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ABSTRACT

We assess 3D frequency-domain acoustic full-waveform inversion data as a tool to develop

high-resolution velocity models from low-frequency global-offset data. The inverse problem

is based on a classic gradient method. Inversion is applied to few discrete frequencies

allowing management of a limited subset of the 3D data volume. The forward problem is

solved with a finite-difference frequency-domain method based on a massively parallel direct

solver allowing efficient multiple-shot simulations involving several thousands of sources.

The inversion code is fully parallelized for distributed-memory platforms taking advantage

of a domain decomposition of the modeled wavefields performed by the direct solver. After

validation on simple synthetic tests, full-waveform inversion was applied to two targets
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(channel and thrust system) of the 3D SEG/EAGE overthrust model corresponding to 3D

domains of 7 × 8.8 × 3.3 km3 and 13.5 × 13.5 × 4.65 km3 respectively. The maximum

inverted frequencies were 15 Hz and 5 Hz for these 2 applications respectively. A maximum

of 20 dual core biprocessor nodes with 8 gigabytes of share memory per node was used for

the second case study. The main structures were successfully imaged at a resolution scale

consistent with the inverted frequencies. This study confirms the feasibility of 3D frequency-

domain full-waveform inversion of global-offset data on large distributed-memory platforms

to develop high-resolution velocity models. Further work is required to [i] perform more

representative applications on larger computational platforms, [ii] assess the sensitivity of

the 3D full-waveform inversion to the acquisition geometry and to the starting model and

[iii] assess whether velocity models developed by full-waveform inversion can be used as

improved background model for prestack depth migration.
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INTRODUCTION

Three-dimensional quantitative seismic imaging in complex environments such those involv-

ing deepwater, thrust belts, subsalt and subbasalt structures is one of the main challenge

of seismic exploration for hydrocarbon exploitation. In the depth domain, the imaging

flowchart for multichannel seismic reflection data is subdivided into 2 main steps: esti-

mation of a velocity macromodel and prestack depth migration (PSDM). The first task

is critical since the velocity macromodel has a strong impact on the accuracy of the mi-

grated images in terms of focusing and positioning in depth of the reflectors. The criteria

that must verify the velocity macromodel to provide accurate migrated images are still

unclear (see Operto et al. (2000, 2003)) for some illustrations of the sensitivity of 2D and

3D true-amplitude PSDM to the accuracy of the velocity macromodel). Estimation of a

reliable velocity macromodel for PSDM from conventional multichannel seismic reflection

data is a difficult task which is even more dramatic in complex environments because of

the velocity-depth ambiguity at significant depths. The most commonly-used approaches

to build velocity model for PSDM rely either on reflection traveltime tomography (e.g.,

Stork (1992)) and migration velocity analysis (e.g., Yilmaz and Chambers (1984); Chauris

et al. (2002)). Both approaches make approximations for modeling wave propagation such

that the high-frequency approximation or the one-way approximation of the wave equation.

This incomplete modeling of wave propagation together with the limitations imposed by

narrow-aperture acquisition geometries, can preclude imaging of steeply dipping reflectors.

For example, it was recently illustrated that turning waves and multi-reflected arrivals can

contribute to improve imaging of the flank of salt bodies (Zhang et al., 2006). As a result,

many efforts has been dedicated these last years to the extension of one-way propagator to

exploit these arrivals in PSDM (e.g., Zhang et al. (2007)).
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In this paper, we investigate frequency-domain full-waveform inversion (FWI) of wide-

aperture data as a tool to build 3D high-resolution velocity model in complex environments

(Pratt, 2004). By wide-aperture acquisition survey, referred in the following as global-offset

acquisition, we mean any acquisition system with sufficiently long offset coverage to allow

recording of turning waves whose refraction depth cover the zone of interest. Wide-aperture

arrivals are primarily sensitive to the large and intermediate wavelengths of the medium

which are difficult to image from multichannel seismic reflection acquisition and limited-

bandwidth sources. Moreover, multifold wide-aperture surveys lead to a redundant control

of frequency and aperture angle on the wavenumber illumination in the model space. This

redundancy can be decimated to design efficient numerical approaches for seismic imaging in

the frequency domain (Pratt, 1999; Pratt and Williamson, 1990). Global-offset acquisition

survey may be carried out at sea and on land with a newtwork of ocean bottom and land

stations respectively (see Clarke et al. (2007) for a recent 3D wide-azimuth node survey).

FWI refers to imaging method based on the complete solution of the full (two-way) wave

equation for the forward problem and on inverse problem theory for the imaging problem

(Tarantola, 1987). A model is built by minimization of the misfit between the recorded

data and that computed in a starting model. The underlying imaging principle shares

some similarities with generalized diffraction tomography (Wu and Töksoz, 1987; Pratt

et al., 1998): the misfit wavefield is processed as the wavefield scattered by the missing

heterogeneities in the starting model. These heterogeneities are processed as a series of

closely-spaced diffractors. In virtue of Huygens’ principle, image of the perturbation model

is built by summation of the elementary images of each diffractors. The main drawbacks

of FWI methods are two folds: first, they are very computationally expensive due to the

complete resolution of the wave equation for a large number of sources. Second, they lack
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robustness due to the complexity of the global-offset wavefields and their sensitivity to noise

and to the inaccuracies of the starting model. During last decade, it was shown in the 2D

case that the frequency-domain formulation of FWI applied to global-offset acquisition was

providing a promising framework to mitigate these 2 difficulties. Aim of this paper is to

start investigating the extension to 3D of this approach.

The frequency-domain formulation of FWI was originally developed for 2D cross-hole ac-

quisition surveys which involve wide-aperture propagations (Pratt, 1999; Pratt and Williamson,

1990). Only few discrete frequencies are required to develop a reliable image of the medium

thanks to the wavenumber redundancy provided by multifold wide-aperture geometries.

Some guidelines to define the optimal frequency interval for FWI are given in Sirgue and

Pratt (2004). This frequency-domain decimation leads to very compact volume of data

to be managed which may be critical for 3D applications. Second, the frequency-domain

formulation of FWI provides the most natural framework to design a hierarchical multires-

olution imaging strategy which helps to manage the non linearity of the inverse problem by

proceeding from the low frequencies to the higher ones (Pratt, 1999; Pratt et al., 1998; Pratt

and Williamson, 1990). These two aspects (inversion of a limited subset of frequencies and

successive inversion of increasing frequencies) allow to mitigate the two abovementioned

drawbacks of FWI. Application of FWI to 2D real data case studies has been limited to fre-

quencies smaller than 20 Hz (Ravaut et al., 2004; Operto et al., 2006; Shipp and Singh, 2002;

Hicks and Pratt, 2001). In 3D, the computational cost of the forward problem suggests that

it is difficult to handle frequencies greater than 10 hz for representative problems (Operto

et al., 2007). At this resolution scale, the resulting velocity models can be conceived as

improved velocity macromodel for PSDM. However, the relevance of FWI velocity models

as reference model for PSDM still requires further demonstration. An illustration with a
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real data case studies is provided in Operto et al. (2004, 2005) in the frame of the imaging

of a thrust belt in the southern Apennines by combined first-arrival traveltime tomography,

FWI and true-amplitude ray-based PSDM.

Full wave propagation modeling is a critical issue in FWI methods since it is the most

computationally expensive task in the processing flow. In the frequency domain, the for-

ward problem reduces to the resolution of a large sparse system of linear equations for each

frequency to be considered. In the 2D case, the few frequencies involved in the inversion

can be efficiently modeled for multiple shots using a direct solver (Marfurt, 1984). Since

the original work of Pratt and Williamson (1990), optimal finite-difference stencils were

designed for the frequency-domain method based on direct solvers (Jo et al., 1996; Hustedt

et al., 2004; Stekl and Pratt, 1998). The extension to 3D of this modeling approach was ad-

dressed in Operto et al. (2007) who showed that problems of representative size (e.g., the 3D

SEG/EAGE overthrust model) can be addressed at low frequencies (< 10 Hz) on currently-

available distributed-memory platforms. However, it remains unclear which approach (time

versus frequency domain, frequency-domain approach based on direct or iterative solvers)

is the most efficient one for 3D full-waveform inversion (Plessix, 2007). This may depend

on several parameters related to the experimental setup such that the dimensions of the

model, the frequency bandwidth, the number of traces in the acquisition and the acquisi-

tion geometry. Three-dimensional frequency-domain modeling methods based on iterative

solvers have been recently presented in Plessix (2007); Riyanti et al. (2007); Warner et al.

(2007). These approaches are far less memory demanding than that based on direct solvers

but their run times depend linearly on the number of sources which may be a significant

drawback in the case of 3D surveys involving several thousands of shots or receivers.

Aim of this paper is to provide some preliminary insights on the feasibility and rele-

6



vance of 3D frequency- domain FWI for building high-resolution velocity models of isotropic

acoustic media. Few applications of 3D frequency-domain FWI to synthetic models have

been recently presented by Stekl et al. (2007); Sirgue et al. (2007); Ben-Hadj-Ali et al.

(2007). Some critical issues related to 3D FWI will not be addressed in this paper and will

be left for further investigations. These issues are the building of a reliable starting model

for FWI which is conventionally carried out by first-arrival traveltime tomography when

global offset acquisitions are considered (Brenders and Pratt, 2006a,b; Ravaut et al., 2004).

We will assume in the following that a starting model describing the long wavelengths of

the true medium is available. The second issue is the design of 3D global offset acquisition

surveys suitable for 3D first-arrival traveltime tomography and FWI. Some footprints of the

azimuth coverage on 3D FWI was recently illustrated by Sirgue et al. (2007) thanks to an

application to the 3D SEG/EAGE overthrust model. Numerical examples presented in this

paper are focused on surface global-offset surveys carried out with networks of source and

receiver on the surface.

In the first part of the paper, we briefly review the theory of frequency-domain full-

waveform modeling and inversion. In the second part, we discuss the parallel implemen-

tation of frequency-domain FWI for distributed-memory platforms. In the third part, we

present several numerical examples of increasing complexities whose aim is to validate the

algorithm, to illustrate the sensitivity of the imaging resolution to the acquisition geom-

etry and to provide some insights on the computational complexity of the approach for

representative case studies.
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THEORY

Theory of frequency-domain full-waveform modeling and inversion will not be rehashed in

this paper since it is now a well-established method for imaging 2D media. The extension

to the 3D case closely follow the strategies that has been developed in 2D. Therefore, only

a brief review of frequency-domain modeling and inversion will be given here. The reader is

referred to Operto et al. (2007) for the method used in this paper for frequency-domain wave

propagation modeling, Pratt et al. (1998) for theoretical aspects of frequency-domain FWI

and Pratt (1999) for more practical aspects such that waveform inversion data preprocessing

and source estimation.

3D acoustic finite-difference frequency-domain modeling

The 3D visco-acoustic wave equation in the frequency domain is given by

ω2

κ(x,y,z)P (x, y, z, ω) + ∂
∂x

(
1

ρ(x,y,z)
∂P (x,y,z,ω)

∂x

)
+ ∂

∂y

(
1

ρ(x,y,z)
∂P (x,y,z,ω)

∂y

)
+ ∂

∂z

(
1

ρ(x,y,z)
∂P (x,y,z,ω)

∂z

)
= −S (x, y, z, ω)

(1)

where ρ (x, y, z) is density, κ (x, y, z) is the bulk modulus, ω is frequency, P (x, y, z, ω) is the

pressure field and S (x, y, z, ω) is the source. Sponge-like PML (Perfectly Matched Layer) at

edges of the necessary limited numerical model can be easily implemented in the frequency

domain to absorb energy (Berenger, 1994; Operto et al., 2007).

Since the relationship between the pressure wavefield and the source is linear, the discrete

acoustic wave equation (1) can be recast in a matrix form as

A p = s (2)
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where the complex-value impedance matrix A depends on the frequency and the medium

properties.

The system 1 can be discretized with the so-called parsimonious mixed-grid finite-

difference method (Jo et al., 1996; Hustedt et al., 2004; Operto et al., 2007). The mixed-grid

discretization which consists of the discretization of the differential operators on different

rotated coordinate systems is complemented by a mass-term distribution (an anti-lumped

mass) which allows to significantly improve the accuracy of the stencil (Marfurt, 1984). The

combined use of the mixed coordinate systems and the mass distribution allows to design

both accurate and spatially-compact stencil. A dispersion analysis demonstrates that only

4 grid points per wavelength are enough to obtain accurate simulations in homogeneous

media. This discretization rule is optimal for FWI whose resolution limit is λ/2 where λ

is the wavelength. Use of compact stencil is critical if a direct method is used to solve

the system resulting from the discretization of the Helmholtz equation because compact

stencils allow to limit the numerical bandwidth of the matrix and hence its fill-in during LU

factorization. Use of direct solver is interesting in the case of multiple-shot simulations as

those required by tomographic applications since the LU factorization is independent of the

right-hand side terms in equation 2. To solve system 2, we use the massively parallel direct

solver MUMPS which has been developed for distributed-memory platform (Amestoy et al.,

2007). A detailed complexity analysis of this approach is provided in Operto et al. (2007).

Frequency-domain full-waveform inversion

The inverse problem is solved by a classic weighted least-squares gradient method (Taran-

tola, 1987). Newton and quasi-Newton (Gauss-Newton) methods were rejected because of

9



the computational cost of either the Hessian or the approximate Hessian (Pratt et al., 1998).

The weighted least-squares cost function is given by

C(m) = ∆d†Wd∆d (3)

where ∆d is the misfit function (the difference between the observed data and the data

computed with model m), the superscript † indicates the adjoint (transpose conjugate) and

Wd is a weighting operator applied to the data which scales the relative contribution of

each component of the vector ∆d in the inversion. Minimization of the cost function leads

to the following solution for the model perturbation ∆m after scaling and smoothing of the

gradient (Pratt et al., 1998; Ravaut et al., 2004; Operto et al., 2006).

∆mi = −α (diagHa + εI)−1 GmRe
{
pt

[
∂At

∂mi

]
A−1Wd∆d∗.

}
(4)

where diag Ha = diagRe{ Jt Wd J∗} denotes the diagonal elements of the weighted ap-

proximate Hessian Ha and J denotes the sensitivity matrix.

One element of the sensitivity matrix is given by

Jk(m,n),i = pt
m

[
∂At

∂mi

]
A−1δn. (5)

where k(m,n) denotes a source-receiver couple of the acquisition system, m and n

denotes respectively a shot and a receiver position. δn is an impulsional source located at

the receiver position n.

The diagonal of the approximate Hessian provides a preconditioner of the gradient which

properly scales the perturbation model (Shin et al., 2001). The damping parameter ε is

used to avoid numerical instabilities (i.e. division by zero). The matrix Gm is a smoothing

regularization operator. It is implemented in the form of a 3D Gaussian spatial filter whose
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correlation lengths are adapted to the inverted frequency component (Ravaut et al., 2004).

An amplitude gain with offset can applied to each seismic trace within the operator Wd

wd(osr) = exp(gLog |osr|) (6)

where the scalar g controls the amplitude of the gain with respect to the source-receiver

offset osr. In our algorithm, the scaling of the gradient could be estimated once per frequency

before the first iteration and kept constant over iterations or re-computed at each iteration.

The term ∂A
∂mi

is the radiation pattern of the diffraction by the model parameter mi. In

the case of the P-wave velocity, this radiation pattern is that of an explosion. In other

words, this matrix reduces to one scalar. The source term can be estimated in the FWI

algorithm by solving a linear inverse problem (Pratt, 1999). The inversion code can be

applied to vertical geophone data or to hydrophone data generated by explosive sources.

Indeed, vertical geophone data can be processed as pressure data thanks to the reciprocity

principle (Operto et al., 2006). The inversion is applied in cascade to several groups of

discrete frequencies. All the frequencies of one group are inverted simultaneously. The final

model obtained close to inversion of one group of frequencies is used as a starting model for

the next group of frequencies. For each frequency group, several iterations can be computed.

PARALLEL NUMERICAL IMPLEMENTATION

We use the massively parallel direct solver MUMPS (Amestoy et al., 2006, 2007) based on a

multifrontal method (Duff and Reid, 1983) to solve the forward problem (system 2). Before

LU decomposition, the matrix coefficients are ordered so that dependencies in the graph

of the matrix are minimized. Using nested dissection ordering, the theoretical memory

complexity of the factorization for a 3D FD problem is O(n4) and the number of floating-
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point operations is O(n6) where n is the number of grid points along one dimension of the

3D square FD grid (Ashcraft and Liu, 1998). The source vectors for the resolution phase

are provided in sparse format on the host processor. After resolution, the multiple solutions

are distributed over processors following a domain decomposition driven by the distribution

of the LU factors. This means that each processor stores a spatial sub-domain of all the

solutions. We take advantage of this distributed in-core storage of the forward problem

solutions to solve in parallel the inverse problem.

The central component of the FWI algorithm is the computation of the gradient of the

cost function. This operator is basically computed by a weighted summation of the forward

problem solutions (FPS), namely, the incident and the backpropagated residual wavefields

computed in the starting model, equation 4. The weights in the summation account for

the radiation pattern of the diffraction tomography reconstruction (the operator
[

∂At

∂mi

]
in

equation 5) and for the data residuals. This weighted summation is computed in parallel in

a straightforward way by taking advantage of the distribution of the FPSs: each processor

computes the subdomain of the gradient corresponding to the subdomain of the FPSs stored

on this processor. At the end of the summation, the distributed gradient is gathered on the

master processor with a collective communication. Note that, when only the P-wave velocity

parameter is involved in the inversion, the matrix
[

∂At

∂mi

]
reduces to a scalar located on the

ith diagonal. This implies that the gradient at position of mi only depends on the values

of the FPSs at this same position. In that case, the parallel computation of the gradient

doesn’t require any point-to-point communication leading to a parallelism efficiency close to

1 for the gradient computation. Note also that all the FPSs remain in core in the algorithm.

No disk swapping is used in the current algorithm. If no enough memory is available to

store in core all the FPSs in addition to the LU factors, the computation of the multi-RHS
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resolution with MUMPS, of the gradient and of the Hessian is performed in a sequential

loop over partitions of RHS terms. Each partition loads in core the maximum number of

solutions fitting the available memory. The efficiency of the parallel inversion algorithm is

mainly controlled by that of the LU factorization. We obtain a maximum speed-up of 13

with the MUMPS direct solver on our applications (Operto et al., 2007).

The parallel FWI algorithm is summarized in Figure 1.

SYNTHETIC EXAMPLES

In this section, we present several numerical examples of 3D FWI of increasing complexi-

ties to validate the algorithm and to give some insights on the computational cost of the

approach on realistic cases. All applications presented hereafter were computed on a HP

DL 145G2 Beowulf cluster of computer center SIGAMM host by Observatoire de la Cote

d’Azur (France). This parallel distributed computer is a 48 dual node cluster machine with

2.4 GHz bi-processors with a 19.2 Gflops peak performance per node. This computer has

a distributed memory architecture, where each node has 8 GBytes of RAM. The intercon-

nection network between processors is Infiniband 4X. Data sharing among processors is

performed using the message passing library MPIHP. For all the examples presented here-

after, the PML layers spread along 5 grid points on each side and each direction. These

PML grid points are not taken into account in the description of the finite-difference grids.

3D full-waveform inversion in 2D configuration

In a first step, we validate the 3D FWI algorithm by comparing the results obtained using a

2D FWI code and the 3D one applied in a 2D configuration. Two-dimensional experiments

13



can be designed considering 2.5-D velocity models (laterally invariant in the y-direction)

and an infinite line source in the y direction. The infinite line source in the y direction was

implemented on a limited computational domain in the y direction using periodic boundary

conditions on the two faces of the model corresponding to y = 0 and y = ymax.

The periodic boundary conditions that were implemented are

[
∂P

∂y

]
y=−h/2,ymax+h/2

= 0 (7)

They are applied on two virtual ghost faces located outside the computational domain

at positions y = −h/2 and y = ymax + h/2 where h stands for the grid interval.

We applied 3D and 2D FWI to a dip section of the overthrust model (Aminzadeh et al.,

1997) (Figure 2(a)), discretized on a 801 × 187 grid with a grid spacing h = 25 m. For

the 3D application, the dip section of the overthrust model was duplicated 5 times in the y

direction leading to a 3D 801 × 5 × 187 finite-difference grid. A 2D wavefield computed in

this 2.5D model with the above mentioned boundary conditions is shown in Figure 3.

The starting model for inversion is obtained by smoothing the true velocity model with a

Gaussian function of horizontal and vertical correlation lengths of 500 meters (Figure 2(b)).

To obtain stable inversion, the true velocity structure was set in the first 100 meters of the

starting model. The 2D acquisition system consists of a line of 200 sources and receivers

equally-spaced on the surface. The corresponding 2.5D acquisition system consists of du-

plicating 5 times the source and receiver lines in the y direction. We inverted sequentially

7 frequencies ranging from 5 to 20 Hz. For each frequency, we compute 10 iterations. The

final velocity models inferred from 2D and 3D FWI are shown in Figure 4. Some vertical

graphs extracted from these models are compared in Figures 5. They are very similar hence,
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providing a first validation of the 3D FWI algorithm. The agreement between the final FWI

models and the true model is also quite good. Some high-amplitude perturbations are still

underestimated mainly due to an insufficient number of iterations (Figures 5). These results

also give some insights on the high spatial resolution which can be achieved in the velocity

models at relatively low frequencies (i.e., < 15 Hz) by FWI of global offset data thanks to

the continuous sampling of the wavenumber spectrum up to a maximum wavenumber of

2/λ15Hz m−1 (λ15Hz denotes wavelengths corresponding to a frequency of 15 Hz).

Inclusion models

In this section, we present application of 3D FWI for simple velocity models composed

of homogeneous background with one or two inclusions. The models are discretized on a

small 31 × 31 × 31 grid with 250 m cubic cells. The velocity in the background medium is

4000 m/s. The inverted frequencies are 1.75, 2.35, 3 and 3.75 Hz. Shots and receivers are

uniformly distributed on the top and bottom sides of the 3D model respectively.

We first consider the case of a velocity model with one inclusion in the homogeneous

background. The velocity in the inclusion is 3500 m/s (Figure 6). The inclusion is centred

on the 3D grid. The 4 frequencies were inverted successively. Some horizontal and vertical

sections of the inclusion are shown in Figure 6. Note the vertically-elongated shape of the

inclusion in the vertical cross-section section and the symmetric shape of the inclusion in

the horizontal slice. The vertically-elongated shape of the inclusion is due to the fact the

top and bottom parts of the inclusion are mainly sampled by downgoing transmitted wave

paths which have a limited resolution power while the shape of the inclusion in a horizontal

plane is mainly controlled by reflections associated with shots and receivers located near a
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same face of the 3D model. This relationship between the aperture illumination and the

resolution of the imaging is also illustrated on the two graphs extracted from a vertical and

horizontal section running trough the inclusion. The vertical graph exhibits a clear deficit of

high wavenumber due to transmission-like reconstruction while the horizontal graph exhibits

slight deficit of small wavenumbers due to reflection-like reconstruction. The symmetry of

the image of the inclusion in the horizontal plane which results from the symmetry of the

inclusion with respect to the acquisition geometry is an additional validation of the 3D FWI

algorithm.

The second example contains two spherical inclusions (3500 m/s and 4500 m/s) corre-

sponding to a positive and negative perturbations in the homogeneous background (Figure

7). The centre of the two inclusions lies on the same vertical plane in the middle of the

grid. Aim of this test is to verify that the 3D inversion handles properly multi-scattering

occurring between the two inclusions. The starting model, the frequencies involved in the

inversion and the acquisition geometry are the same that for the previous example. For this

case study, the 4 frequencies were inverted both successively and simultaneously (Figures 8

and 9). In both cases, the inversion successfully imaged the two inclusions.

Inclusion+interface velocity model

A more realistic example consists of a velocity-gradient layer above a homogeneous layer.

An inclusion was incorporated into the velocity-gradient layer (Figure 10(a)). The minimum

and maximum velocities are 3.8 and 6.0 km/s respectively. It is discretized on a 100×100×40

grid with a grid spacing h = 62.5 m, which corresponds to a physical domain of 6.25 km

x 6.25 km x 2.5 km. The grid spacing h was kept constant over the successive mono-
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frequency inversions and was set according to the maximum inverted frequency. The starting

model for inversion is the velocity-gradient layer extended down to the bottom of the model

(Figure 10(b)). Acquisition system consists of two nested networks of 17×17 = 289 sources

and receivers deployed on the surface. The distance between either two sources or receivers

is 312.5 m. We sequentially inverted 5 frequencies ranging from 2 and 12 Hz. We computed

10 iterations per frequency. The final FWI velocity model is shown in Figure 11(a). A

vertical graph across the inclusion extracted from the final FWI model is shown in Figure

11(b). The bottom layer is well recovered thanks to the large offset coverage allowing to

quantitatively image a broad range of the layer wavelengths. The shape and amplitude

of the inclusion ara incompletely recovered with respect to the expected resolution of the

imaging at 12 Hz although the image of the inclusion remains clear in Figure 11(a). It may

be due to the high velocity perturbation associated to the inclusion (1500 m/s with respect

to the background) which makes the linearized inversion difficult. Qualitative inspection

of the vertical graph also reveals a slight deficit of small (vertical) wavenumbers in the

image of the inclusion and of the bottom layer (this is suggested by the negative velocity

perturbations with respect to the true model). This deficit is explained by the surface

acquisition geometry which illuminates the vertical components of the wavenumber vector

with reflections only.

SEG/EAGE overthrust model

The 3-D SEG/EAGE overthrust model is a constant density acoustic model covering an

area of 20 km x 20 km x 4.65 km (Aminzadeh et al., 1997). It is discretized with 25 m cubic

cells, representing an uniform mesh of 801× 801× 187 nodes. The minimum and maximum

velocities in the overthrust model are 2.2 and 6.0 km/s respectively (Figure 12).
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Overthrust model: channel target

Due to limited available computer resources, our first application was limited to a small

target of the overthrust model centred on a channel. The maximum frequency involved in

the inversion was 15 Hz. A horizontal slice and a vertical section of the model are shown

in Figure 13. The model covers an area of 7 km x 8.8 km x 2.3 km and is discretized

with a grid spacing h = 50 m. This leads to a 141 × 176 × 46 grid. The minimum and

maximum velocities are 3.3 and 6.0 km/s respectively. Acquisition system consists of 1452

sources and receivers deployed on the surface according to two nested grids of 44x33 nodes.

The distance between either two sources or receivers is 200 m. We sequentially inverted 5

frequencies ranging from 5 to 15 Hz. For each frequency, we computed 7 iterations. The

starting velocity model was obtained by smoothing the true model with a wavenumber filter

with a cut-off wavenumber of 1./500 m−1 (Figure 14). The final FWI model provides a low-

pass version of the true model (Figure 15). In order to assess the accuracy of the FWI,

we low-pass filter the true model in the time domain with a cut-off frequency of 15 Hz to

roughly mimic the exact velocity model that would have been inferred by FWI. (Figure 16).

Qualitative comparison between the final FWI velocity model and the low-pass filtered true

model shows a good agreement between the two models. Comparison between a vertical

graph extracted from the starting model, the low-pass true velocity model and the final

FWI model is shown in Figure 17. The agreement is reasonably good with again a slight

deficit of small wavenumbers in the FWI graph due to the surface-to-surface illumination

and underestimation of velocities in the deep part of the model likely due to an insufficient

number of iterations.

To perform this application, we used 60 MPI processes distributed over 15 dual core
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biprocessor nodes. Each MPI process used 1.5 Gbytes of RAM (see Table 1). Seven it-

erations of the inversion of one frequency took approximately 45 hours. Table 1 gathers

information related to running time and memory requirement for LU factorization, multi-

shot resolutions (both tasks being devoted to the forward problem), gradient and diagonal

Hessian computation. Running time for the resolution phase is very small (0.9 s per source)

and illustrates the main advantage of frequency-domain modeling methods based on direct

solvers for tomographic applications involving few thousands of source. Computation of the

gradient is also negligible in the frequency domain (4 s) thanks to the summation without

disk swapping over a very compact volume of data limited to few frequency components.

Moreover, increasing the number of cores in the inversion would have led to a significant re-

duction of the computational time at the partial expense of memory saving due to memory

overhead during parallel factorization (Operto et al., 2007).

Overthrust model: thrust target

We now consider the imaging of a significant target of the overthrust model which incor-

porates the main thrusts of the model (Figure 18). The minimum and maximum velocities

are respectively 2.2 and 6.0 km/s. The model covers an area of 13.5 km x 13.5 km x 4.65

km.

Acquisition system consists of two coincident 43 × 43 = 1849 network of sources and

receivers deployed on the surface. The distance between either two sources or receivers is

300 m. We sequentially inverted 2 frequencies: 3.5 and 5 Hz. We computed 10 iterations per

frequency. For this application, we adapted the grid interval to the inverted frequency. Grid

intervals were h=150 m and 100 m for the frequencies 3.5 and 5 Hz. These dicretizations
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lead respectively to grids of dimension 90 × 90 × 32 and 135 × 135 × 47. The starting

velocity model was obtained by smoothing the true model with a 3D Gaussian function

with a correlation length of 500 meters in the 3 directions (Figure 19). The FWI velocity

models after inversion of the 3.5-Hz and 5-Hz frequencies are shown in figures 20 and 21

respectively. Although the velocity structure is well imaged at a resolution scale consistent

with the inverted frequencies, one can note a checkerboard pattern superimposed near the

ends of the horizontal slices of the FWI velocity model. This is clearly a footprint of the

coarse acquisition geometry. This pattern is only observed near the end of the horizontal

slice because of the non uniform azimuth illumination in these parts of the model. The

acquisition footprint has no preferential orientation due to the fact that both shots and

receivers are uniformally deployed all over the surface with a constant spacing in the dip

and cross directions. Another illustration of the footprint of the azimuth illumination and

of the acquisition coarseness on 3D frequency-domain FWI was illustrated by Sirgue et al.

(2007).

For this application, we run 32 processes distributed over 8 dual core biprocessor nodes

(4 MPI processes/node) for the 150-m grid (frequency 3.5 Hz) and 60 processes distributed

over 20 dual core biprocessor nodes (3 MPI processes/node) for the 100-m grid (frequency

5 Hz) respectively. Note that the number of process per dual core biprocessor node was

decreased from 4 to 3 as the size of the problem increases in order to increase the amount

of share memory assigned to each processor for large problems. This allows optimization

of the memory use at the partial expense of the running time since the memory overhead

decreases with the number of process.

The 10 iterations took about 24 hours and 72 hours for the 3.5-Hz and the 5-Hz fre-

quencies respectively. More detailed information are gathered in the table 2.
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We considered that we obtained convergence when the cost function reached about 10

% of its initial value (see Figure 22). We notice that we reached a better convergence rate

that shown in Figure 7a of Sirgue et al. (2007). This may be due to different scaling of the

gradient or to the smaller size of our application.

The data fit is illustrated in the frequency domain for the 3.5-Hz and 5-Hz frequencies

for 2 shots in Figures 23 and 24 respectively. We compare the spectral amplitude and

the phase of the monochromatic wavefields at the receiver positions computed in the true

velocity model and in the FWI models at the first and last iterations of the two mono-

frequency inversions. One shot is located at the upper-left corner of the receiver plane

(Figure 23) while the second shot is on the middle of the receiver array (Figure 24). The

misfit reduction between the first and last iterations is obvious. We note also that this

misfit reduction is more effective for the shot located in the middle of the receiver array

illustrating the difficulty to match the lower-amplitude arrivals recorded at larger offsets.

CONCLUSION

In this paper, we presented a 3D massively parallel frequency-domain full-waveform in-

version algorithm based on a direct solver. Advantages of our approach is related to the

robustness of the forward problem provided by the use of a high-performance direct solver,

its efficiency to perform multiple-shot simulations in 3D finite-difference grids of relatively

small dimensions and a straightforward parallelization of the inverse problem resulting from

a domain decomposition of the monochromatic wavefields performed by the direct solver.

Its main drawback is the memory and CPU time complexity of the LU factorization phase

which limits the size of the models and the frequency bandwidth which can be addressed

on realistic distributed-memory platforms. We presented several applications on synthetic
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examples of increasing complexity to validate the algorithm and to give some insights of the

feasibility of our approach. Some preliminary applications to the overthrust model suggests

that frequency-domain FWI can be successfully applied at low frequencies (< 5 Hz) on

limited-size PC clusters to develop 3D velocity models with a maximum resolution of the

order of half the wavelength (that is, 400 m for a velocity of 4000 m/s). Successfull modeling

was already performed in a significant target of the overthrust model at 7 Hz (Operto et al.,

2007) using 400 Gbytes of core memory suggesting that full-waveform inversion is feasible

at this frequency if large computational ressources are made available. At the resolution

scale provided by this range of frequencies (5-7 Hz), the velocity models may be used as

improved background models for prestack depth migration.

Aim of our future work is to overcome the memory limitations imposed by the use of

a direct solver only. A possible way is to evolve towards hybrid direct-iterative solvers

implemented in a domain decomposition method for which the direct solver is applied to

subdomains of limited dimension while the iterative solver is applied to the grid points

located at the boundaries between the subdomains. The relevance of this approach will

have to be demonstrated when a large number of sources is considered.

Analysis of the sensitivity of FWI to the acquisition geometry and to the accuracy of

the starting model needs further investigations before being able to move to 3D real data

applications.
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MEMFACTOALL
(GBytes) 67

MEMFACTOPROC
(GBytes) 1.5

TIMEFACTO (s) 510

TIMESOLV EALL
(s) 1270

TIMESOLV ESOURCE
(s) 0.9

TIMEGRADIENT (s) 4

TIMEdiagHESSIANa
(s) 3093

Table 1: Computational cost of the imaging of the overthrust model (channel):

MEMFACTOALL
: Total memory allocated during factorization. MEMFACTOPROC

: Aver-

age allocated memory per working processor during factorization. TIMEFACTO: Elapsed

time for factorization. TIMESOLV EALL
: Total elapsed time for multi-shot resolution.

TIMESOLV ESOURCE
: Elapsed time for resolution for 1 source. TIMEGRADIENT : Elapsed

time for gradient computation. TIMEdiagHESSIANa
: Elapsed time for diagonal Hessian

computation.
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FREQUENCY (Hz) 3.5 5

GRID 90 × 90 × 32 135 × 135 × 47

MEMFACTOALL
(GBytes) 16 64

MEMFACTOPROC
(GBytes) 0.4 1.1

TIMEFACTO (s) 72 340

TIMESOLV EALL
(s) 310 995

TIMESOLV ESOURCE
(s) 0.165 0.53

TIMEGRADIENT (s) 0.65 1.44

TIMEdiagHESSIANa
(s) 1999 3432

Table 2: Computational cost of the imaging of the overthrust model (thrust sys-

tem): FREQUENCY : inverted frequency. GRID: dimension of the 3D FD grid.

MEMFACTOALL
: Total memory allocated during factorization. MEMFACTOPROC

: Aver-

age allocated memory per working processor during factorization. TIMEFACTO: Elapsed

time for factorization. TIMESOLV EALL
: Total elapsed time for multi-shot resolution.

TIMESOLV ESOURCE
: Elapsed time for resolution of 1 source. TIMEGRADIENT : Elapsed

time for gradient computation. TIMEdiagHESSIANa
: Elapsed time for diagonal Hessian

computation.
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Operto, S., G. Lambaré, P. Podvin, and P. Thierry, 2003, 3-D ray-Born migration/inversion.

part 2: application to the SEG/EAGE overthrust experiment: Geophysics, 68, 1357–

1370.

Operto, S., C. Ravaut, L. Improta, J. Virieux, A. Herrero, and P. Dell’Aversana, 2004,

Quantitative imaging of complex structures from multi-fold wide aperture seismic data:

Geophysical Prospecting, 52, 625–651.
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Yilmaz, Ö. and R. Chambers, 1984, Migration velocity analysis by wavefield extrapolation:

Geophysics, 49, 1664–1674.

Zhang, Y., S. Xu, and G. Zhang, 2006, Imaging complex salt bodies with turning-wave one-

way wave equation: 76th annual meeting, Expanded Abstracts, 2323–2327, Soc. Expl.

Geophys.

Zhang, Y., G. Zhang, D. Yingst, and J. Sun, 2007, Explicit marching method for reverse-

time migration: 77th annual meeting, Expanded Abstracts, 2300–2304, Soc. Expl. Geo-

phys.

30



LIST OF FIGURES

1 Sketch of the FWI algorithm. Tasks performed in parallel are written in green.

RHS stands for right-hand side terms and correspond to sources in the frame of full-

waveform modeling. Nproc stands for the number of processes involved in the parallel

execution. Pi stands for the processor i where P0 is the master processor. Note that an

arbitrary number N of frequencies can be inverted simultaneously (set Nfreqgroup = 1

and nfreq = N ) or successively (set Nfreqgroup = N and nfreq = 1). nitermax stands

for the maximum number of iterations of one frequency group inversion.

2 Imaging of a dip section of the overthrust model: a) True velocity model. b) Start-

ing velocity model.

3 Example of a 2-D wavefield computed in a 3D FD grid. Note the limited dimension

of the grid in the y dimension. Five grid points are used in the y direction.

4 Imaging of a dip section of the overthrust model: (a) Final velocity model from 2D

FWI. (b) Final velocity model from 3D FWI.

5 Imaging of a dip section of the overthrust model: Comparison between vertical

graphs extracted from the true (blue line), the starting (black line) and the 2D and 3D

FWI models (red and green lines respectively). The two series of graph are located at 4.5

and 13.5 km of distance. The 2D and 3D FWI graphs are almost identical.

6 Imaging of 1 inclusion by 3D FWI. a) vertical (left) and horizontal (right) sections

of the true inclusion. b) vertical (left) and horizontal (right) sections of the inclusion after

inversion of the 1.75-Hz frequency. c) vertical (left) and horizontal (right) sections of the

inclusion after inversion of the 3.75-Hz frequency. d) vertical (left) and horizontal (right)

graphs extracted from models shown in (a) (black lines) and (c) (red lines).

7 Imaging of 2 inclusions by 3D FWI: true model.
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8 Imaging of 2 inclusions by 3D FWI: vertical cross-sections of the FWI velocity

models after successive inversion of frequencies 1.75 (a), 2.35 (b), 3.00 (c) and 3.75 (d) Hz.

9 Imaging of 2 inclusions by 3D FWI: vertical cross-section of the 3D FWI velocity

model after simultaneous inversion of the 4 frequencies 1.75, 2.35, 3.00 and 3.75 Hz.

10 Imaging of the inclusion/interface model: (a) True velocity model. (b) Starting

velocity model for FWI.

11 Imaging of the inclusion/interface model: (a) Final FWI velocity model. (b) Ver-

tical graph across the inclusion extracted from the FWI velocity model (red) and from the

true velocity model (black).

12 The 3D SEG/EAGE overthrust model.

13 Imaging of a channel in the overthrust model: true velocity model. a) Horizontal

slice at z=1.5 km. b) Cross-section at x=4 km.

14 Imaging of a channel in the overthrust model: starting velocity model. a) Hori-

zontal slice at Z=1.5 km. b) Cross-section at X=4 km.

15 Imaging of a channel in the overthrust model: FWI velocity model after successive

inversion of the 5 frequencies. a) Horizontal slice at z=1.5 km. b) Vertical section at x=4

km.

16 Imaging of a channel in the overthrust model: low-pass filtered true velocity model.

a) Horizontal slice at Z=1.5 km. b) Cross-section at X=4 km.

17 Imaging of a channel in the overthrust model: comparison between vertical graphs

extracted from the starting model (red dashed line), the low-pass filtered true model (blue

solid line) and the final FWI velocity model (black dot line). The graph is located at

(X = 3.5 km, Y = 4.4 km).

18 Imaging of the thrust system in the overthrust model: true velocity model. a)
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Horizontal slice at Z=2.3 km. b) Cross-section at X=6.75 km.

19 Imaging of the thrust system in the overthrust model: starting velocity model. a)

Horizontal slice at Z=2.3 km. b) Cross-section at X=6.75 km.

20 Imaging of the thrust system in the overthrust model: 3.5-Hz FWI velocity model.

a) Horizontal slice at Z=2.3 km. b) Cross-section at X=6.75 km.

21 Imaging of the thrust system in the overthrust model: 5-Hz FWI velocity model.

a) Horizontal slice at Z=2.3 km. b) Cross-section at X=6.75 km.

22 Imaging of the thrust system in the overthrust model: cost function versus itera-

tion number for the 3.5-Hz and 5-Hz frequencies.

23 Imaging of the thrust system in the overthrust model: a) samplitude (left) and

phase (right) of the 3.5-Hz monochromatic wavefield computed in the true velocity model

at the receiver positions. The horizontal and vertical axis label the receiver number in the

dip and cross directions respectively. The source is located in the upper-left corner of the

receiver array. b) same than (a) but the wavefields were computed in the starting model

of the 3.5-Hz inversion. c) Difference between maps shown in a) and b). d) Same than (a)

but the wavefields were computed in the final model of the 3.5-Hz inversion. e) Difference

between maps shown in (a) and (d). (f-j): same that for (a-e) but for the 5-Hz frequency.

24 Imaging of the thrust system in the overthrust model: Same that for Figure 23 but

for a source located in the middle of the receiver array.
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Figure 1: Sketch of the FWI algorithm. Tasks performed in parallel are written in green.

RHS stands for right-hand side terms and correspond to sources in the frame of full-

waveform modeling. Nproc stands for the number of processes involved in the parallel

execution. Pi stands for the processor i where P0 is the master processor. Note that an

arbitrary number N of frequencies can be inverted simultaneously (set Nfreqgroup = 1

and nfreq = N ) or successively (set Nfreqgroup = N and nfreq = 1). nitermax stands

for the maximum number of iterations of one frequency group inversion.

Ben Hadj Ali & al –
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(a)

(b)

Figure 2: Imaging of a dip section of the overthrust model: a) True velocity model. b)

Starting velocity model.

Ben Hadj Ali & al –
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Figure 3: Example of a 2-D wavefield computed in a 3D FD grid. Note the limited dimension

of the grid in the y dimension. Five grid points are used in the y direction.

Ben Hadj Ali & al –
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(a)

(b)

Figure 4: Imaging of a dip section of the overthrust model: (a) Final velocity model from

2D FWI. (b) Final velocity model from 3D FWI.

Ben Hadj Ali & al –
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(a)

(b)

Figure 5: Imaging of a dip section of the overthrust model: Comparison between vertical

graphs extracted from the true (blue line), the starting (black line) and the 2D and 3D FWI

models (red and green lines respectively). The two series of graph are located at 4.5 and

13.5 km of distance. The 2D and 3D FWI graphs are almost identical.

Ben Hadj Ali & al –
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Figure 6: Imaging of 1 inclusion by 3D FWI. a) vertical (left) and horizontal (right) sections

of the true inclusion. b) vertical (left) and horizontal (right) sections of the inclusion after

inversion of the 1.75-Hz frequency. c) vertical (left) and horizontal (right) sections of the

inclusion after inversion of the 3.75-Hz frequency. d) vertical (left) and horizontal (right)

graphs extracted from models shown in (a) (black lines) and (c) (red lines).
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Figure 7: Imaging of 2 inclusions by 3D FWI: true model.Ben Hadj Ali & al –
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Figure 8: Imaging of 2 inclusions by 3D FWI: vertical cross-sections of the FWI velocity

models after successive inversion of frequencies 1.75 (a), 2.35 (b), 3.00 (c) and 3.75 (d) Hz.
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Figure 9: Imaging of 2 inclusions by 3D FWI: vertical cross-section of the 3D FWI velocity

model after simultaneous inversion of the 4 frequencies 1.75, 2.35, 3.00 and 3.75 Hz.

Ben Hadj Ali & al –
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(a)

(b)

Figure 10: Imaging of the inclusion/interface model: (a) True velocity model. (b) Starting

velocity model for FWI.
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Figure 11: Imaging of the inclusion/interface model: (a) Final FWI velocity model. (b)

Vertical graph across the inclusion extracted from the FWI velocity model (red) and from

the true velocity model (black).
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Figure 12: The 3D SEG/EAGE overthrust model.Ben Hadj Ali & al –
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(a)

(b)

Figure 13: Imaging of a channel in the overthrust model: true velocity model. a) Horizontal

slice at z=1.5 km. b) Cross-section at x=4 km.

Ben Hadj Ali & al –

46



(a)

(b)

Figure 14: Imaging of a channel in the overthrust model: starting velocity model. a)

Horizontal slice at Z=1.5 km. b) Cross-section at X=4 km.
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(a)

(b)

Figure 15: Imaging of a channel in the overthrust model: FWI velocity model after succes-

sive inversion of the 5 frequencies. a) Horizontal slice at z=1.5 km. b) Vertical section at

x=4 km.
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(a)

(b)

Figure 16: Imaging of a channel in the overthrust model: low-pass filtered true velocity

model. a) Horizontal slice at Z=1.5 km. b) Cross-section at X=4 km.
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Figure 17: Imaging of a channel in the overthrust model: comparison between vertical

graphs extracted from the starting model (red dashed line), the low-pass filtered true model

(blue solid line) and the final FWI velocity model (black dot line). The graph is located at

(X = 3.5 km, Y = 4.4 km).
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(a)

(b)

Figure 18: Imaging of the thrust system in the overthrust model: true velocity model. a)

Horizontal slice at Z=2.3 km. b) Cross-section at X=6.75 km.
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(a)

(b)

Figure 19: Imaging of the thrust system in the overthrust model: starting velocity model.

a) Horizontal slice at Z=2.3 km. b) Cross-section at X=6.75 km.
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(a)

(b)

Figure 20: Imaging of the thrust system in the overthrust model: 3.5-Hz FWI velocity

model. a) Horizontal slice at Z=2.3 km. b) Cross-section at X=6.75 km.
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(a)

(b)

Figure 21: Imaging of the thrust system in the overthrust model: 5-Hz FWI velocity model.

a) Horizontal slice at Z=2.3 km. b) Cross-section at X=6.75 km.
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Figure 22: Imaging of the thrust system in the overthrust model: cost function versus

iteration number for the 3.5-Hz and 5-Hz frequencies.
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Figure 23: Imaging of the thrust system in the overthrust model: a) samplitude (left) and

phase (right) of the 3.5-Hz monochromatic wavefield computed in the true velocity model

at the receiver positions. The horizontal and vertical axis label the receiver number in the

dip and cross directions respectively. The source is located in the upper-left corner of the

receiver array. b) same than (a) but the wavefields were computed in the starting model

of the 3.5-Hz inversion. c) Difference between maps shown in a) and b). d) Same than (a)

but the wavefields were computed in the final model of the 3.5-Hz inversion. e) Difference

between maps shown in (a) and (d). (f-j): same that for (a-e) but for the 5-Hz frequency.
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Figure 24: Imaging of the thrust system in the overthrust model: Same that for Figure 23

but for a source located in the middle of the receiver array.
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