including H/V measurements acquired during the seismic noise 

network experiment. 

 

Figure 5: Interpretation of H/V picked frequencies of the Super-Sauze mudslide considering a 

mean S-wave velocity of 260 m.s-1. It was compared to geotechnical and electrical data. The 

interface was drawn considering all the results, except electrical tomography. 
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Figure 6: Inversion results of the dispersion curve obtained from the seismic noise network 

and the surface wave measurements at the Super-Sauze mudslide. Vs models as a function of 

depth and of RMS error (colour scale) for the SW (a) and the seismic noise (c). 

Superimposition of the dispersion curve with the derived models for the SW (b) and the 

seismic noise (d). (e) Superimposition of the seismic noise dispersion curve and the 

semblance map of surface waves. 

 

Figure 7: Aerial photograph of the Saint-Guillaume landslide, including locations of the three 

inclinometers, the seismic noise measurements and a schematic view of the geology (a). 

Enlargement of the seismic noise investigation zone (right). 

 

Figure 8: H/V results obtained at Saint-Guillaume landslide (a) and interpretation of the 

picked frequencies in term of sliding surface and bedrock geometries. The black dot 

represents depths deduced from the inclinometer and borehole measurements (b).  

 

Figure 9: Inversion results of the dispersion curve obtained from the seismic noise network 

and the surface wave measurements at the Saint-Guillaume landslide. Vs models as a function 

of depth and of RMS error (colour scale) for the SW (a) and the seismic noise (c). 

Superimposition of the dispersion curve with the derived models for the SW (b) and the 

seismic noise (d). (e) Superimposition of the seismic noise dispersion curve and the 

semblance map of surface waves. 
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Figure 1: Localisation des deux sites tests : Le glissement translationel de Saint-Guillaume et 

le glissement-coulée de Super Sauze, Alpes du sud de la France. 

 

Figure 2: Image 3D de la topographie du glissement-coulée de Super-Sauze et positionnement 

des mesures géophysiques et de bruit de fond sismique. Lignes blanches : tomographies 

électrique ; points noirs : points de mesures du bruit de fond sismique (H/V) ; triangles noirs : 

capteurs du bruit de fond réseau. 

 

Figure 3: Image de tomographies électrique déduites après inversion de données acquis en 

mode Wenner sur le glissement-coulée de Super-Sauze. 

 

Figure 4: Résultats des mesures H/V obtenues sur le glissement-coulée de Super-Sauze le 

long du profil B (a), du profil C (b) et du profil longitudinal CA (c). Le pic de fréquence est 

représenté par un code de couleur (d), incluant les mesures H/V obtenues lors de l'acquisition 

du bruit de fond réseau. 

 

Figure 5: Interprétation des fréquences pointées des mesures H/V sur le glissement-coulée de 

Super-Sauze considérant une vitesse de 260 m.s-1. Ces interprétations sont comparées aux 

données géotechniques et électriques. L’interface a été dessinée considérant tous les résultats, 

exceptés ceux de la tomographie électrique. 
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Figure 6: Résultats de l’inversion de la courbe de dispersion du réseau de bruit de fond 

sismique et des mesures d’onde de surface sur le glissement-coulée de Super-Sauze. Modèles 

de Vs en fonction de la profondeur et de l’erreur (échelle de couleur) pour les ondes de 

surface (a) et pour le bruit sismique (c). Surimposition de la courbe de dispersion avec les 

modèles dérivée des ondes de surface (b) et du bruit de fond sismique (d). (e) Surimposition 

de la courbe de dispersion issue du réseau de bruit de fond sismique et de la carte de 

semblance des ondes de surface. 

 

Figure 7: Photographie aérienne du glissement de Saint-Guillaume avec la localisation des 

trois inclinomètres, des mesures de bruit de fond et une vue schématique de la géologie (a). 

Agrandissement de la zone d’investigation pour le réseau de bruit de fond sismique (b). 

 

Figure 8: Résultats du H/V mesuré sur le glissement de Saint-Guillaume (a) et interprétation 

des fréquences pointées en termes de géométrie surface de glissement et de substratum. Les 

points noirs représentent les profondeurs déduites de l’inclinomètre I3 et des mesures en 

sondage (b). 

 

Figure 9: Résultats de l’inversion de la courbe de dispersion du réseau de bruit de fond 

sismique et des mesures d’onde de surface sur le glissement de Saint-Guillaume. Modèles de 

Vs en fonction de la profondeur et de l’erreur (échelle de couleur) pour les ondes de surface 

(a) et pour le bruit sismique (c). Surimposition de la courbe de dispersion avec les modèles 

dérivée des ondes de surface (b) et du bruit de fond sismique (d).  Surimposition de la courbe 

de dispersion issue du réseau de bruit de fond sismique et de la carte de semblance des ondes 

de surface. 
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