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Abstract 

The Time Domain Random Walk (TDRW) method has been recently developed by Delay and 

Bodin (2001) and Bodin et al. (2003c) for simulating solute transport in discrete fracture 

networks. It is assumed that the fracture network can reasonably be represented by a network 

of interconnected one-dimensional pipes (i.e. flow channels). Processes accounted for are: (1) 

advection and hydrodynamic dispersion in the channels, (2) matrix diffusion, (3) diffusion 

into stagnant zones within the fracture planes, (4) sorption reactions onto the fracture walls 

and in the matrix, (5) linear decay, and (6) mass sharing at fracture intersections. The TDRW 

method is handy and very efficient in terms of computation costs since it allows for the one-

step calculation of the particle residence time in each bond of the network. This method has 

been programmed in C++, and efforts have been made to develop an efficient and user-
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friendly software, called SOLFRAC. This program is freely downloadable at the URL 

http://labo.univ-poitiers.fr/hydrasa/intranet/telechargement.htm. It calculates solute transport 

into 2D pipe networks, while considering different types of injections and different concepts 

of local dispersion within each flow channel. Post-simulation analyses are also available, such 

as the mean velocity or the macroscopic dispersion at the scale of the entire network. The 

program may be used to evaluate how a given transport mechanism influences the 

macroscopic transport behaviour of fracture networks. It may also be used, as is the case, e.g., 

with analytical solutions, to interpret laboratory or field tracer test experiments performed in 

single fractures.  

 

Key words: numerical modelling; solute transport; fractured rocks  

 

Introduction 

In many geologic formations, fractures represent preferential pathways along which a 

dissolved contaminant can migrate rapidly. The understanding and quantification of solute 

transport in fractured rocks is therefore of considerable practical importance in terms of 

aquifer preservation. There are three main approaches to simulating solute transport in 

fractured rocks: discrete network simulations (Andersson and Thunvik 1986; Cacas et al. 

1990a; Dverstorp et al. 1992; Dershowitz et al. 1999; Huseby et al. 2001), continuum 

approaches based on either equivalent-porous-medium (EPM) assumption (Long et al. 1982; 

Berkowitz et al. 1988; McKay et al. 1997; Gburek and Folmar 1999; Jackson et al. 2000) or 

dual/triple-continuum approximations (Bibby 1981; Huyakorn et al. 1983a, 1983b; Gerke and 

van Genuchten 1996; Leo and Booker 1996; Kischinhevsky and Paes-Leme 1997; Arnold et 

al. 2000; Lichtner 2000; Hassan and Mohamed 2003; Wu et al. 2004), and hybrid models that 

combine elements of both discrete network simulations and continuum approaches (Schwartz 
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and Smith 1988; Grandi and Ferreri 1994; National Research Council 1996; Tsang et al. 

1996; Stafford et al. 1998; Lee et al. 2001; Ohman et al. 2005).  

 

As emphasized by Long et al. (1982) and Berkowitz et al. (1988), the validity of continuum 

approaches for fracture networks depends on several parameters, the most important being the 

existence of a Representative Elementary Volume (REV), i.e. a volume above which the flow 

and transport properties of the fractured rock can be considered as statistically homogeneous. 

This assumption, however, does not hold for fractured rocks in general. Several authors have 

shown that most natural fracture networks exhibit fractal or scale-dependent properties 

(Neuman 1990; Velde et al. 1991; Vignes-Adler et al. 1991; Guimera et al. 1995; Cowie et al. 

1996; Bour and Davy 1997; Bodin and Razack 1999). In that case, the homogenization scale 

of the network is difficult, or perhaps even impossible, to identify.  

 

In the discrete framework, individual fractures are explicitly incorporated into the spatial 

domain. For 2D analyses, the fractures are represented by 1D-pipe elements (Schwartz et al. 

1983; Smith and Schwartz 1984; Robinson and Gale 1990; de Dreuzy et al. 2001a, 2001b, 

2002; de Dreuzy et al. 2004). For 3D problems, the fractures are represented by 2D-planar 

elements, which can be either disk-shaped (Andersson and Dverstorp 1987; Billaux et al. 

1989), elliptical (de Dreuzy et al. 2000), or polygonal (Huseby et al. 2001). A good review on 

the art of simulating realistic 3D fracture networks can be found in National Research Council 

(1996). Once a 3D fracture network has been generated, the flow and transport calculations 

are performed on either 2D numerical grids constructed in each fracture plane (Nordqvist et 

al. 1992; Therrien and Sudicky 1996; Huseby et al. 2001; Reichenberger et al. 2005), or in a 

network of interconnected 1D pipes derived from the fracture network (Cacas et al. 1990a; 

Cacas et al. 1990b; Dverstorp et al. 1992; Moreno and Neretnieks 1993; Dershowitz and 
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Fidelibus 1999; Jourde et al. 2002). These two alternatives are illustrated in Fig. 1. 

Discretising fractures into regular or irregular grids is the more rigorous approach since 

aperture variations in each fracture plane are accounted for. Unfortunately, this is also very 

computationally demanding since flow and transport equations have to be solved for each grid 

element. Today's computer capabilities are far from sufficient to enable field-scale analyses 

using this method since a number of fractures of 105 - 107 is often required to correctly depict 

the medium.  

 

Modelling flow and transport in pipe networks is more computationally efficient as two- or 

three-dimensional problems are reduced to a series of one-dimensional ones. A physical 

justification of this conceptualization is that fluid flow through rock fractures is often 

concentrated along preferential pathways, corresponding to the paths with the lowest 

hydraulic resistance (Tsang and Neretnieks 1998; Bodin et al. 2003a). Of course, the use of 

the pipe network approach needs to address the problem of parameterisation. The number, 

location, and aperture distribution of flow channels have to be specified. For a real case 

problem, it is not clear whether such parameters may be accessed by current field 

investigation methods. Note that a similar problem exists with the gridding approach, because 

in-situ characterization of aperture distributions within fractures planes is virtually impossible. 

Also note that instead of considering gridded fracture models and pipe network models as 

rivals, these two approaches may be viewed as complementary. One could compute flow in a 

few gridded fractures in order to get statistics about the geometry of preferential pathways, 

and then simulate channel networks on a greater scale.   

 

The aim of this paper is to present a program called SOLFRAC, which enables to simulate 

and analyze solute transport in complex fracture networks using a pipe network 
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approximation. It is freely downloadable at the URL http://labo.univ-

poitiers.fr/hydrasa/intranet/telechargement.htm. This software has been developed for 

academic research purposes and therefore focuses on two-dimensional fracture networks only, 

i.e. pipe networks interconnected in 2D space. Note that all the modelling concepts and 

numerical methods presented in this work could be easily adapted for simulating solute 

transport in pipe networks interconnected in 3D space (i.e. 3D fracture networks). In that case, 

most efforts should be put on the network simulator and not on the transport algorithms that 

are described in the present paper. 

 

Input data files 

The 2D fracture networks handled by the program are delimited by square domains of L x L 

in size. Fluid flow is established between the top and bottom faces by assigning constant 

values of hydraulic head to all fractures intersecting those faces. Impermeable boundaries are 

assigned to the remaining two faces. Each fracture is modelled as a rectangular pipe with 

constant aperture and width, the latter parameters possibly differing from one fracture to 

another. In such networks, the computation of hydraulic head at each node is performed by 

assuming that the flow in each bond obeys Darcy's law and by applying the principle of 

conservation of fluid mass at each node (i.e. Kirchhoff’s law). This leads to a linear system of 

algebraic equations, which can be solved by either direct or iterative methods, see e.g. Gill et 

al. (1991). 

 

The input data files required by the program are in text format. These files include the 

information describing the geometry of the fracture networks, the hydraulic conductivity of 

each fracture, and the hydraulic head values at each node. The file format used is very similar 

to that of the output files of the code developed by de Dreuzy et al. (2001a, 2001b, 2002, 
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2004) for analyzing the hydraulic properties of 2D random fracture networks following a 

power law length distribution. Further details about the structure of input files are given at the 

URL http://labo.univ-poitiers.fr/hydrasa/intranet/telechargement.htm. A program enabling to 

generate input files for SOLFRAC is also freely downloadable at this URL. This program, 

called MODFRAC, has been developed by Bernard (2002) and Ubertosi (2003). It generates 

2D fracture networks according to a wide range of statistical distribution functions for fracture 

density, orientation, aperture, and length. The hydraulic head value at each node can be 

computed by either direct methods (Cholesky or Gauss Jordan) or iterative ones (conjugate 

gradient or Gauss-Seidel).  

  

Transport simulations 

Transport equations 

The transport simulations handled by the program are limited to scenarios for single-phase, 

isothermal flow conditions in which the solute concentration is diluted enough to neglect 

density effects. Hydraulic properties are assumed to remain constant in time, i.e. it is assumed 

that coupling between fluid pressure and rock stress is negligible and that chemical reactions 

(such as precipitation and/or dissolution) that could modify fracture openings do not occur. 

The model accounts for the following transport processes: advection and hydrodynamic 

dispersion in the fractures, matrix diffusion, diffusion into stagnant zones within the fracture 

planes, sorption reactions onto the fracture walls and in the matrix, linear decay, and mass 

sharing at fracture intersections. Both the rock matrix and the stagnant zones are considered as 

immobile pore spaces in which the movement of tracers is due to molecular diffusion only 

(advection is neglected). A sketch illustrating a fracture-matrix system with stagnant zones in 

the fracture plane is given in Fig. 2. In the mathematical development of the transport 

equations, we make the following major assumptions: (1) the fluid velocity is constant 
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between two successive fracture intersections, (2) transverse diffusion and dispersion within 

each flow channel ensure complete mixing across its width, (3) dispersion in each flow 

channel is assumed to be Fickian or based on an expression making its first spatial derivative 

easy to approximate, (4) sorption reactions onto the fracture walls and in the matrix obey 

linear instantaneous equilibriums, (5) diffusion into stagnant zones within the fracture plane is 

perpendicular to the flow direction, (6) diffusion in the matrix is perpendicular to the fracture 

plane (diffusive fluxes parallel to the fracture plane are neglected), (7) the extent of solute 

diffusion within the rock matrix is small enough so that diffusion from adjacent fracture 

elements does not interact, (8) diffusion in the fracture plane and diffusion in the surrounding 

rock matrix are two independent processes that do not interact (i. e. diffusive fluxes between 

the stagnant zones and the rock matrix are neglected). With the above assumptions, the solute 

transport in each branch of the network (i.e. in each flowing bond between two nodes) is 

described by three coupled one-dimensional equations: one for the flow channel, one for the 

stagnant zones, and one for the porous matrix attached to the bond. The coupling is provided 

by the continuity of concentrations along the interface between the flow channel and the 

stagnant zones, and between the flow channel and the rock matrix. The transport equation in 

the fracture is written as: 

1f f f f nfm e m
f f

z bf f f fy a

c u c c cD D cc D
t R x R x x aR y bR z

λ
==

∂ ∂ ∂ ∂⎛ ⎞ ∂∂
+ = − + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

     (1) 

where cf [M·L–3] is the solute concentration in the flow channel; λ [T–1] is the decay constant 

of the solute; t [T] is the time variable; x [L] is the space coordinate along the flow channel; uf 

[L·T–1] is the fluid velocity in the flow channel; Df [L2·T–1] is the hydrodynamic dispersion 

coefficient in the flow channel; Dm [L2·T–1] is the molecular-diffusion coefficient of the 

solute; a [L] is the half-width of the flow channel; cnf [M·L–3] is the solute concentration in the 

non-flowing part of the fracture plane; y [L] is the space coordinate in the fracture plane, 
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perpendicular to the flow channel axis; De [L2·T–1] is the effective-diffusion coefficient of the 

solute in the matrix; b [L] is the half-aperture of the fracture; cm [M·L–3] is the solute 

concentration in the matrix; z [L] is the space coordinate in the matrix block, normal to the 

fracture plane; and Rf [-] is a retardation factor accounting for the sorption of the solute onto 

the fracture walls. Rf is defined as: 

1 f
f

K
R

b
= +      (2) 

where Kf [L] is the surface-sorption coefficient of the solute onto the fracture walls. The 

transport equation in the stagnant zones is written as: 

2
'

' 2
f nfm

f
f

c cDc
t R y

λ
∂ ∂

+ =
∂ ∂

     (3) 

The transport equation in the matrix is written as: 

2

2
m m

m a
c cc D
t z

λ∂ ∂
+ =

∂ ∂
     (4) 

where Da [L2·T–1] is the apparent-diffusion coefficient of the solute in the matrix, expressed as 

a function of θm [-] the matrix porosity, ρm [M·L–3] the bulk density of the matrix, and Km 

[L3·M–1] the volumetric-sorption coefficient of the solute in the matrix: 

e
a

m m m

DD
Kθ ρ

=
+

     (5) 

Transport simulations are performed using the Time Domain Random Walk (TDRW) method, 

recently developed by Delay and Bodin (2001) and Bodin et al. (2003c), from the original 

work by Banton et al. (1997). The TDRW method is a Lagrangian method developed in the 

time domain. It allows for the one-step calculation of the particle residence time in each bond 

of the network and is thus very efficient in terms of computation costs, while preserving 

accuracy. The fundamentals of this method are summarized below. 
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The TDRW method 

For the sake of simplicity, the role of stagnant zones within fracture planes is neglected in this 

section and will be addressed later. The time needed for a solute particle to move between two 

fracture intersections can then be separated in two residence times: (1) residence time of the 

particle in the flow channel and (2) residence time of the particle in the rock matrix adjacent 

to the flow channel. The TDRW method allows solving these two residence times separately. 

As a first step, the residence time of a particle in a bond is calculated assuming that the rock 

matrix is totally impervious, i.e. there is no matrix diffusion. In the Lagrangian framework, 

considering the change of variable: 

f

ffff

R
u

x
c

t
x

x
c

t
c

∂

∂
=

∂
∂

∂

∂
=

∂

∂
     (6) 

the transport equation in a bond can be rewritten as: 

( )ff
f

f
f

f
f

f

f

f

f
f

f cD
tu

R
c

x
D

u
tu

R
u
R

c
x

c
2

2

3

2

2 ∂
∂

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂
∂

−=+
∂

∂
λ      (7) 

Note that expression (7) is an advection-dispersion equation written with the Fokker-Plank 

formalism. From the equivalence between this expression and the random-walk approach to 

transport, Bodin et al. (2003c) showed that the mean and variance of particle travel times 

could be easily identified. For an elementary displacement of length dx, these terms are 

written, respectively, as: 

( ) 2
f f

t f
f

R D
dx u dx

u x
μ

∂⎛ ⎞
= +⎜ ⎟∂⎝ ⎠

     (8) 

( )2 2
3

2 f
t f

f

D
dx R dx

u
σ =      (9) 

Because the particle motion along a bond of length L can be considered as a series of 

independent jumps, the means and variances are additive (Rasmuson 1985; Bodin et al. 
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2003c). Thus, the mean and variance of the particle travel time distribution for a displacement 

of length L are written as: 

2 2
0 0

L L
f f f f

t f f
f f

R D R D
u dx u L dx

u x u x
μ

∂ ∂⎛ ⎞⎛ ⎞
= + = +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∫ ∫      (10) 

2
2

3
0

2 L
f

t f
f

R
D dx

u
σ = ∫      (11) 

For Péclet numbers Pe = uf L/Df larger than 10, it can be shown that the travel time 

distribution is lognormal (Bodin et al. 2003c). Therefore, the stochastic calculation of travel 

times over a distance L is given by: 

( ) ln lnln f Nt Zμ σΔ = +      (12) 

( )22
ln 1ln ttt μσμμ +=      (13) 

( )222
ln 1ln tt μσσ +=      (14) 

where μt [T] and σt
2 [T2] are the mean and variance in (10) and (11), Δtf [T] the particle travel 

time for a travel distance L, ZN a random number drawn from a normal deviate, and μln [T] 

and σln
2 [T2] the mean and variance of the log transform. Note that the TDRW method enables 

the scale-dependent dispersion coefficient to be dealt with, provided that the spatial derivative 

in (10) is calculable. If indexes n and n+1 refer to the upstream and downstream nodes of a 

bond of length L, the particle travel time in this bond can be written as: 

( )1 ln lnexpn n f Nt t t Zμ σ+ − = Δ = +      (15) 

In fracture networks, Péclet numbers can be locally less than 10 in very short bonds or in 

bonds with very low flow velocities. The assumption of a lognormal travel time distribution 

in these bonds can be flawed, and yield inaccurate results. Bodin et al. (2003c) propose an 

empirical correction of expression (13) to preserve accuracy of the TDRW method for Pe < 
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10. This correction consists in multiplying expression (13) by a factor β =1-1/(33Pe), which 

leads to: 

'
ln ln 2 2

11 ln
33 1

t

t t
Pe

μμ β μ
σ μ

⎛ ⎞⎛ ⎞
⎜ ⎟= = −⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

     (16) 

Once the residence time of the particle in a bond has been determined, the next step is to 

calculate the time spent by diffusion and sorption in the matrix block attached to the bond. 

Initial work by Delay and Bodin (2001) only applied to non-reactive solutes. The TDRW 

method is here re-developed to handle matrix diffusion and sorption in the matrix. A set of 

analytical solutions for the transport problem described by Eq. (1-5) is provided by Tang et al. 

(1981) for a continuous injection of constant concentration c0 at the inlet of the fracture. In the 

case of both non-decaying solute and negligible dispersion in the fracture (i.e. λ = 0 and Df = 

0), the concentration at the outlet of a fracture of length L is written as: 

0fc =  for 00 t t≤ <      (17) 

0
0

0

erfcf
f

tc c
R t t

⎛ ⎞Ω
= ⎜ ⎟⎜ ⎟−⎝ ⎠

 for 0t t≥      (18) 

where 

0 f
f

Lt R
u

=      (19) 

( )
2

m m m eK D
b

θ ρ+
Ω =      (20) 

Note that t0 [T] is the particle residence time in the fracture, for pure advection delayed by 

sorption reactions onto the fracture walls. Since expressions (17) and (18) are the answer to a 

continuous injection, they have the significance of a cumulative probability density function 

for residence times by advection and matrix diffusion in a bond of length L. This distribution 

is written as: 
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0adF =  for 00 t t≤ <      (21) 

0

0

erfcad
f

tF
R t t

⎛ ⎞Ω
= ⎜ ⎟⎜ ⎟−⎝ ⎠

 for 0t t≥      (22) 

Applying the so-called rejection method (Yamashita and Kimura 1990; Moreno and 

Neretnieks 1993; Delay and Bodin 2001), one gets a stochastic expression of the particle 

residence time Δtm in the matrix: 

( )

2

0
0 1

01erfcm
f

tt t t
R U−

⎛ ⎞Ω
Δ = − = ⎜ ⎟⎜ ⎟

⎝ ⎠
     (23) 

where U01 is a random number drawn from a uniform distribution between 0 and 1. However, 

because Eq. (18) has been developed under the assumption of negligible dispersion in the 

fracture, the diffusion time Δtm cannot be merely added to the advection-dispersion time Δtf 

(15). Delay and Bodin (2001) have shown that the mean and variance of the travel time 

distribution in the bond should be modified to account for the interaction between advection-

dispersion and matrix diffusion. The modification is performed as follows: 

 
*

* *
2*

0

L
f f

t f

f

R D
u L dx

xu
μ

⎛ ⎞∂
= +⎜ ⎟⎜ ⎟∂⎝ ⎠

∫      (24) 

2
*2 *

3
0

2
L

f
t f

f

R
D dx

u
σ = ∫      (25) 

where *
tμ [T] and *2

tσ [T2] are respectively the corrected mean and variance of the advection-

dispersion travel time, based on an apparent fluid-velocity *
fu  and an apparent dispersion 

coefficient *
fD  defined as: 

*
f diff fu R u=      (26) 

( )* *
f fD f u=  if dispersion is modelled as being proportional to fluid velocity     (27) 

(e.g. * *
f fD uα=  with α [L] a dispersivity constant) 
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*
f fD D=  otherwise     (28) 

The coefficient Rdiff is a retardation factor that expresses the delay stemming from matrix 

diffusion as compared to pure advection. It can be viewed as the ratio tad / t0, tad being a 

characteristic time of advection-diffusion. Delay and Bodin (2001) propose to calculate tad as 

follows: 

( )

( )

0

0

0

0

t B

adt
ad t B

adt

f d
t

f d

τ τ τ

τ τ

+

+=
∫
∫

     (29) 

where t0 is defined by (19), B [T] is an integration boundary, and fad is the (non-cumulative) 

probability density function of residence times by advection-diffusion in a bond-matrix 

system, which can be derived from (22): 

( ) ( )
( ) ( )

2 2
0 0

3 2 2
00

expad
ad

ff

d F t tf t
dt R t tR t tπ

⎛ ⎞Ω Ω
= = −⎜ ⎟⎜ ⎟−− ⎝ ⎠

     (30) 

By experience, the best results are given for B = σt /2 with σt defined by (11). Introducing (30) 

into (29) and using B = σt /2 yield the following expression for the coefficient Rdiff:  

( )
( )

2exp2
1

erfc
t

diff
f

R
R

ξσ
ξ

π ξ

⎛ ⎞−Ω
⎜ ⎟= + −
⎜ ⎟
⎝ ⎠

     (31) 

where 

0 2 2

f t f t

t L
R u

ξ
σ σ

Ω Ω
= =      (32) 

One can easily check that Rdiff tends to 1 when ξ tends to 0 (i.e. for negligible matrix 

diffusion, the advection velocity in the bond remains obviously unchanged). In summary, the 

total residence time of a particle in a bond-matrix system undergoing an advective-dispersive 

motion in the fracture, coupled to both sorption onto the fracture walls and diffusion-sorption 

into the matrix, can be calculated as follows: 
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( ) ( )

2

' 0
ln ln 1

01

exp
erfcfm N

f

tt Z
R U

μ σ
−

⎛ ⎞Ω⎜ ⎟Δ = + +
⎜ ⎟
⎝ ⎠

     (33) 

where expressions (24) and (25) have to be used in place of expressions (10) and (11) in the 

calculus of μln' (16) and σln
2 (14). If the solute undergoes linear decay, the solute mass 

associated with each particle is decreased at each node according to: 

1 expn n fmmp mp tλ+ ⎡ ⎤= − Δ⎣ ⎦      (36) 

where mpn and mpn+1 [M] represent the mass of the particle at nodes n and n+1, respectively. 

 

Solute diffusion in stagnant zones  

In the preceding section, the rock matrix was considered to be the only part of the fractured 

system where the solute motion is purely diffusive. However, it is well known that fluid flow 

in natural fractures is often highly channelled, i.e. flow occurs in a relative small portion of 

the fracture plane (Tsang and Neretnieks 1998; Bodin et al. 2003a). The stagnant zones in the 

fracture plane therefore act as an additional "non-flowing" pore space available for solute 

diffusion. It is assumed that (1) diffusion in the fracture plane and diffusion in the surrounding 

rock matrix are two independent processes, and (2) diffusion in the stagnant zones is not 

influenced by the finite width of the fracture plane (unlimited diffusion). Using these 

assumptions, the transport problem described by equations (1)-(5) can be simulated as 

described in the previous section, while adding a residence time Δtf ' of the particle in stagnant 

zones to the time Δt fm (expression. 33). By analogy with the term Δtm for matrix diffusion, the 

expression of Δtf ' can be written as: 

( )

2

0
' 1 '

01

'
erfcf

f

tt
R U−

⎛ ⎞Ω⎜ ⎟Δ =
⎜ ⎟
⎝ ⎠

     (35) 

where 
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'
2

f mR D
a

Ω =      (36) 

Theoretically, for the same reasons as those evoked in the previous section, the diffusion time 

Δtf ' cannot be merely added to the time Δtfm. The mean and variance of the travel time 

distribution in the bond should be modified in order to account for the interaction between 

advection-dispersion in the flow channel and diffusion into the stagnant zones. However, the 

coupling error is expected to be negligible because the exchange surface between the flow 

channel and the stagnant zones is much more limited than the contact area with the matrix 

blocks. The complete expression for simulating advective-dispersive transport in a 1D-flow 

channel, coupled to both diffusion and sorption in adjacent rock matrix and stagnant zones in 

the fracture plane, can thus be written as: 

( ) ( ) ( )

2

' 0
' ln ln 1 1 '

01 01

'exp
erfc erfcf f m N

f

tt Z
R U U

μ σ
− −

⎡ ⎤⎛ ⎞Ω Ω⎢ ⎥⎜ ⎟Δ = + + +
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

     (37) 

Note that the above developments could be generalized to any number of independent 

diffusion compartments. 

 

Dispersion models 

Solute dispersion in a fracture stems from the combined effects of molecular diffusion and 

heterogeneity of the fluid velocity field (hydrodynamic dispersion). In a (natural) variable-

aperture fracture, the heterogeneity of fluid velocities develops both along the fracture plane 

and across the fracture aperture. The part of hydrodynamic dispersion resulting from 

heterogeneity along the fracture plane is classically written as (Bodin et al. 2003b): 

1L fD uα=      (38) 

where dispersivity α [L] is proportional to the correlation length of the flow field. Note that 

Gelhar and Axness (1983) propose analytical expressions for the calculation of α, from the 
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correlation length and the standard deviation of the logarithm of the apertures in the fracture 

plane. Another part of solute dispersion results from the combination of molecular diffusion 

and velocity variations across the fracture aperture. This leads to the well-known Taylor-Aris 

dispersion, characterized by the dispersion coefficient (Dewey and Sullivan 1979): 

2 2

2
2

105
f

L
m

u b
D

D
=      (39) 

The above expression is theoretically valid only beyond a critical travel time τc, which 

corresponds to the minimum duration needed for a particle to experience the whole cross-

sectional parabolic profile of velocities across the fracture aperture. This critical time is 

proportional to a characteristic time of transverse diffusion: τc ∝ b2/Dm. In other words, the 

solute must travel over a minimum distance cx  >> uf τc before the Taylor-Aris dispersion 

regime is completely established. For t < τc, the dispersion coefficient DL2 is time-dependent 

and its expression is given by Berkowitz and Zhou (1996): 

( )
( )

2 2 2 2

2 6 2
1

2 18 exp
105

f m
L

nm

u b n DD t t
D bn

π
π

∞

=

⎡ ⎤⎛ ⎞
= − −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑      (40) 

Ippolito et al. (1994) and Detwiler et al. (2000) showed both experimentally and numerically 

that dispersions along the fracture plane and across its variable aperture add up. Thus, the 

"bulk" dispersion coefficient can be written as: 

1 2f m L LD D D D= + +      (41) 

In the program, the time-dependent Taylor-Aris dispersion of expression (40) is truncated to 

the third term. By applying the change of variable t = x/uf, the spatial derivative of expression 

(41) yields the derivative of Df used in (10): 

2 2 2

4 2 2 2exp 1296 81exp 3 16exp 8
72

f f m m m

f f f

D u D x D x D x
x u b u b u b

π π π
π

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂
= − + − + −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

     (42) 
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The dispersivity α in DL1 has been considered as constant for the above derivation of Df. Note 

however that in the program, the value of α in each bond can be fixed as a user-defined 

constant, or as a function of the bond length: 

Lβα μ=      (43) 

where μ and β are user-defined constants. The dispersivity α may also be considered as scale-

dependent, as suggested by numerous laboratory and field experiments, see e.g. Neuman 

(1990), Gelhar et al. (1992), Schulze-Makuch (2005). Three models of scale-dependent 

dispersivity are handled by the program: power law model, asymptotic model, and 

exponential model. These models are written, respectively, as (Pickens and Grisak 1981): 

( )x xξα ϖ=      (44) 

( ) 1x
x
ηα
η

⎛ ⎞
= Ψ −⎜ ⎟+⎝ ⎠

     (45) 

( ) ( )1 expx xα κ= Φ − −⎡ ⎤⎣ ⎦      (46) 

where ϖ [-], ξ [-] and κ [L-1] are user-defined constants, Ψ [L] is the asymptotic dispersivity, 

η [L] is the migration distance for which dispersivity is half its asymptotic value, and Φ [L] is 

the maximal value of dispersivity in the exponential model. The derivative and/or integral of 

Df in the case where both DL1 and DL2 are scale-dependent are straightforward and not 

developed here. Note that when simulating advective-dispersive transport in the bonds and 

matrix-diffusion, the mean fluid velocity uf in expressions (38-42) is replaced by the corrected 

velocity uf
* (Eq. 26).  

 

Transport simulations on the network scale 

Transport simulations on the network scale are performed by tracking a set of particles 

injected into the flow field, until all the particles have left the network. For each particle, the 

TDRW algorithm is duplicated over the series of bonds experienced by the particle from its 
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injection point up to its exit point at the downstream boundary of the network. Solute 

breakthrough curves are then calculated from the residence time distribution of the particles in 

the network. 

 

Solute injection 

In the program, the injection of particles may be performed either along the inlet boundary, or 

at any point of the backbone (i.e. the flowing part) of the fracture network. In the first case, 

each particle is injected into one of the inlet bonds chosen randomly according to probability 

density either uniform or proportional to the flow rate in the bond. In the second case, the 

injection point is specified by the user via a graphic interface. Both short-term injection of a 

finite mass and continuous injection of constant concentration are handled by the program. 

Short-term injection may be either instantaneous or exponential-decaying in time, and 

simulated by the release time Tinit assigned to each particle: 

0initT =   if  0γ =      (47) 

( )01
1 loginitT U
γ

= −   if  0γ >      (48) 

where γ [T–1] is a decay coefficient defining the release-rate of the injected mass and U01 is a 

random number drawn from a uniform deviate between 0 and 1. In the case where γ > 0, the 

inlet solute-mass flux Fi(t) [M·T–1] at each injection point i obeys:  

( ) ( )expi iF t M tγ γ= −      (49) 

where Mi [M] is the total solute-mass injected in the network at the point i: Σi Mi = M0, with 

M0 the total mass of solute injected into the network. If N is the total number of particles used 

in the simulation, the solute-mass mpi assigned to each particle for its entry in the network 

through the point i is equal to M0 / N. In the case of a continuous injection of constant 

concentration C0 [M·L–3], the mass mpi is computed as: 
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( )0 i
i

i

C Q t
mp

N
δ

=      (50) 

where Qi [L3·T–1] is the flow rate at the point i in the network, and Ni [-] is the number of 

particles entering the network through this point (Σi Ni = N). 

 

Identification of elementary paths 

Once the injection points have been located, the program allows identifying all the elementary 

paths of the network. An elementary path is defined as a ranked series of connected bonds that 

a particle may experience to move from its injection point to the outlet boundary of the 

network. This computation step is optional because it is not required for the transport 

simulations. It enables (1) to visualize the set of bonds that are "available" for the solute 

motion, and (2) it may be useful for a breakthrough-curve computation based on a 

convolution of analytical solutions (see hereafter). However, in well-connected networks, the 

number of such paths may be much greater than the number of flowing bonds and the 

computational works needed to identify the paths is very time-consuming. As an example, 

several tens of hours were necessary with a 1 GHz PC to identify 8 x 106 elementary paths on 

the transport problem illustrated in Fig. 3. 

 

Mass transfer through fracture intersections 

Rules for particle transition through fracture intersections must be defined according to a 

model of solute mass partitioning. Three particle routing methods are implemented in the 

program. These methods are based on either (1) the "perfect-mixing" model (Smith and 

Schwartz 1984), or (2) the "streamtube" model (Endo et al. 1984), or (3) the "diffusional-

mixing" model (Park and Lee 1999). The perfect-mixing model is the simplest mixing rule 

and has been widely used in discrete transport simulations (see e.g. Smith and Schwartz 

(1984), Cacas et al. (1990a), Bradbury and Muldoon (1994)). In this model,  molecular 
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diffusion is assumed to ensure the homogenization of the solute mass fluxes at each fracture 

junction; therefore the same concentration value is observed at the entrance through the outlet 

bonds and mass sharing is proportional to the relative discharge flow rates. At the opposite 

limit, the streamtube model assumes that the solute molecules strictly follow the streamlines 

from the inflow bonds to the outflow bonds, with no mixing at the intersection. In this case, 

mass sharing depends on the configuration of inlet and outlet fluxes at the node. The 

streamtube model has been used by Robinson and Gale (1990), Wels and Smith (1994), 

Parney and Smith (1995), among others. The diffusional-mixing model, recently developed 

by Park and Lee (1999), is an alternative mixing rule between the perfect mixing model and 

the streamtube model. The solute molecules are assumed to follow the streamlines from the 

inflow bonds to the outflow bonds, but are allowed to diffuse between the streamlines, leading 

somehow to "partial-mixing" at the fracture junction. The mixing rate depends on the relative 

importance of advective versus diffusive mass transfer, expressed as a node-Péclet number 

Pe, and defined as: 

2

m

u bPe
D

=      (51) 

where u [L·T–1] is the mean fluid velocity in the inlet bonds connected to the junction, b [L] is 

the half mean-aperture of the inlet and outlet bonds, and Dm [L2·T–1] is the molecular diffusion 

of the solute in free water. Park and Lee (1999) have shown that the perfect-mixing and the 

streamtube models can be considered as two "end-member" cases of their diffusional-mixing 

model.  

 

For the fracture networks handled by the SOLFRAC program, there is only one type of 

fracture junction for which the choice of the mixing model is important. This is the so-called 

"continuous junction" case, corresponding to the junction of two contiguous inlet bonds and 
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two contiguous outlet bonds (Fig. 4). For all the other types of fracture junction (one inlet and 

three outlet bonds, three inlet and one outlet bonds, or one or more non-flowing "dead-end" 

bonds), it can be easily shown that the streamline patterns leads to the same mass partitioning 

whatever the mixing model used. Note that the particular case of "discontinuous junction" 

(i.e. two inlet and two outlet bonds on the opposite sides of an intersection), studied by Hull 

and Koslow (1986), may only occur if fluid sources or sinks are present within the flow 

domain, which is not provided for by the SOLFRAC program. 

 

For all the "non-continuous" fracture junctions, particle-transition rules in the program are 

based on the perfect mixing model, and are written as: 

∑ −=
Q

Q
p j

ij      (52) 

where pij [-] is the probability of particle transition from an inlet bond i to an outlet bond j, Qj 

[L3·T–1] is the flow rate in the outlet bond j, and ΣQ - [L3·T–1] is the sum of the discharge flow 

rates over all the outlet bonds connected to the junction of interest. 

 

For the continuous junctions, particle-transition rules depend on the mixing model chosen by 

the user. With the perfect-mixing model, the particle transition probabilities are calculated 

according to Eq. (52). Note that with this model, mass sharing is not influenced by the inlet 

fluxes. With the streamtube model, mass sharing depends on both the inlet and outlet fluid 

fluxes. The solute tends to flow preferentially into the outlet bond that is directly contiguous 

to the inlet where it comes from. Referring to the case illustrated in Fig. 4 where the solute 

particles come from the inlet bond i = 2, one can distinguish two possibilities (Park and Lee 

1999): 

⎩
⎨
⎧

=
=

⇒≤
0
1

24

23
32 p

p
QQ      (53) 
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⎪
⎪
⎩

⎪
⎪
⎨

⎧

−
=

=

⇒>

2

32
24

2

3
23

32

Q
QQ

p

Q
Q

p

QQ      (54) 

Using the same flow pattern but with solute particles coming from the inlet bond i = 1, the 

transition probabilities are written as: 

⎩
⎨
⎧

=
=

⇒≤
1
0

14

13
41 p

p
QQ      (55) 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

−
=

⇒>

1

4
14

1

41
13

41

Q
Qp

Q
QQ

p

QQ      (56) 

The mathematical expressions for the diffusional-mixing model of Park and Lee (1999) are 

somewhat bigger, but do not entail any calculation problem. Referring to the above two cases, 

the transition probabilities are written as: 

04433

44
14

04433

33
13

04433

44
24

04433

33
23

2

2

1

1

=

=

=

=

+
=

+
=

+
=

+
=

C

C

C

C

CQCQ
CQp

CQCQ
CQp

CQCQ
CQp

CQCQ
CQp

     (57) 

with the expressions of C3 and C4 for 1 4Q Q≤ : 

( ) ( ) ( ) ( )
2 2
22 22 0

3 0 22 22 2 2
32

exp exp
erf erfC CC C δ

δ δπ

⎡ ⎤−Π − −Π−
⎢ ⎥= + +Π Π −Π Π

Π ⎢ ⎥⎣ ⎦
     (58) 

( ) ( ) ( ) ( )
2 2
11 21 0

4 0 11 11 2 2
41

exp exp
erf erfC CC C δ

δ δπ

⎡ ⎤−Π − −Π−
⎢ ⎥= + +Π Π −Π Π

Π ⎢ ⎥⎣ ⎦
     (59) 
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while, for 1 4Q Q> : 

( ) ( ) ( ) ( )
2 2
22 12 0

3 0 22 22 1 1
32

exp exp
erf erfC CC C δ

δ δπ

⎡ ⎤−Π − −Π−
⎢ ⎥= + +Π Π −Π Π

Π ⎢ ⎥⎣ ⎦
     (60) 

( ) ( ) ( ) ( )
2 2
11 11 0

4 0 11 11 1 1
41

exp exp
erf erfC CC C δ

δ δπ

⎡ ⎤−Π − −Π−
⎢ ⎥= + +Π Π −Π Π

Π ⎢ ⎥⎣ ⎦
     (61) 

and where: 

1 1 2 2
0

1 2

u C u C
C

u u
+

=
+

     (62) 

4 2
i

ij

m j m

Q

D u b
Π =      (63) 

3 2

4 2
i

m i m

Q Q

D u b
δ

−
Π =      (64) 

Dm [L2·T–1] is the molecular diffusion of the solute, bm [L] the mean aperture of the bonds 

connected to the fracture junction, and ui [L·T–1] the fluid velocity in bond i. Note that the 

above expressions are those provided by Mourzenko at al. (2002) who corrected a few 

misprints of the initial work by Park and Lee (1999). 

 

Many attempts, either experimental, analytical, or numerical, have been undertaken by several 

authors to determine the best suited mixing-model for simulating solute mass partitioning at 

continuous fracture junctions (Hull and Koslow 1986; Robinson and Gale 1990; Berkowitz et 

al. 1994; Park and Lee 1999; Mourzenko et al. 2002). The most recent is that by Mourzenko 

et al. (2002), who performed three-dimensional particle tracking simulations over both 

parallel-plate and rough-walled fracture intersections. The following conclusions can be 

drawn from their results: 
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1. In the case of a parallel-plate fracture intersection, the streamtube model is suited for 

node-Péclet numbers Pe ≥ 30 (see Eq. 51). However, the sharp mass partitioning 

predictions in expressions (53) and (55) are unrealistic when the difference between the 

flow rates (Q2 and Q3) or (Q1 and Q4) is very small. The diffusional-mixing model is more 

universal since it applies fairly well for Pe ≥ 10. The perfect-mixing approximation is only 

valid for Pe values close to unity. For very low Péclet values, (i.e. Pe << 1), the solute 

transfer through the fracture junction becomes mostly diffusive and none of the above 

three mixing models is valid. Note that such eventuality occurs rarely in practice. 

2. In the case of a rough-walled fracture intersection, the streamtube, diffusional mixing, and 

perfect mixing models remain qualitatively valid over Pe ranges similar to those specified 

above for a parallel-plate fracture intersection. However, the streamtube and diffusional 

mixing models slightly underestimate the solute mixing at fracture intersection for large 

Péclet numbers.  

 

Breakthrough curve computation 

Solute breakthrough curves are calculated from the residence time distribution of the particles 

in the network, according to the following algorithm: 

1. Determination of the minimum and maximum residence times tmin, tmax of the whole set of 

particles; 

2. Discretisation of the time-interval [tmin-tmax] in N time steps of duration Δt; 

3. Summation of the mass associated with the particles leaving the network during each time 

step Δtn (n = 1 .. N): 

( ) ( )
1

nNp

n out
j

m t mp j
=

Δ =∑      (65) 
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where Npn is the number of particles leaving the network during the time step Δtn, and 

mpout (j) is the mass of the jth particle leaving the network during Δtn (see Eq. 34); 

4. Calculation of the mean concentration at the outlet boundary of the network for each time 

step. In the case of short-term injection of finite mass M0 (see above):  

( ) ( )
1

n
n

out

m t
c t

t Q
Δ

Δ =
Δ ∑

     (66) 

where ΣQout [L3·T–1] is the sum of the discharge flow rate over all the bonds connected to 

the outlet boundary of the network. In the case of a continuous injection of constant 

concentration C0 (see above): 

( ) ( )
min

min

2 1

t n t

n
t

c t c t dt
+ Δ

Δ = ∫      (67) 

In the program, the integral in expression (67) is numerically evaluated with an evolutive 

Simpson's rule (see Press et al. (1993) pp 132-134). 

 

During the transport simulations, the history of each particle in the network is recorded as a 

series of data pairs describing the succession of the nodes encountered, and the arrival times 

of the particle at these nodes. These data may be used to compute the solute breakthrough 

curve at any observation node specified by the user, according to an algorithm similar to that 

described above. Note also that these data pairs further enable to analyze the solute-plume 

dispersion at the network scale (see hereafter).  

 

The accuracy of the simulated breakthrough curves depends on both the number N of times 

intervals (i.e. the number of points c(Δtn) on the graph), and the number of particles used in 

the simulation. The number of particles to be used increases with N because a minimum 

number of particles is required within each time interval in order to ensure the convergence of 
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c(Δtn). Furthermore, the number of particles needed increases with the complexity of the 

network. From a practical point of view, it is difficult to estimate the optimum number of 

particles to be used in a given network. An empirical method consists in repeating 

simulations, increasing each time the number of particles, up to reach no significant difference 

between the simulated breakthrough curves. As an example, about 104 particles are required 

for simulating accurately the transport problem illustrated in Fig. 3, with 100 points on the 

breakthrough curve. Note that in a Monte Carlo framework involving a large number of 

simulations, the number of particles may be lower because the oscillations resulting from the 

discrete nature of the particles are random and cancel each other when ensemble statistics are 

computed (see e.g. Hassan and Mohamed 2003). 

 

Verification problems 

The purpose of this chapter is to verify the accuracy of the program through comparisons with 

analytical and semi-analytical solutions of solute transport in fractured media. Although not 

mentioned in previous papers, the SOLFRAC program has been used by Delay and Bodin 

(2001) and Bodin et al. (2003c) for assessing the accuracy of the TDRW method through 

several basic transport problems. Delay and Bodin (2001) first addressed the case of non-

reactive solute transport in a single fracture-matrix system. The transport processes 

considered were advection-dispersion in the fracture plane, and matrix diffusion. Simulation 

results compared very well with the analytical solution of Sudicky and Frind (1982). This 

model verification was extended by Bodin et al. (2003c) to the case of reactive solute 

transport, including sorption on the fracture walls and radioactive decay. Bodin et al. (2003c) 

also showed the accuracy of the TDRW method (and of the SOLFRAC code) for simulating 

advection and hydrodynamic dispersion in a synthetic fracture network with sharp contrasts in 
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dispersion coefficients. The series of test problems presented in this section has been designed 

to verify the accuracy of the program in transport scenarios that have not yet been addressed. 

 

Tests SF1 and SF2: Scale-dependent dispersion in a single fracture 

The purpose of the tests SF1 and SF2 is to investigate the ability of the program to deal with 

scale-dependent dispersion within the bonds of a fracture network. An advection-dispersion 

problem in a single fracture is addressed and dispersion is assumed to increase linearly (test 

SF1) or exponentially (test SF2) with distance along the fracture axis. A source of solute of 

constant strength is assumed to supply a continuous injection of constant concentration at the 

fracture inlet. Analytical solutions to the above-described problems were developed by Yates 

(1990, 1992). The values of the parameters used for the calculation of both the analytical 

curves and SOLFRAC simulations are listed in Table 1. As shown in Fig. 5, simulations and 

analytical solutions are in very good agreement. 

 

 

Test DFN1: Reactive solute transport in a fracture network 

The test DFN1 performed over a synthetic discrete fracture network involves the following 

mechanisms: (1) advection and hydrodynamic dispersion in the fractures, (2) matrix diffusion, 

(3) solute sorption on the fracture walls and in the matrix, and (4) mass sharing at fracture 

intersections. The network size is 350 x 350 m, and the constant hydraulic head values on the 

top and bottom boundaries are fixed to 100 m and 99 m, respectively. The flow takes place 

within two orthogonal sets of fractures, yielding 71 flowing bonds (Fig. 6). The fracture 

apertures and widths are constant over the network and set up to 2b = 2.5 x 10-4 m and W = 1 

m, respectively. A mass m0 = 10-2 g of solute is instantaneously injected at the inlet B1 of the 

network (see Fig. 6). The values of transport parameters in the fractures and the rock matrix 
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are listed in Table 2. The theoretical breakthrough curve cout (t) at the outlet of the network is 

calculated as the summation of mass fluxes from each elementary flow path in the network 

(Bodin et al., 2003c): 

( )
( )

1

EPN

i
i

out
out

F t
c t

Q
==
∑

     (68) 

where NEP is the number of elementary paths starting from the injection point (NEP = 1800 in 

the current problem), Fi (t) [M·T–1] is the solute mass flux in the ith elementary path, and Qout 

[L3·T–1] is the total flow rate at the outlet boundary of the network. The solute mass flux Fi (t) 

can be expressed as a convolution product of the probability density functions ℑn [T-1] of 

residence times in each bond of the elementary path i: 

( ) ( ) ( ) ( )
1

0 , 1 1 2
1

i

i

N

i n n N
n

F t m p t t t
−

+
=

⎛ ⎞
= ℑ ∗ℑ ∗ℑ⎜ ⎟

⎝ ⎠
∏      (69) 

where Ni is the number of bonds in the elementary path i, and pn,n+1 is the fraction of solute 

mass in bond n that flows into bond n+1, this fraction depending on the flow configuration 

and on the mixing model at the fracture intersection (see expressions 52, 53-56, and 57). 

Because the transport problem DFN1 involves both advection-dispersion in fractures and 

matrix diffusion, the convolution product in (69) cannot be simply replaced by an equivalent 

probability density function as the one developed by Bodin et al. (2003c). We rather propose 

to use the Laplace transform of ℑn
 (t), which is easily derived from the work by Tang et al. 

(1981): 

( ) ( )
1 21 2

2exp exp 1n
ss L L s
A

ν ν β
⎡ ⎤⎧ ⎫⎛ ⎞⎪ ⎪⎢ ⎥ℑ = − + +⎨ ⎬⎜ ⎟
⎢ ⎥⎪ ⎪⎝ ⎠⎩ ⎭⎣ ⎦

     (70) 

where 

2
n

n

u
D

ν =      (71) 
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( )
f

m m m e

bR
A

k Dθ ρ
=

+
     (72) 

2
2

4 f n

n

R D
u

β =      (73) 

1f fR k b= +      (74) 

where s [-] is the Laplace parameter, L [L] is the length of the bond n, un [L·T–1] and 

Dn [L2·T-1] are the flow velocity and the dispersion coefficient in the bond, respectively, and 

Rf [-] is a retardation coefficient due to solute sorption on the fracture walls. As stated above, 

the Laplace transform of a convolution is the product of the individual transforms. Thus, the 

Laplace transform of the solute mass flux in the ith elementary path is: 

( ) ( )
1

0 , 1
1 1

i iN N

i n n n
n n

F s m p s
−

+
= =

⎛ ⎞⎛ ⎞
= ℑ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∏ ∏      (75) 

The substitution of the inverse transform of ( )iF s  for Fi (t) in (68) yields the following semi-

analytical (SA) solution:  

( )
( ){ } ( )

( )
11

1
1 11 0

, 1
1 1 1

EPEP

i iEP

NN

i N Ni N
ii

out n n n
i n nout out out

L F sL F s
mc t L p s

Q Q Q

−−
−

= −=
+

= = =

⎧ ⎫
⎨ ⎬ ⎧ ⎫⎡ ⎤⎛ ⎞⎛ ⎞⎪ ⎪⎩ ⎭= = = ℑ⎨ ⎬⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∑∑
∑ ∏ ∏      (76) 

For the test DFN1, the inverse Laplace transform L-1{} in (76) has been numerically evaluated 

using the MATLAB® routine "Invlap.m" written by Hollenbeck (1998), which is based on 

the De Hoog et al. (1982) algorithm. Both SA and SOLFRAC breakthrough curves have been 

computed using successively the perfect-mixing model, streamtube model, and diffusional-

mixing model for mass partitioning at fracture junctions. As shown in Fig. 7, SA and 

SOLFRAC results coincide very well in each case. 

 

Macroscopic time- and scale-analysis of solute transport 
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As stated earlier, the program can analyze various transport features on the network scale, 

either from the spatial distribution of particles at a given time or from the residence time 

distribution (RTD) of the particles in the network. These transport features are: (1) time-

evolution of the mean position of the particle cloud, (2) time-evolution of the longitudinal and 

transverse variance of the particle cloud, (3) computation of the macroscopic longitudinal and 

transverse dispersion coefficients at a given time, (4) time-evolution of the macroscopic 

dispersion, (5) scale-evolution of the macroscopic dispersion according to the mean position 

of the particle cloud, and (6) evolution of the dilution index according to the mean position of 

the particle cloud. The term "macroscopic dispersion" is used here by analogy to transport in 

porous media, and describes the spreading of the solute/particle plume on the network scale. 

This spreading results from the cumulated effects of the flow-field heterogeneity on the 

network scale (controlled by the fracture network geometry), the mass sharing at fracture 

intersections, and the transport processes on the bond-scale. In the "ideal case" of a 

homogeneous 1D transport problem, the following relations hold: 

3 2
2

3

2
2

tF
t F

UD x D
U L

σσ Δ
= ⇔ =      (77) 

2
2 2

2
x

x F FD t D
t

σσ = ⇔ =      (78) 

where σt
2 [T2] is the variance of the residence time distribution of the particles for a transport-

length L, σx
2 [T2] is the variance of the spatial distribution of the particles at a given time t, DF 

[L2·T–1] is the (Fickian) dispersion coefficient, and U [L·T–1] is the mean flow velocity. The 

macroscopic dispersion (or "macrodispersion") coefficients computed in SOLFRAC rely on 

various definitions, which are all basically based on the relations above. Two expressions are 

based on the Residence Time Distribution (RTD) between injection and one location of the 

network: 
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( )
2

2
32
io

io t
m

lD l
t
σΔ

Δ =      (79) 

( )
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16 84

16 84

1 1
8

io m m
io

l t t t tD l
t t

⎛ ⎞Δ − −
Δ = −⎜ ⎟⎜ ⎟

⎝ ⎠
     (80) 

where Δlio [L] is the longitudinal distance between injection and observation points in the 

network, tm [T] and σt [T] are the mean and standard deviation of the RTD, respectively, and 

t16 and t84 are the time values for which the cumulative probability density function of the 

particle RTD is equal to 0.16 and 0.84, respectively. Expression (80) was first proposed by 

Fried and Combarnous (1971), and is similar to Eq. (79) except that the calculation of the 

dispersion coefficient relies on a truncated RTD. This truncation forces the relative influence 

of both rising and lowering parts of the breakthrough curve to balance in the computation of 

D, which may be useful when the time-evolution of concentrations exhibits an extensive 

tailing. The calculation of a macroscopic dispersion coefficient from the spatial distribution of 

particles at a given time may also be based on different approaches. Let us denote Dxx and Dyy 

the longitudinal and transverse macrodispersion coefficients, respectively. The program 

computes Dxx and Dyy from either an "apparent" or "effective" definition (Dagan 1989; Jussel 

et al. 1994): 

( ) ( )2

_ 2
x obs

xx app obs
obs

T
D T

T
σ

=      (81) 

( ) ( )2

_ 2
y obs

yy app obs
obs

T
D T

T
σ

=      (82) 

( ) ( ) ( )2 22

_

2 21
2 2
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x obs x obsx
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T t T t
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t t
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( ) ( ) ( )2 2 2

_

2 21
2 2
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y y obs y obs
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T t T t
D T

t t
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where σx
2

 (Tobs) and σy
2

 (Tobs) are the spatial-variance of the particle cloud projected on the x-

direction parallel to the flow gradient and y-direction perpendicular to x, at time Tobs. 

Coefficients Dxx_app and Dyy_app are termed "apparent" because the analysis assumes spatial 

homogeneity along the travel distance, i.e. the definition is similar to that in (78) of a 

homogeneous Fickian dispersion. On the other hand, coefficients Dxx_eff and Dyy_eff are termed 

"effective" because their calculation only considers the temporal-increment in the plume 

development without any reference to homogeneity. In the program, the duration of Δt in (83) 

and (84) is that of the time-steps used for the computation of breakthrough curves (see Eq. 

66). SOLFRAC enables to analyze the time-evolution of macrodispersion by computing 

Dxx_app, Dyy_app, Dxx_eff, and Dyy_eff for several Tobs values, evenly distributed between 0 and the 

first particle arrival-time at the network outlet. It is also possible to analyze the scale-

evolution of macrodispersion by plotting Dxx_app and Dxx_eff values with respect to the x-mean 

position of the particle cloud for the same Tobs values. Note that performing an injection over 

the whole inlet boundary of the network, which makes the particles to experience most of the 

flowing bonds, is preferable for analyzing the longitudinal macrodispersion Dxx. On the other 

hand, a single injection point is preferable for analyzing the transverse macrodispersion Dyy, 

in order to ensure that σy
2 = 0 at t = 0. This injection point may be randomly chosen among 

the nodes located at the inlet boundary of the network. 

 

The concept of "dilution index" was developed by Kitanidis (1994) to better differentiate 

between spreading and dilution in heterogeneous media. The dilution index characterizes the 

volume of porous medium occupied by the solute at a given time. Mathematically, it is 

defined as: 

( ) ( )
( )

( )
( )

, ,
exp ln

V

c t c t
E t dV

M t M t
⎡ ⎤⎛ ⎞

= −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫

x x
     (85) 
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where V is the volume (or length) of the studied system, c(x, t) is the solute concentration at 

location x, and M(t) is the total mass of solute in the system at time t: 

( ) ( ),
V

M t c t dV= ∫ x      (86) 

As pointed out by Park and Lee (2001), the dilution process in fracture networks is closely 

related to the solute mass partitioning among the multiple available flow paths. Today, it is 

well known that solute transport in natural fracture networks is often channelised, i.e. most of 

the mass transfer occurs in a limited number of flow paths (see e.g. Tsang and Neretnieks 

(1998) and references therein). Park and Lee (2001) suggested that the dilution index might be 

used as a quantitative measurement of the degree of channelised transport in fractured media. 

The program enables to compute curves showing the evolution of the dilution index with 

respect to the mean position of the particle cloud. As suggested by Park and Lee (2001), this 

type of plot is useful to analyze the dilution features in a fracture network. In the program, the 

dilution index is calculated as follows:  

( ) ( ) ( )
1

exp ln
( ) ( )

BN
n n

n tot tot

NP t NP t
E t

NP t NP t=

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑      (87) 

where NB is the total number of flowing bonds in the fracture network (i.e. the number of 

pipes in the backbone of the network), NPn (t) is the number of particles in bond n at time t, 

and NPtot (t) the total number of particles in the whole network at time t. 

 

Summary and conclusion  

In 1993, Smith and Schwartz (1993) rightly argued that the computational constraints on the 

total number of fractures that can be included in a discrete network severely limited the 

applicability of this modelling approach to practical cases. This was justified a dozen years 

ago, but the computation capacities have strongly increased and today, representative discrete 

models become affordable to handle transport problems on the scale of a reservoir. However, 
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it is important to note that the question of parameterisation remains unanswered but still 

crucial since numerical simulations rely on available data (see e.g. Smith et al. 1997). 

 

The software presented in this paper performs fast simulations of solute transport in complex 

2D fracture networks. Comparisons between numerical results and analytical breakthrough 

curves for synthetic test problems have proven the accuracy of the model. Transport 

simulations are free of numerical dispersion (Lagrangian method) and avoid mass balance 

discrepancies stemming from dispersion contrast at fracture intersections. Compared to other 

Lagrangian models, both local dispersion and diffusion into immobile zones are explicitly 

accounted for. The immobile zones considered here are (1) the rock matrix, and (2) the 

stagnant zones within the fracture plane. Other mechanisms such as radioactive decay, 

sorption reactions or scale-dependent dispersion are also handled. The SOLFRAC program 

should become a convenient tool to evaluate how these mechanisms influence the 

macroscopic transport behaviour of the network. All the modelling concepts and numerical 

methods presented in this work may easily be transposed from the 2D- to the 3D-space (i.e. 

pipe networks interconnected in 3D space), for simulating solute transport in realistic fracture 

networks or in small rock samples with pore space approached by pipe networks. 

 

Note that input files corresponding to single fracture problems are also very simple to type 

with any text editor. Thus, the SOLFRAC program could be used, as is the case with 

analytical solutions, to interpret laboratory or field tracer test experiments performed in single 

fractures. In this case, the program allows dealing with tracer tests including hydrodynamic 

dispersion and matrix diffusion without computation of inverse Laplace transforms. The 

computation method also deals with additional mechanisms such as scale-dependent 
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dispersion, or solute diffusion into stagnant zones, for which analytical solutions are not 

available. 
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Parameters Values 
Fracture length L 10 m 
Flow velocity uf 5×10-5 m/s 
Molecular diffusion coefficient Dm 1×10-9 m2/s 
Constant ϖ (linear dispersion model, test SF1) 0.05 
Constant Φ (exponential dispersion model, test SF2) 0.2 
Constant κ (exponential dispersion model, test SF2) 0.05 

 

Table 1. Input parameters in tests SF1 (Df = ϖ x uf + Dm) and SF2 (Df = Φ[1-exp(-κx)] uf + 

Dm) 

 

 

 

Parameters Values 
Dispersivity α in the fractures 1 m 
Molecular diffusion coefficient Dm 5×10-9 m2/s 
Matrix porosity θm 0.05 
Effective diffusion coefficient De 10-13 m2/s 
Bulk density of the rock matrix ρm 2200 kg/m3 
Sorption coefficient on the fracture walls kf 5 x 10-6 m 
Matrix sorption coefficient km 5 x 10-7 m3/kg 

 

Table 2. Transport parameters in test DFN1 (fracture network problem). 
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Fig. 1. Modelling approaches for 3D fracture networks. A: discretisation of fracture planes, 

the greyed cells correspond to those where most of the flow (and transport) takes place; B: 

generation of pipe networks in fracture planes.  
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Fig. 2. Schematic illustration of a fracture-matrix system with both flowing and non-flowing 

pore spaces in the fracture plane. 

 

 

 

 

Fig. 3. Identification of elementary paths in the SOLFRAC program for an injection in (A). 
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Fig. 4. Solute mass partitioning at a "continuous" fracture junction: (a) "perfect mixing 

model", (b) "streamtube model" ; reprinted from Water Resources Research 35(5), Park Y-J, 

Lee K-K, Analytical solutions for solute transfer characteristics at continuous fracture 

junctions, pp1531-1537, Copyright (1999), with permission from American Geophysical 

Union. Note that the streamtube model may lead to a heterogeneous distribution of 

concentrations across the section of an outlet bond, but it is assumed that the transverse 

molecular diffusion results in a fast homogenisation in the bond.  
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Fig. 5. Solute transport in a single fracture with scale-dependent dispersion: comparison 

between SOLFRAC simulations and analytical solutions. Test SF1: linear dispersion (Df = 

ϖ x uf + Dm); Test SF2: exponential dispersion (Df = Φ[1-exp(-κx)] uf + Dm). 
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Fig. 6. The fracture network of test DFN1: size = 350 × 350 m; 27 fractures. The 71 bold lines 

show the flowing bonds, i.e. the backbone of the network. The tracer particles were injected at 

the inlet of bond B1. 
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Fig. 7. Test DFN1: comparison between SOLFRAC simulations and semi-analytical (SA) 

computed breakthrough curves. 
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