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S U M M A R Y
Estimates of past climate derived from borehole temperatures are assuming a greater impor-
tance in context of the millennial temperature variation debate. However, recovery of these
signals is usually performed with regularization which can potentially lead to underestima-
tion of past variation when noise is present. In this work Bayesian inference is applied to this
problem with no explicit regularization. To achieve this Reversible Jump Markov chain Monte
Carlo is employed, and this allows models of varying complexity (i.e. variable dimensions) to
be sampled so that it is possible to infer the level of ground surface temperature (GST) history
resolution appropriate to the data. Using synthetic examples, we show that the inference of the
GST signal back to more than 500 yr is robust given boreholes of 500 m depth and moderate
noise levels and discuss the associated uncertainties. We compare the prior information we
have used with the inferred posterior distribution to show which parts of the GST reconstruc-
tions are independent of this prior information. We demonstrate the application of the method
to real data using five boreholes from southern England. These are modelled both individually
and jointly, and appear to indicate a spatial trend of warming over 500 yr across the south of
the country.

Key words: ground surface temperature history, inversion of temperature logs, Markov chain
Monte Carlo.

1 I N T RO D U C T I O N

Records of past surface temperatures are valuable data for placing

recent warming in a long-term context and for constraining cli-

mate model sensitivities so that they can be used in prediction of

future climate scenarios. However, historical instrumental records

are limited over the majority of the globe to the past 150 yr (Jones

& Mann 2004). For this reason, a variety of methods have been

developed to indirectly measure the past variations using proxy in-

dicators. One approach used to reconstruct pre-instrumental surface

temperature variations which has begun to take a more significant

role (e.g. Gonzalez-Rouco et al. 2003, 2006; Hegerl et al. 2007)

involves examining temperature–depth profiles measured in terres-

trial boreholes. These profiles exhibit perturbations at depth which,

in the absence of other thermal influences, can be directly related

to past variations in ground surface temperatures (GST) by the law

of heat conduction (see Pollack & Huang 2000, and the references

therein).

In order to infer the transient surface temperature record, given

a temperature depth profile, we need to solve an ill-posed inverse

problem. In this, the GST history and equilibrium thermal regime

must be estimated from measured temperature profiles and ther-

mophysical properties. Many different approaches to this problem

have been used, (Shen & Beck 1991; Kakuta 1992; Mareschal &

Beltrami 1992; Shen et al. 1992; Huang et al. 1996; Dahl-Jensen

et al. 1998; Woodbury & Ferguson 2006). Many of these methods

involve a constraint on the smoothness or resolution of the recon-

structed GST history. This is designed to deal with non-uniqueness

of the inverse problem. Hartmann & Rath (2005) show that it is diffi-

cult to choose the magnitude of this model smoothing that should be

applied and they demonstrate with synthetic examples using noisy

data that very smooth reconstructions are obtained which have diffi-

culty capturing temperature variability before 200 yr before present.

In this work, we therefore, explore an alternative approach to inver-

sion and uncertainty analysis using Bayesian inference.

Bayesian inference is cast in a probabilistic framework

(e.g. Mosegaard & Tarantola 1995; Malinverno 2000; Tarantola

2005) which uses Bayes’ theorem to map a prior probability density

function (pdf), via the data likelihood, into a posterior pdf. Thus

the posterior pdf describes the distributions of all model parameters

conditioned on the data and prior information. The model uncer-

tainty or non-uniqueness is then characterized by the width and

shape of this posterior pdf. The prior distribution takes the place of

the regularization by constraining model values to lie close to values

considered realistic.

For many practical problems, sampling from the posterior pdf

requires Markov chain Monte Carlo methods. In this work we use

Reversible Jump Markov chain Monte Carlo (RJ-MCMC) Green
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(1995) which additionally incorporates the number of model pa-

rameters as one of the model variables. Thus for this problem the

GST model complexity is also inferred from the data. This leads

to a reduced dependence on the user-defined parametrization. Re-

cent applications of RJ-MCMC and Bayesian inference to other

geophysical problems include Malinverno (2000, 2002), Andersen

et al. (2003), Malinverno & Briggs (2004), Malinverno & Leaney

(2005), Stephenson et al. (2006) and Sambridge et al. (2006).

In this paper, we first describe the forward problem, that is, solv-

ing for the temperature field in 1-D. We then give a brief introduction

to Bayesian inference in general and the use of the RJ-MCMC sam-

pling algorithm. The set up of this particular problem in a Bayesian

framework is detailed followed by examples using synthetic and real

data. We conclude with a discussion of the results obtained.

2 F O RWA R D M O D E L A N D B AY E S I A N

F O R M U L AT I O N

2.1 Forward model

In order to find a solution to an inverse problem a forward model

formulation is required. This provides the forward path from the

system’s control parameters to the output of that system. In this

work, we solve the 1-D heat conduction equation, subject to two

boundary conditions. The heat conduction equation is

ρC
∂T (z, t)

∂t
= ∂

∂z

[
κ(z)

∂T (z, t)

∂z

]
, (1)

where z is depth which is positive into the ground, t is time, T is the

temperature and κ , ρ and C are the thermal conductivity, density

and specific heat capacity, respectively. The boundary conditions

are an upper surface Robin boundary condition which is used to

express the heat transfer from the air to the Earth through the surface

heat transfer coefficient and a lower surface Neumann boundary

condition for background geothermal heat flow:

q(0, t) = β[Tair(t) − T (0, t)] (2)

q(zmax, t) = −κ(zmax)
∂T

∂z
, (3)

where β is the heat transfer coefficient, T air is the air temperature,

T are temperatures in the ground and q(zmax, t) is the geothermal

heat flux, which is assumed to be constant with time.

In order to solve the forward problem efficiently we have chosen to

use a finite element approximation to eq. (1) (e.g. Lewis et al. 1996).

This allows us to take account of both radiogenic heat sources within

the lithologies and also the depth dependence of the thermophysical

properties. We use both a steady state and transient simulations: the

former is used to calculate the equilibrium temperature depth profile

and this is then perturbed with the latter. The finite element model

has nodal spacing of 5 m at which the temperatures and all physical

properties are specified. The model is run for 150–300 time steps of

2–5 yr. For 5 yr time steps and a typical GST history (2000 yr with

a 1 K step change at 1000 yr), the maximum discretization error is

6 × 10−4 K, well below typical data noise values. This error is not

very sensitive to the spatial discretization but scales with the length

of the time steps used.

2.2 Bayesian inference

In a Bayesian formulation, all model parameters are described by

probability distributions which effectively encompass the uncer-

tainty associated with a particular parameter. The aim of Bayesian

inference is to quantify the posterior probability distribution which

characterizes all of the model parameters given prior informa-

tion and the data available (see, for example, Bernardo & Smith

1994; Jaynes 2003). Encompassing this relationship is Bayes’

theorem:

p(m | d, ℘) = p(d | m, ℘) p(m | ℘)

p(d | ℘)
, (4)

where p() stands for probability and ‘a | b’ implies conditional de-

pendence of a on b, that is, a given b. m is the model considered,

d is the data and ℘ is the prior information. Thus p(d | m, ℘) is

the probability of observing the data given the model and the prior

information ℘, and p(m | ℘) is the probability distribution of the

model parameters given the prior information (which includes the

model formulation).

The prior probability distribution used in inverse problems in-

troduces information into the model so that the inverse solution is

constrained in some sense. In many methods this is achieved by using

a constraint on the model smoothness. However, because Bayesian

inference is naturally parsimonious (Denison et al. 2002) there is

no need to explicitly deal with the familiar trade-off between data

fit and model resolution. Thus, when involved in choosing mod-

els of different complexity, the Bayesian approach will prefer the

simpler model (in the Occam’s razor sense: Jefferys & Berger 1992;

Malinverno 2002; MacKay 2003; Sambridge et al. 2006). Assuming

that we have a complex and simple model that both fit the observed

data, then, for non-diffuse priors, the support from the data (or evi-

dence, see below) for a simpler model will be higher in the region of

the observed data as it is spread over a smaller region in data space

(MacKay 2003).

The denominator of eq. (4), often referred to as the marginal

likelihood of the data or evidence (Sambridge et al. 2006; Sivia &

Skilling 2006) is generally an intractable integral and so the direct

calculation of the posterior is not possible. However, this can be

overcome by the use of Monte Carlo sampling using Markov chains

(for a general introduction see Gilks et al. 1996) for which the

posterior is only needed up to a constant of proportionality.

RJ-MCMC (Green 1995) is a generalization of the more well-

known Metropolis–Hastings algorithm. It allows sampling of mod-

els over a range of dimensions in the same sampling scheme. Like

the more well known fixed dimension MCMC, RJ-MCMC consti-

tutes a two stage process of proposing a model, based on the current

one, and then accepting or rejecting this proposal. The proposal

is made by drawing from a probability distribution q(m′ | m) such

that a new proposed model m′ is conditional only on the current

model m. In the most general case of a proposal, in which we might

allow a model to change dimensions, or simply changing the model

parameters in fixed dimensions, we are always transforming one

model to another. This transformation needs to be accounted for

in the acceptance criterion, in accordance with the requirement of

detailed balance (see Green 1995, 2003). This is taken into account

by the exact form of the acceptance probability, α. When the num-

ber of dimensions does not change during a proposal, α can be

written in the same form as the well-known Metropolis–Hastings

sampler. However, the more general form of acceptance probability

is:

α = min

[
1,

p(m′ | ℘)

p(m | ℘)
.

p(d | m′, ℘)

p(d | m, ℘)
.
q(m | m′)
q(m′ | m)

· |J|
]

= min[1, (prior ratio) · (likelihood ratio)

× (proposal ratio) · |Jacobian|], (5)
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where J, the Jacobian, accounts for the transformation from one

model to another and is given by:

J = ∂(m′, u′)
∂(m, u)

, (6)

where u and u′ are used to transform the current model m to the pro-

posed model, m′ which may or may not be of a different dimension.

In most practical fixed dimension cases we have encountered, the

Jacobian is 1, and can be discarded. For variable dimension models

the form of the Jacobian depends on the form of the transformation

between dimensions. The total dimension of the variables and pa-

rameters before and after a dimension change must balance (Green

1995), such that

d(m) + d(u) = d(m′) + d(u′). (7)

For example, a model of dimensionality k when subject to a birth

move, leads a model of dimensionality (k + 1). The extra dimension

coming from u, which is size 1 and u′ is then size 0. We return to

the details of this later for our specific problem.

If the new model is accepted, the current model m is replaced by

m′ which becomes the current model for the next iteration. If it is

not accepted, the current model m is retained for another iteration

and a new modification is proposed. This process is then iterated

many times so that, after a period of initial exploration of the model

space (referred to as the burn-in), we collect a series of samples of the

model parameters. It can be shown that for any proposal distribution,

the stationary probability distribution sampled in this way will be a

good estimate of the true probability distribution (Gilks et al. 1996).

2.3 Model setup

The GST history is set up as a series of linear segments with the

nodes of these segments being the k GST model parameters, that is,

m = (T i , t i ; i = 1, k), where T is temperature and t is time. We allow

between k min (=2) and k max (=20) of these nodes with a maximum

separation of L (= the duration of the reconstruction in years) and a

minimum of the time step used in the finite element approximation

(=2–5 yr). The RJ-MCMC algorithm samples these k model param-

eters as well as the equilibrium heat flow from below the borehole

and the pre-reconstruction mean temperature (the steady state GST

applied which is usually referred to as the pre-observational mean

or POM). In Fig. 1 a schematic of the model set up is shown.

The parameter k represents, for this particular parametrization

(linear segments), a measure of the complexity of the model. By

allowing k to vary during the MCMC sampling we can address the

question of model resolution more satisfactorily than if k was fixed.

This is because the data explicitly influence the complexity of the

model through the acceptance criterion (which includes both the data

likelihood and the model prior). However, in the context of a con-

tinuous underlying process, k is not a physical quantity and clearly

cannot be directly measured. Consequently, its relevance to model

complexity only really applies to comparing the different models

sampled by RJ-MCMC, which in our case can be regarded hier-

archically (i.e. more parameters implies more complexity). Over-

all, this modelling scheme corresponds to what statisticians call

an open modelling perspective (Bernardo & Smith 1994; Denison

et al. 2002) whereby none of the models used is considered the ‘true’

model. This is true of any GST inversion model as past temperature

changes of a variety of timescales are removed from the data by

thermal diffusion. Thus real past temperature changes that occurred

on scales from hourly to the decadal and even centennial are lost

and cannot be represented in the model.
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Figure 1. (a) Example data plot with heat flow Q. (b) Model setup: circles

denote the interpolation points for the GST history. These can move in time

and new points can be added or deleted to vary the complexity of the GST

history. The additional model parameters are POM, the pre-observational

mean GST and the heat flow, which is the lower boundary condition on the

thermal model.

In simultaneous inversion (Beltrami & Mareschal 1992; Beltrami

et al. 1992; Pollack et al. 1996; Beltrami et al. 1997) a number of

boreholes are inverted together, that is we look for a common GST

history but allow individual heat flow and POM values to be inferred.

The GST history applied to each borehole is a deviation from the

individual POM which allows for differences in long term means

due to latitude but preserves the overall climatic trend (if similar

across boreholes). All of the GST values are corrected for elevation

using a lapse rate of 6.5 Kkm−1.

2.4 Prior, proposals and likelihood

2.4.1 Prior

In this work the prior information takes three forms. For the GST

temperature values we specify a most likely value and an associated

probability distribution designed to take account of the full range

of possible past variations. The second places a constraint on the

time points of the GST history, such that they are probabilistically

spaced out over the time domain. The equilibrium heat flow, POM

values and the number of GST points are sampled from uniform

priors, with specified upper and lower limits.

The prior on the GST values is set to a multivariate Gaussian

distribution centred on the present mean GST value (i.e. the value

at zero years):

p(TGST | ℘) = 1[
(2π )kdetCpr

]1/2

× exp

[
−1

2
(TGST − Tprior)

T C−1
pr (TGST − Tprior)

]
. (8)

We assumed no correlation between the GST parameters, so Cpr

is a diagonal matrix with entries equal to 1.0 K−2 (but see Serban &
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Jacobsen 2001, for a discussion of of correlated prior information in

this context). TGST is the current GST model, Tprior is the prior mean

value for the GST model and k is the number of GST interpolation

nodes.

The time positions of the interpolation points are drawn using

order statistics from a uniform distribution over the time interval

examined (Green 1995, 2001). Thus the prior distribution on the

time locations is given by:

p(t | ℘) = k!I [0 < t1 < t2 < . . . < tk < L]

Lk
, (9)

where t are the time points of the GST history, L is the length of the

time domain (= t max − t min) and I is the order statistic uniform dis-

tribution. This form of prior helps to ensure that very closely spaced

interpolation points, which have negligible effect on the likelihood

and are inconsistent with the data (because of the spreading with

time of the thermal signal in the ground) do not emerge in the model

(Green 1995).

Setting a prior distribution on a non-physical quantity such as k,

we must consider questions such as what information do we have,

and what does it mean, to differentiate between models with different

numbers of model parameters. In this context we are looking at the

expected resolution given that the original signal has been strongly

filtered by thermal diffusion. Typical GST estimates derived from

borehole temperature are of very low resolution, for example Huang

et al. (1996) recommend century-long trends. Hence for reconstruc-

tions considered here, we might expect k to be around 5 if we had

equally spaced nodes. By setting a uniform prior over the range [2,

20] we are including the resolution level recommended by Huang

et al. (1996) in the range of models considered. However, as the

Bayesian approach is naturally parsimonious, we avoid introducing

unwarranted complexity (i.e. more model parameters) if the data do

not require it. For example, if the true solution was a constant tem-

perature over time, we would infer 1 GST parameter (assuming the

present day value is fixed). Although we could use many more pa-

rameters and still produce a flat solution (i.e. constant temperature)

over time with exactly the same data fit, the posterior probability

is lower than for the simpler model. This is because we effectively

penalize the complex model through the increased number of terms

in the prior.

The priors on heat flows and POM values are uniform over the

intervals [0, 100] m Wm−2 and [0, 15] ◦C, respectively.

2.4.2 Proposal functions

In the generalized variable dimension case there are five types of

changes to the model, each with an associated proposal function, to

allow us to sample the model space. One of these change types is

selected at random at each iteration of the RJ-MCMC algorithm:

(i) Perturb one temperature value, T i .

(ii) Perturb one time value, t i .

(iii) Create a new GST point (birth).

(iv) Delete one GST point (death).

(v) Perturb the heat flow and POM values for one borehole.

The probability of selecting one of these change types is set to 1/5

for all iterations, except for when the number of GST model points

reaches kmin or k max. In the case that k = kmin, the death change and

change v. (perturbing the heat flow and POM) have probability set

to 0 and in the case that k = k max, the birth step and change v. have

probability set to zero. Option v. is not selected to improve efficiency

and the birth and death steps are limited in this way to keep k in the

range [k min, k max].

Although the choice of proposal distribution used in the MCMC

is essentially arbitrary, poor choices lead to very slow movement

around the model space, such that convergence to the stationary

distribution and exploration of the posterior distribution can take a

very long time. It is therefore, desirable to choose proposal distri-

butions carefully such that the model space search is as efficient as

possible.

2.4.3 Likelihood

The likelihood term is based on a least-squares measure of the data

misfit:

p(dobs | m, ℘, k) = 1[
(2π )ndetCd

]1/2

× exp

[
−1

2
(dsim − dobs)

T C−1
d (dsim − dobs)

]
,

(10)

where there are n data points, dobs are observed subsurface temper-

atures and Cd is the data covariance matrix (here assumed to be

diagonal). The errors on the data values are, therefore, assumed to

be Gaussian and uncorrelated. The values used for Cd are discussed

with the descriptions of synthetic and real data applications. dsim are

the simulated underground temperatures which are calculated using

the T GST vector (size k) according to the finite element method of

Section 2.1.

3 S Y N T H E T I C DATA E X A M P L E S

In order to evaluate the effectiveness of Bayesian RJ-MCMC

method, we first test it on synthetic data designed to be repre-

sentative, in terms of quality, of real data. We can then assess

what uncertainties may be associated with the various model pa-

rameters. For this purpose we used one multi-proxy surface air

temperature (SAT) reconstruction (Moberg et al. 2005) and one

instrumental SAT series (Jones & Moberg 2003) to produce a 2002-

yr SAT history. This was then used as a GST forcing for calculating

the subsurface temperature values in one synthetic profile of depth

500 m with values at 5 m intervals. The thermal diffusivity used was

4 × 10−7 m2 s−1 and the heat flow and POM were 60 m Wm−2 and

9.6 ◦C, respectively. The temperature–depth values were then de-

graded with normally distributed 0.1 K noise. The algorithm was

tested on both the noise free and 0.1 K noise cases. The algorithm

was run for 500 000 iterations with the last 400 000 used to generate

the posterior distributions of GST, heat flow and POM.

Figs 2 and 3 show the posterior distributions for the noise free and

0.1 K noise cases. The ‘P’ scale is the posterior probability for the

GST value at a given time. The posterior distributions of heat flow

and POM values can be reasonably well fitted with a Gaussian curve.

For this synthetic case the posterior means and standard deviations

for the heat flow and POM values were (60.8 ± 0.8) m Wm−2 and

(9.4 ± 0.3)◦C, respectively. These values are slightly biased from

the true values, possibly by the action of the prior information which

does not correspond well with the first 1000 yr of the GST in the

true model.

One way to quantify the posterior distribution is to evaluate poste-

rior expectation values of the model (Gilks et al. 1996). The expected

value is given by the equation:

E[ f (m)] =
∫

f (m)π (m) dm∫
π (m) dm

, (11)
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Figure 2. RJ-MCMC inversion: synthetic data with no noise added. The

synthetic data are calculated a using surface air temperature reconstruction

(Moberg et al. 2005) and instrumental data (Jones & Moberg 2003) shown as

the true model. The posterior mean is the expected value integrated across

all models, the posterior distribution is shown in the grey-scale and the

95 per cent credible intervals are shown as the dashed lines.

Figure 3. RJ-MCMC inversion: synthetic data with Gaussian random noise

added (mean 0.0 K and standard deviation 0.1 K). The max likelihood GST

history is shown for comparison with the posterior mean. The mean shows

much better agreement with the true model as it combines information from

all the models sampled whereas the maximum likelihood model is just the

single model which provides a best fit to the data. The posterior distribution

is shown in the grey-scale and the 95 per cent credible intervals are shown

to illustrate the increasing uncertainty with time.

where π (m) is the posterior distribution and f (m) is some function of

interest. It is then possible to use the posterior samples generated by

a Markov chain Monte Carlo algorithm to calculate this expectation

value (Gilks et al. 1996), using the following equation:

E[ f (m)] = 1

n

n∑
1

f (m). (12)

In the case that f (m) is the model value, the expectation value

is the posterior mean which is calculated by integrating across all

models weighted by their posterior probability values (as models are

sampled with frequency proportional to their posterior probability).

This has the advantage that it gives a smoother result than any single

sampled model (all of which would consist of linear segments).

However, it combines information from all of the sampled models

and, therefore, takes account of the uncertainties. Also, in the context

of model complexity, this approach of model averaging allows us

to assimilate the results from many models, conditioned either on a

constant number of model parameters, or over all models allowing

for the variable number of model parameters.

To illustrate this we show both the posterior mean model and

the maximum likelihood model for case in Fig. 3. The maximum

likelihood model does not fit within the 95 per cent credible intervals

and is a good example of overfitting the data. The mean however,

corresponds well with the true model and is much smoother than

the maximum likelihood model.

The Bayesian 95 per cent credible interval is calculated by re-

moving 2.5 per cent of the smallest and largest GST values at each

time point to give a range of GST values which have a 95 per cent

probability of enclosing the true model. This range can be affected

by the choice of prior information but for sensible prior choices

gives a good idea of the changing resolution.

In the noise free case the GST has been well recovered across most

of the time domain. However, in the more realistic noisy example,

this is not the case and the reconstruction has slightly underesti-

mated the warmth at 1000 yr and the cool period around 400 yr. The

95 per cent credible interval becomes wider and more asymmetric

than in the noise free example.

In Fig. 4, the posterior for the noisy data simulation is plotted

at four times in the past and compared with the prior distribution

and the true values (over a range of ±5 yr). For the recent past the

algorithm samples with high probability close to the true model

values, as we expect in this form of problem in which the resolution

is expected to deteriorate as we go back in time. We can see that

further back in time the posterior distribution becomes progressively

more influenced by the prior. For example, the posterior at 2000 yr

it is effectively the same as the prior, indicating we have learnt

nothing more about the GST at this time from the data. This type

of observation can be used with real data examples to ascertain

which parts of the GST reconstruction are actually supported by the

data.

GST (C°)

1000 y.b.p.2000 y.b.p.

12.010.08.0 12.010.08.0

Prior distribution
Posterior distribution
True model (± 5 years)

500 y.b.p. 200 y.b.p.

Figure 4. RJ-MCMC inversion: posterior probability distributions at 4 times

before present (2000, 1000, 500 and 200 yr).
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Figure 5. The log-likelihood and the number of time-temperature points in

the GST history. The algorithm has explored models from size 3–7 with 4

showing most support from the data.
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Figure 6. Posterior probability density function of the number of GST points

for the noisy synthetic case as sampled by the Reversible Jump MCMC

algorithm. The data clearly favour a GST history with only 4 or 5 points.

In Fig. 5, the log likelihood and number of GST points are shown

for the noisy case. The likelihood is stable above the expectation

value (−188.4) and shows that the algorithm is stable around this

value. The data support between 3 and 7 points in the GST history,

consistent with the anticipated resolution implied by the recom-

mendation of Huang et al. (1996). 52 per cent of sampled models

consisted of 4 GST points (see Fig. 6).

Our results show better resolution than the identical synthetic

example (with 0.1K normally distributed noise) of Woodbury &

Ferguson (2006) where no pre-20th century variation is captured.

Another similar synthetic example with 0.1 K noise is described

Table 1. Borehole summary information for the five real data examples.

Borehole Max. depth (m) No. values Lat. Long. Log date Heat flow (m Wm−2) POM (◦C)

Wythycombe (A) 262 80 50.65 −3.37 1983 39.0 ± 2.0 12.5 ± 0.34

Venn (B) 299 92 50.71 −3.32 1983 47.6 ± 1.1 11.4 ± 0.19

Seabarn (C) 320 16 50.62 −2.53 1978 60.0 ± 0.9 9.2 ± 0.19

Chalgrove (D) 323 100 51.66 −1.05 1983 44.8 ± 0.6 11.6 ± 0.15

Worcester (E) 298 92 52.22 −2.2 1983 44.6 ± 1.3 9.5 ± 0.23

The values quoted for the heat flow and POM are the posterior pdf means and standard deviations as sampled by the RJ-MCMC algorithm. These posterior

distributions are well approximated by a Gaussian distribution.

by Hartmann & Rath (2005) where no variation prior to 1800 is

resolved and the average pre-1800 GST signal is somewhat biased

compared to the true model. Here we recover some of the variation

of the past millennium for a 500 m synthetic profile. Additionally

we are able to make inference about resolution changes over time

and we can assess which parts of the reconstruction relate to the data

or to inverse methodology (in our case prior information, in other

methods model smoothing). We are, therefore, confident to use this

method to analyse real data examples for signals of past climate over

the past 500–1000 yr.

4 R E A L DATA : E X A M P L E S

F RO M T H E U K

The real data used in this paper are selected from the Inter-

national Heat Flow Commission borehole climatology database

Huang & Pollack (1998) (all data we discuss below are

available via http://www.ncdc.noaa.gov/paleo/borehole/intro.html).

Summary information for the boreholes examined is given in

Table 1. These data have been judged to be of good enough quality

such that they can be used for palaeoclimate studies and specifically

there is no evidence of vertical thermal convection. The five se-

lected borehole data comprise temperature–depth profiles and ther-

mal conductivity measurements with a minimum and maximum

depths of 262 and 323 m, respectively. We have used a volumetric

heat capacity of 2 × 106 J m−3 K−1 for all the boreholes. The noise

term (standard deviation) used in the likelihood term was found

by examining how well the data could be fit using an initial ex-

ploratory RJ-MCMC run. This led to a value of 0.05 K chosen for all

boreholes.

We inverted the profiles both individually and jointly using si-

multaneous inversion (Beltrami & Mareschal 1992; Beltrami et al.
1992; Pollack et al. 1996; Beltrami et al. 1997). In the latter case a

joint likelihood is used in which we assume that the errors on the

temperature data measured in each borehole are statistically inde-

pendent from those in the other boreholes. This leads to the following

likelihood formulation:

p(di=1,nb | m, ℘, k) = p(d1 | m, ℘, k) × . . . × p(dnb | m, ℘, k)

=
nb∏

i=1

p(di | m, ℘, k), (13)

where as before m refers to the model (GST and heat flow param-

eters), ℘ refers to prior information, k is the model dimensionality,

di is the data from borehole number i and there are nb boreholes.

Because we are dealing with a total likelihood probability rather

than functional misfits, this formulation means boreholes for which

the climate signal is more uncertain will have a smaller influence on

the overall result as their posterior probability values will always be

lower than those with a more robust signal. The priors used in the

real cases are the same as for the synthetic, with a mean set to the

present day temperature and a standard deviation of 1.0 K.

C© 2007 The Authors, GJI, 171, 1430–1439

Journal compilation C© 2007 RAS



1436 P. O. Hopcroft, K. Gallagher and C. C. Pain

Figure 7. Posterior probability distributions for the individually inverted boreholes. The locations of these are shown in the inset map, and the details are given

in Table 1.

The heat flow and POM values for the five boreholes are given

in Table 1. Since the posterior distributions for heat flow and POM

are close to Gaussian, the mean and standard deviations as sampled

by the RJ-MCMC algorithm are quoted. In Fig. 7, the individual

posterior distributions of GST for the five boreholes are shown.

Again, the ‘P’ scale indicates posterior probability value showing

the resolution of the GST signal with time. It is possible to rank the

boreholes by comparing the posterior width of the GST signal, for

example, by looking at similar plots as are shown in Fig. 4. In this

case borehole D has the smallest uncertainties and C has the largest.

Borehole D also shows the best agreement with the Central England

temperature record (Manley 1974; Parker et al. 1992) which dates

back to 1659 (not shown).

Intriguingly, a possible spatial trend emerges for these five bore-

holes. The southern boreholes (A, B and C) show 1.5 K warming

over 500 yr and the central set (D and E) showing an average of

0.5 K. This apparent spatial trend clearly needs confirmation using

more data, but a similar signal appears in Beltrami & Bourlon (2004)

for which more boreholes were analysed.

For the joint inversion, the GST applied to each borehole is defined

as deviations from the POM (which is sampled by the RJ-MCMC

algorithm also). This allows for differences in the mean conditions

due to latitude whilst allowing a common long-term climatic signal

to be inferred. The joint posterior probability distribution for the

five boreholes is shown in Fig. 8. We see that the signal leads to a

warming of approximately 1.0 K over the 350 yr to 1983. It appears

that some uncertainty has been introduced by combining the data in

this way.

5 D I S C U S S I O N A N D C O N C L U S I O N S

In this work, we have demonstrated the use of Bayesian inference

for inferring past climate from borehole temperatures. In order to

Figure 8. Posterior probability distribution for the simultaneous inversion

of the five boreholes shown as deviations from the steady state.

achieve this we have utilized Reversible Jump Markov chain Monte

Carlo sampling which allows efficient exploration of model space

by sampling models of varying dimension. The advantages of this

approach mean that the inverse problem can be treated in a fully

non-linear manner and that explicit regularization of the model pa-

rameters is not required, thus avoiding the need to find an optimal

regularization value (Hartmann & Rath 2005). Instead we come to

define a posterior probability distribution of the GST conditioned

on the measured data and the prior information. The expected value,

determined from the posterior, provides an average over all models

and, therefore, better captures the variability in the range of possible

solutions than a single (e.g. best) model. This posterior distribution

also incorporates the uncertainty due to the information loss from

C© 2007 The Authors, GJI, 171, 1430–1439

Journal compilation C© 2007 RAS



Bayesian inversion of borehole data for past climate 1437

diffusion of the thermal signal and noise on the data and allows

identification of any non-uniqueness or poor resolution of GST or

thermal equilibrium parameters. By comparing the posterior dis-

tribution with the prior it is possible to infer which parts of the

distribution are supported by the data. Using the transdimensional

form of MCMC, we can also address the complexity of the GST

reconstruction in terms of the support from the data for different

models.

In any Bayesian formulation, the outcome is to some extent influ-

enced by the choice of prior information. However, it is impossible

to define totally non-informative priors and so sensible choices re-

lating real uncertainties must be made (e.g. Scales & Tenorio 2001).

The priors used in this work are constant with time so that a priori
no GST change is assumed. However, the prior distribution (i.e. its

width) is designed to account for likely past variations. This is a good

test of the methodology in the first case. However, the prior distribu-

tion is a flexible tool and could be used to incorporate information

from instrumental data or other palaeoclimate reconstructions as

well as the associated uncertainties.

Examples from real data provisionally indicate a spatial trend of

GST history over the UK such that boreholes in the south display

more warming over the last half millennium than those in central

England. This trend would need clarification using more data from

the region or explicit spatial modelling.
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A P P E N D I X A : P RO P O S A L S

The GST time and GST proposals are updated individually, and

are scaled so that proposals further back in time are larger. This is

in order to improve the overall efficiency of the algorithm as the

uncertainties are expected to expand with time before the present. If

temperature value labelled i is chosen for update and k is the current

number of GST model points, the new value T ′
i is given by:

T ′
i = Ti + u2 × σ m

T × exp

(
i

k

)
, (A1)

where T and T ′ are the current and proposed GST values, respec-

tively and u2 is a random Gaussian draw of mean 0 and standard

deviation 1.0, and σ m
T is a scaling factor for moving the temperature

point (set to 0.1 for all cases here). Similarly the time values are

updated using:

t ′
i = ti + [t− − t+] × u1 × σ m

t × exp

(
i

k

)
, (A2)

where t and t ′ are the current and proposed GST time points, re-

spectively, u1 is a random Gaussian draw of mean 0 and standard

deviation 1.0, and σ m
t is a scaling factor for moving the time point

(set to 0.05 for all cases here). t − and t + are the time values for

the two adjacent GST model points. This proposal scales the time

proposal to the width of the interval in which it is located and also

exponentially with time in the past. These updates were found to give

better mixing of the Markov chains, such that less iterations were re-

quired to quantify the posterior probability distributions. This move

type is fully reversible as time points are not allowed to cross each

other.

The birth and death steps need to be designed so that one can

exactly reverse the action of the other. See Fig. A1 for an illustration

of this birth/death procedure. For a birth move, a time in the history

is chosen at random and a GST interpolation point is added there.

The current GST temperature at this time is then perturbed using a

T_

T*

T+

t_ t+t*

Proposal
Original GST

T+

T_

T*

t_ t+

time

G
S

T
G

S
T

Proposal
Original GST

Figure A1. Upper panel: an example birth move, a random draw across

the whole time domain determines the time value for the new point and a

random draw from a Gaussian distribution determines the GST value at the

new point. The distribution width has been exaggerated in order to improve

clarity. Lower panel: an example death move.

Gaussian distribution. The equations relating new and old points:

t∗ = t− + σ b
t u1(t+ − t−) (A3)

T∗ = (T+ − T−)

(t+ − t−)
(t∗ − t−) + u2σ

b
T + T−, (A4)

where t ∗ and t ∗ are the new time and temperature values, (t −, T −)

and (t +, T +) are the coordinates of the two points either side, u1

is a random draw from a uniform distribution over the interval [0,

1] and u2 is random draw from a Gaussian distribution of mean 0

and standard deviation 1.0. σ b
t is set to 1.0 and σ b

t is the standard

deviation of the proposal for the new temperature value. In this

work σ T = 10−6 has been used as it was found that this value led to

the algorithm correctly identifying the dimensionality of the GST

curves for synthetic cases. When σ T was set much larger or smaller

the number of dimensions tended towards kmin or k max, respectively.

In the death step, an interpolation point is chosen at random and

deleted, such that the GST curve is linearly interpolated from the

two adjacent interpolation point temperatures. In both cases the GST

history is returned to its current state if the proposal is not accepted

(as defined by the acceptance criterion, eq. 5).

The heat flow and POM temperatures are updated simultane-

ously using a bivariate Gaussian proposal distribution. This is used

because the heat flow and equilibrium temperature values for a par-

ticular borehole are strongly negatively correlated. The required

2 × 2 correlation matrix for each borehole is was found by running

an exploratory MCMC simulation before running the GST sampler.

A P P E N D I X B : C A L C U L AT I N G T H E

A C C E P TA N C E P RO B A B I L I T Y

B1 Fixed dimension moves of time or temperature values

In the case that one T or t value is changed and we have a symmetrical

proposal function, the proposal ratio is equal to 1. The acceptance

probability is then only dependent on the likelihood ratio and the
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prior ratio on the temperature values:

α = min

[
1,

p(T′ | ℘)

p(T | ℘)
.

p(d | m′, ℘)

p(d | m, ℘)

]

= min[1, (prior ratio) · (likelihood ratio)]. (B1)

In the case that the time step positions are perturbed the prior

ratio from eq. (9) is introduced and so the acceptance term is given

by:

α = min

[
1,

(t+ − t ′
∗)(t ′

∗ − t−)

(t+ − t∗)(t∗ − t−)
.

p(d | m′, ℘)

p(d | m, ℘)

]

= min[1, (prior ratio) · (likelihood ratio)], (B2)

where t − and t + are the GST model point times which are adjacent

to the model point being perturbed (t∗).

B2 Birth/death acceptance term

For the birth (and death) acceptance term, the prior and proposal ratio

and also the Jacobian are required. The prior ratio takes account of

the number of time steps and the spacing using the order statistics

drawn uniformly over the time interval in question, L. The ratio is

again calculated from eq. (9):

p(m′ | ℘)

p(m | ℘)
= p(T′ | ℘)

p(T | ℘)

p(k + 1)

p(k)

k + 1

L

(t+ − t∗)(t∗ − t−)

(t+ − t−)
. (B3)

The proposal ratio reflects the probability of choosing a point for

birth or death move, and is given by

q(m | m′)
q(m′ | m)

= L dk+1

(k + 1) bk
, (B4)

where k is the current model dimension, d k+1 is the death move prob-

ability and bk is the birth probability. The ratio L/(k + 1) accounts

for the probability of choosing a point for a birth or death step. For a

birth, the location of the time point is chosen with probability =1/L,

that is, uniform over the duration of the GST history. For a death an

existing point is selected with a probability =1/(k + 1) (since we are

reversing a birth step from (k + 1) to k). The ratio of the two values,

bk and d k+1 is 1
5

as there are 5 proposal types to choose from. When

k has reached the value k min or kmax the proposal ratio for a birth or

death change is different because there are less proposals types to

choose from. We do not allow selection of option v. (heat flow and

POM) when the minimum or maximum dimension limit has been

reached. For k = k min only two options remain: birth or perturb a

temperature, T i . For k = k max only three options remain: death,

perturb a temperature, T i or perturb a time point t i . This leads to

the proposal ratios for birth (at k = kmin) and death (at k = k max) as

follows:

q(m | m′)
q(m′ | m) b

= L

(kmin + 1)

d(kmin+1)

bkmin

= 2L

5(kmin + 1)

q(m | m′)
q(m′ | m) d

= (kmax − 1)

L

bkmax−1

dkmax

= 3(kmax − 1)

5L
.

(B5)

B3 Derivation of birth/death Jacobian term

The equations relating the new temperature and time points to the

current points are given again for clarity (eqs A3 and A4):

t∗ = t− + σt u1(t+ − t−) (B6)

T∗ = (T+ − T−)

(t+ − t−)
(t∗ − t−) + u2σT + T−, (B7)

where t∗ and t∗ are the new time and temperature values, (t −, T −)

and (t +, T +) are the coordinates of the two points either side. Now

substituting t∗ into eq. (B7) gives:

T∗ = (T+ − T−)σt u1 + u2σT + T−. (B8)

Eqs (B6) and (B8) are required for calculating the Jacobian term.

This is achieved by considering those parameters which are un-

changed by the birth or death move. This leads to a 2 × 2 determi-

nant:

|J| = ∂(T∗, t∗)

∂(u1, u2)

= (T+ − T−)σt σT

σt (t+ − t−) 0

= −σT σt (t+ − t−), (B9)

where the four terms have been derived by differentiating eqs (B6)

and (B8). The acceptance term for a birth move becomes:

α = min

{
1,

p(k + 1)

p(k)

(k + 1)

L

(t+ − t∗)(t∗ − t−)

(t+ − t−)

× p(T′ | ℘, k)

p(T | ℘, k)
.

p[d | m′, ℘, (k + 1)]

p(d | m, ℘, k)

× L dk+1

bk(k + 1)
.(−σT σt )(t+ − t−)

}
, (B10)

where the the first ratio term always takes the value 1. The corre-

sponding acceptance term for a death step, has the same form but

with appropriate relabelling such that the current model is dimen-

sion k, moving via death to a model of dimension (k − 1). The ratio

terms also need to be inverted (Green 1995).
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