
HAL Id: insu-00260761
https://insu.hal.science/insu-00260761

Submitted on 30 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cover effect in bedrock abrasion: A new derivation and
its implications for the modeling of bedrock channel

morphology
Jens M. Turowski, Dimitri Lague, Niels Hovius

To cite this version:
Jens M. Turowski, Dimitri Lague, Niels Hovius. Cover effect in bedrock abrasion: A new derivation
and its implications for the modeling of bedrock channel morphology. Journal of Geophysical Research:
Earth Surface, 2007, 112 (F4), pp.F04006. �10.1029/2006JF000697�. �insu-00260761�

https://insu.hal.science/insu-00260761
https://hal.archives-ouvertes.fr


Cover effect in bedrock abrasion: A new derivation

and its implications for the modeling

of bedrock channel morphology

Jens M. Turowski,1,2 Dimitri Lague,3,4 and Niels Hovius1

Received 21 September 2006; revised 2 July 2007; accepted 25 July 2007; published 3 November 2007.

[1] The sediment load of a bedrock river plays an important role in the fluvial incision
process by providing tools for abrasion (the tools effect) and by covering and thereby
protecting the bed (the cover effect). We derive a new formulation for the cover effect,
in which the fraction of exposed bed area falls exponentially with increasing sediment flux
or decreasing transport capacity, and explore its consequences for the model of
bedrock abrasion by saltating bed load. Erosion rates predicted by the model are higher
than those predicted by earlier models. In a closed system, the maximum erosion rate
is predicted to occur when sediment supply is equal to transport capacity for a flat bed.
By optimizing the channel geometry to minimize the potential energy of the stream and
using representative values for both discharge and grain size, we derive equations for
the geometry of a bedrock river and explore how predictions for width, slope, and bed
cover vary as functions of drainage area, rock uplift rate, and rock strength. The equations
predict a dependence of channel width on drainage area similar to the relations using
a simple shear stress incision law. The slope-area relationship is predicted to be
concave up in a log-log regime, with a curvature dependent on uplift rate. However, this
curvature does not deviate sufficiently from a straight line to allow discrimination
between models using empirical data. Dependence of channel width and slope on rock
uplift rate can be separated into two domains: for low uplift rates, channel geometry is
largely insensitive to uplift rate due to a threshold effect. At high uplift rates, there
is a power law dependence. Bed cover is predicted to increase progressively downstream
and to increase with increasing uplift rate. In our model, the width-to-depth ratio is a
function of both tectonic and climatic forcing. This indicates that the scaling between
channel width and bed slope is neither a unique indicator of tectonic forcing at steady state
nor a signature of transience or steady state. We conclude that sediment effects need
to be taken into account when modeling bedrock channel morphology.

Citation: Turowski, J. M., D. Lague, and N. Hovius (2007), Cover effect in bedrock abrasion: A new derivation and its implications

for the modeling of bedrock channel morphology, J. Geophys. Res., 112, F04006, doi:10.1029/2006JF000697.

1. Introduction

[2] The erosion of nonglaciated landscapes is driven by
fluvial incision into bedrock. Of several possible mecha-
nisms, abrasion is often the dominant mode of fluvial
incision [Hartshorn et al., 2002; Sklar and Dietrich,
2004]. Abrasion is conceptually simple. A fraction of the
kinetic energy of particles striking the bed may be expended
on fracturing the rock and removing bed material. Gilbert
[1877] was the first to realize that the amount of sediment

transported by a river has two opposing effects on bedrock
incision by abrasion: the erosion rate (1) increases with the
number of particles available as tools for abrasion (the tools
effect) and (2) decreases as sediment covers the bed and
thereby protects the rock from erosion (the cover effect).
Given the large amount of sediment carried by actively
incising mountain rivers, it seems likely that the cover effect
rather than the tools effect limits rates of erosion. The cover
effect must be modeled adequately if the dynamics of
bedrock rivers and the erosion processes within them are
to be understood.
[3] Moore [1926] suggested that sediment supply could

control whether a bedrock channel actively meanders
through uplifted bedrock, and thereby have an effect on
channel planform and cross-sectional geometry. Shepherd
[1972] verified this concept for artificial channels in a series
of experiments. More recently, several studies have
addressed the influence of sediment flux on channel evolu-
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tion [e.g., Wohl and Ikeda, 1997; Hancock and Anderson,
2002; Whipple and Tucker, 2002; Sklar and Dietrich, 2006;
Wobus et al., 2006a, Finnegan et al., 2007; Turowski et al.,
2007] and bedrock wear by experiment [e.g., Sklar and
Dietrich, 2001; Attal et al., 2006] and theoretical methods
[Foley, 1980; Kooi and Beaumont, 1996; Slingerland et al.,
1997; Sklar and Dietrich, 1998, 2004]. Sediment supply
effects and their influence on erosion models have been
reviewed by Sklar and Dietrich [2006]. They stressed the
fact that incision models without a cover term will over-
predict incision rates for high sediment supply rates. These
models also lack a fundamental coupling between the local
channel dynamics (partly set by rock properties and uplift
rate) and upstream sediment production and supply.
[4] Efforts to model the cover effect so far lack a physical

basis and there is a mismatch between measurements of
experimental erosion rates [Sklar and Dietrich, 2001] and
theoretical predictions [Sklar and Dietrich, 1998, 2004],
especially for high ratios of sediment supply to transport
capacity. In nature, the problem is due in part to the difficulty
of measuring bed load transport during flood events in
mountain rivers. In addition, observed rapid changes of the
degree of bed cover between floods hamper the meaningful
definition of an incision model at geological timescales.
[5] In this paper, we build on the work by Sklar and

Dietrich [1998, 2004, 2006] by deriving a new functional
form for the cover effect based on a probabilistic argument.
The model provides a physical explanation of the experi-
mental results of Sklar and Dietrich [2001] on the relation-
ship between erosion rate and sediment supply. We then use
minimization of the river potential energy expenditure
[Lague et al., 2005a] to explore some consequences of
our model for the geometry and bed cover of steady state
bedrock rivers as a function of discharge, uplift rate and
sediment supply.

2. Model Development and Justification

2.1. River Incision by Saltating Bed Load

[6] Sklar and Dietrich [1998, 2004] have developed a
mechanistic model of river incision by abrasion of bedrock
by saltating grains. In this model, the erosion rate is written
as the product of three terms, describing (1) the volume of
material removed at each particle impact Vi, (2) the rate of
impact of particles per unit area Ir, and (3) the fraction
of bedrock exposed to the flow Ra:

E ¼ ViIrRa: ð1Þ

For the terms Vi and Ir we use the expressions proposed by
Sklar and Dietrich [2004], giving:

E ¼ KSeqsRa; ð2Þ

with

K ¼ 0:08DrgY
kvrws2

t

t*
tc*

� 1

� ��1=2

ð3Þ

and

Se ¼ 1� u*

wf

� �2
" #3=2

: ð4Þ

Here g is the gravitational acceleration at the Earth’s
surface, Y Young’s modulus of the substrate, kv a
dimensionless rock resistance coefficient, st the rock tensile
strength, Dr = rs � rw where rw and rs are the densities of
water and sediment respectively, t* = tb/Drgd the Shields
stress and tc* the critical Shields stress for the onset of
motion of sediment, where tb is the bed shear stress and d
the sediment grain diameter. wf is the particle fall velocity in
still water, u* = (tb/rw)

1/2 the shear velocity, and qs is the
sediment flux per unit width in the river. All definitions are
listed at the end of the paper. K is a measure of the substrate
erodibility, and also incorporates sediment motion dy-
namics. The suspension effect term Se accounts for the
increasing proportion of mobile sediment carried in
suspension with rising shear stress. It can be neglected for
small values of the transport stage Ts = t*/tc* � 10,
corresponding to shear stresses below the threshold for
suspension [Sklar and Dietrich, 2004], giving

E ¼ KqsRa: ð5Þ

This approximation applies in all calculations done in this
paper, except when stated otherwise.

2.2. Cover Effect

2.2.1. Derivation in the Context of Abrasion
Experiments
[7] Previous functional expressions for the cover effect

have been linear models rooted in the balance of sediment
supply and sediment transport capacity [Slingerland et al.,
1997; Sklar and Dietrich, 1998, 2004] but lacking a
physical basis. Bedrock erosion by particle impact has been
investigated in experiments using circular or recirculating
flumes [Sklar and Dietrich, 2001; Attal et al., 2006]. These
experiments are closed systems, in which a fixed amount of
sediment ms is introduced. When steady flow conditions are
reached, the flow capacity defines the maximum mass mt

that can be transported as bed load. In our approach we
assume that the transport capacity is uniform throughout the
considered area and independent of the amount of sediment
in the flow. If ms > mt, then part of the sediment is not
transported and remains immobile on the bed, shielding the
bed from abrasion. This is a static cover effect. When ms <
mt, all sediment is mobile, but a shielding effect is still
expected: with increasing ms, the concentration of saltating
particles near the bed increases to the point where a
significant number of near-bed grain-grain collisions occurs,
and the number of grain-bed collisions is reduced. This is a
dynamic cover effect. Furthermore we assume that once
sufficient cover is present, erosion rate does not vary with
the thickness of sediment at a point.
[8] The channel bed erosion rate is proportional to the

fraction of bed area Ra = aexp/atot exposed to the flow
(equation (3)) [Sklar and Dietrich, 1998, 2004]. Here aexp is
the area exposed to impacting particles and atot is the total
bed area. Let m be the ratio m = ms/mt. For ms > mt, when m
is increased by a small amount dm, a fraction aexp/atot of this
amount will fall on exposed bedrock and cover it, while the
remainder falls on parts of the channel bed that are already
(statically) covered by sediment. Hence

dRa ¼ �Radm: ð6Þ
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The minus sign occurs because the fraction of exposed area
decreases when sediment is added. Equation (6) also applies
when ms < mt: for any increase in ms, part of the added
sediment will fall on previously bare bed and thus
contributes to a reduction of Ra. The remainder falls on
previously (dynamically) covered bed areas. Equation (6)
assumes that it is equally likely for sediment to impact or
fall on any part of the bed. It could well be the case that
variations in local flow conditions or bed roughness, for
example between areas with and without cover, affect the
likelihood of sediment falling at a particular site. To reflect a
difference in the probability of impact or accumulation on a
unit bed area between exposed and covered areas, a factor 8
is introduced:

dRa ¼ �8Radm: ð7Þ

It is reasonable to assume that the value of 8 depends on the
precise geometry of the bed, and possibly on flow
conditions, and that 8 6¼ 1. 8 is less than one when it is
more probable for sediment to fall on statically or
dynamically covered areas, and greater than one when it
is more probable for sediment to fall on uncovered areas.
Cross-channel variations of sediment supply or transport
capacity can, in principle, be modeled by appropriately
choosing 8. In the absence of direct constraints, 8 = 1 will
be used in further calculations.
[9] Integrating equation (7):

Ra ¼
aexp

atot
¼ ke�8m ¼ e�8m; ð8Þ

where k is an integrative constant which can be fixed to one
by stipulating that Ra = 1 at ms = 0. Equation (8) shows that
the bed surface dynamically or statically exposed to
abrasion decreases exponentially with increasing sediment

supply. Substituting equation (8) into equation (5) and
working with ms instead of qs, we obtain an expression for
fluvial bedrock erosion including the effect of bed cover:

E ¼ Kmmse
�8ms

mt ; ð9Þ

where Km has a similar function as K.
[10] Figure 1 shows data obtained by Sklar and Dietrich

[2001] in experiments investigating the dependency of
erosion rate on sediment load. The erosion rate has been
normalized with respect to tensile strength of the bedrock,
sediment density, and bed area to collapse data for several
lithologies onto a single curve. In the transformed coordi-
nates, the equation is written as

E0 ¼ K 0mse
�8ms

mt : ð10Þ

Here E0 is the normalized erosion rate and K0 the
corresponding erodibility factor. Details of the transforma-
tion between K and K0 can be found in Appendix A.
[11] In Figure 1 the erosion rate rises to a maximum and

then falls off, rapidly at first and then approaching zero
asymptotically, as the sediment load is increased. Where the
tools effect dominates, an increase of the sediment load
leads to higher erosion rates. Beyond the erosion maximum,
where the cover effect dominates, an increase of sediment
load leads to greater bed cover and decreased erosion rates.
The solid line represents the best fit by nonlinear regression
using equation (10) with K0 = (0.50 ± 0.02) MPa2 h�1 and 8/
mt = (7.5 ± 0.2) � 10�3 g�1. Assuming that in a closed
system ms/mt = qs/qt (see section 2.2.2), we find that
equation (10) yields a better fit to the data than the parabolic
model of Sklar and Dietrich [1998, 2004] (dashed line in
Figure 1). Note that in the Sklar and Dietrich [1998, 2004]
cover model, Ra = 1 � m is a Taylor expansion to first order
of equation (8), using 8 = 1. As such, it provides a good fit
to the data where the tools effect dominates (left of
maximum in Figure 1), but the functions diverge for larger
sediment loads, where the cover effect dominates. The
exponential model derived above fits the experimental data
well in both domains.
2.2.2. Application to Natural Channels
[12] A section of a natural channel is an open system in

which bed load is continuously supplied from upstream and
exported downstream, with the possibility of local deposi-
tion. In the channel section, the rate of change of the
thickness h of sediment stored is a function of the gradient
of unit sediment flux qf along the stream:

dh

dt
¼ E þ F � dqf

dx
; ð11Þ

where x is the distance along the stream, and F is the net
transfer from suspended load to bed load [cf. Paola and
Voller, 2005]. Hence resolution of the extent of bed cover at
any time t + dt requires knowledge of the amount of
sediment mi stored in the channel at t, the bed load sediment
supply qs and the local bed load transport capacity qt. Two
scenarios can occur. (1) When mi = 0 or when the system
can transport all the sediment supplied and locally stored,

Figure 1. Erosion rates as function of sediment load
measured by Sklar and Dietrich [2001] with an erosion mill.
The erosion rate is normalized to collapse all data onto the
same curve. The solid line shows the best fit using equation
(10), and the dashed line shows a fit using the linear model
for the cover effect by Sklar and Dietrich [1998, 2004].
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resulting in unit sediment flux qf, then ms/mt = qf/qt, and the
cover is defined by equation (8) as

Ra ¼ e
�8

qf

qt : ð12Þ

(2) When mi 
 0 and the system is over capacity, then ms/mt

= qs/qt, and equation (6) gives the variation of Ra as a
function of the existing cover related to mi, Ra(t):

dRa t þ dtð Þ ¼ �Ra tð Þd qs t þ dtð Þ
qt t þ dtð Þ : ð13Þ

Equation (13) indicates that the cover at any time depends
on the history of the ratio of sediment supply to sediment
transport capacity. Thus, when some sediment is stored in
the channel, no unique relationship exists between the cover
extent (dynamically and statically) and the ratio qs/qt.
Prediction of the transient dynamics of cover and channel
geometry would require a 1D or 2D numerical model [e.g.,
Hancock and Anderson, 2002] with coupled hillslopes and
channel. This is beyond the scope of this paper. Instead, we
have focused our analysis on the sensitivity of erosion rates
to dynamic cover effects (equation (12) with qf = qs), and
prediction of the steady state geometry and bed cover of
bedrock river channels.
2.2.3. Rivers in Steady State
[13] At steady state, channel geometry (width, slope) and

bed cover are constant on average over timescales signifi-
cantly longer than the duration of a flood. For a steady bed
cover to be attained, qt must be larger than qs, or sediment
would fall out and bed cover would increase with time
toward the state Ra = 1.
[14] When qs < qt at steady state, there is no permanent,

static cover (excess capacity would remobilize it). Then,
only dynamic cover may shield the bed. In this case,
combining equation (12) with qf = qs, and equation (5)
gives the erosion law

E ¼ Kqse
�8qs

qt : ð14Þ

When qs = qt, there can be a permanent static cover. Its
extent is a function of the sediment transport history and
cannot be predicted a priori with a model such as equation
(14). This static cover is constant in time when the sediment
supplied to the channel reach equals the sediment exported
from the reach. Estimation of the static cover extent requires
explicit tracking of the amount of sediment stored in a
channel reach prior to attainment of steady state. We have
not modeled these effects, and focused instead on systems
with a dynamic cover.

2.3. Relating the Equation to Bed Geometry

[15] To allow comparison with erosion rates in natural
rivers, equation (12) must be written in terms of observable
parameters. By using equations for the bed shear stress, the
channel geometry, the flow resistance, and the bed load
transport capacity, the erosion rate can be expressed as a
function of channel bed slope and hydraulic radius. Bed
shear stress is given by

tb ¼ rwgRhS: ð15Þ

The Manning flow resistance equation

V ¼ 1

n
R
2=3
h S1=2 ð16Þ

can be used to calculate the mean flow velocity [Manning,
1891]. Here V is the flow velocity averaged over the channel
cross section, n the Manning friction coefficient, Rh the
hydraulic radius of the channel and S the energy slope,
approximated by the channel bed slope. Assuming a
rectangular channel cross section, the hydraulic radius can
be written as

Rh ¼
DW

2DþW
¼ nQ

DWS1=2

� �3=2

: ð17Þ

Here W and D are the flow width and depth, respectively,
and Q is the water discharge. Flow velocity V is related to
W, D and Q by the continuity equation Q = VWD.
[16] For compatibility, we follow Sklar and Dietrich

[2004] in using the Fernandez Luque and van Beek
[1976] bed load equation to calculate the unit transport
capacity

qt ¼ 5:7rs
Drgd3

rw

� �1=2

t*� tc*ð Þ3=2; ð18Þ

where d is the median grain size. Substituting expressions
(15) and (18) into (14) gives

E ¼ Kqs exp � 8qs
5:7rs

rw
Drgd3

� �1=2 rwRhS

Drd
� tc*

� ��3=2
( )

; ð19Þ

with

K ¼ 0:08DrgY
kvrws2

t

rwRhS

tc*Drd
� 1

� ��1=2

: ð20Þ

Equation (19) casts fluvial bedrock erosion in terms of
variables that can be measured on natural systems. In the
following section, we explore the sensitivity of model
erosion rates to parameters in equations (19) and (20), and
compare our results with the Sklar and Dietrich model
[2004].

3. Controls on Erosion Rates and Comparison
to the Linear Model

[17] Equation (19) combines a mechanistic model for
abrasion with an exponential model for the cover effect.
Inserting parameter values from sites at South Fork Eel
Creek (SFEC), Mendocino County, California, USA [Sklar
and Dietrich, 2004] and Lushui Station, Liwu River (LW),
Taiwan [Hartshorn et al., 2002] into this expression, we
have estimated erosion rates for a range of conditions in
natural channels. For comparison, we have made matching
calculations using Sklar and Dietrich’s [2004] original
model, with a linear expression for the cover effect. Param-
eter values at the reference sites are listed in Table 1. A
value for kv � 106 has been estimated from the data in
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Figure 1 (details are given in Appendix A). The value of the
bed cover factor 8 was set equal to one. For SFEC we have
assumed a rectangular cross section in accordance with our
statements in section 2.3. The channel cross section at LW
has been taken from a detailed survey [Hartshorn et al.,
2002]. Representative discharge, sediment supply, and in-
stantaneous erosion rate have been calculated using the
method of Sklar and Dietrich [2006]. This method parti-
tions the flow distribution into an erosive high flow and a
nonerosive low flow. All sediment is assumed to be trans-
ported at high flow. Only then is bedrock incised. To
calculate yearly average erosion rates, instantaneous erosion
rates during high flow have been multiplied by the fraction
of time over which high-flow conditions prevail.
[18] Figure 2 shows model erosion rates as a function of

sediment flux using the linear model (dashed line) and the
exponential model (solid line) for the cover effect, for the
reference sites in SFEC (Figures 2a and 2b) and the LW
(Figures 2c and 2d). Predictions by the two models differ in
two important ways. First, maximum erosion rates predicted
by the model with an exponential cover effect are �1/3
higher than those predicted by the model with a linear cover
effect. Secondly, the linear model predicts zero erosion for

Table 1. Parameter Values for South Fork Eel Creek, Mendocino

County, California, United States, and Lushui, Liwu River,

Taiwana

Input Parameter South Fork Eel Creek Lushui

Channel slope S 0.0053 0.02
Discharge Q, m3 s�1 39.1 59.4
Median grain diameter d, m 0.060 0.042
Unit sediment supply qs, kg m�1 s�1 2.37 7.17b

Channel width W, m 18.0 36.7b

Channel depth D, m 1.2b 0.7b

Hydraulic radius Rh, m 1.06b 0.57b

Roughness n 0.035 0.035
Rock tensile strength st, MPa 7.0 9.5
Rock elastic modulus Y, MPa 5.0 � 104 5.0 � 104b

Rock resistance parameter kv 106b 106b

Critical Shield’s stress tc* 0.03 0.07
Sediment density rs, kg m�3 2650 2650
Water density rw, kg m�3 1000 1000
Instantaneous erosion rate, mm a�1 20b 31b

Yearly averaged erosion rate, mm a�1 0.9b 16b

Drainage area, km2 1122 435
aSouth Fork Eel Creek [Sklar and Dietrich, 2004] and Lushui [Hartshorn

et al., 2002].
bCalculated/estimated in this study.

Figure 2. Comparison of the predictions of the abrasion model by saltating bed load [Sklar and
Dietrich, 1998, 2004] using the linear (dashed lines) and the exponential (solid line) model for the cover
effect. Predictions are shown for (a and b) South Fork Eel Creek and for (c and d) Lushui. S gives the
value of channel bed slope, and d gives the value for median grain size used in the calculation.
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values of sediment flux above the transport capacity. In
contrast, the exponential model predicts erosion rates to
peak at qs = qt/8, i.e., when the sediment flux is equal
to the transport capacity, assuming 8 = 1. Beyond this
point erosion rates decay with increasing sediment flux,
approaching zero asymptotically. Erosion rates predicted
with the exponential model are higher than for the linear
model and the difference increases with increasing sediment
supply.
[19] Figures 2a and 2c compare predictions for two

different values of channel bed slope. Slope is the main
control on the energy available in the flow and hence on
erosion rates. Increasing the slope leads to increased erosion
rates over most of the range of sediment flux values,
especially for large fluxes. By comparison, grain size is a
lesser control on erosion rates (Figures 2b and 2d). A
decrease of the median grain size may lead to an increase
(Figure 2b) or a decrease (Figure 2d) in the maximum
erosion rate and to a shift in the position of the maximum to
a higher sediment flux value.

4. Channel Geometry at Steady State

[20] The erosion law derived above (equation (19)) can be
used to predict bedrock channel width, slope and bed cover
at steady state, and their dependence on discharge, sediment
supply, and incision rate. We compare these predictions to
natural channel geometries and previously published mod-
els. As discussed in section 2.2.2, these predictions are only
valid for the region qs < qt.
[21] Equation (19) has two unknowns (W and S). It is

therefore impossible to independently define the slope and
the width of a river at steady state for a given set of
boundary conditions [Lague et al., 2005a]. Often this
problem has been solved by imposing an empirical relation
[e.g., Lague et al., 2005b; Whipple and Tucker, 1999]. In
that approach, width cannot vary with incision rate, al-
though it has been found to do so in nature and experiment
[Duvall et al., 2004; Finnegan et al., 2005; Harbor, 1998;
Lavé and Avouac, 2001; Turowski et al., 2006; Amos and
Burbank, 2007; Whittaker et al., 2007], and numerical
models [Stark, 2006; Wobus et al., 2006b]. In contrast,
minimizing the potential energy expenditure of the river by
minimizing the slope for a given incision rate, and using a
simple shear stress incision law, leads to predictions for the
scaling of width, slope and discharge, and qualitatively
good predictions for the dependence of channel geometry
on incision rate and rock erodibility [Lague et al., 2005a].
Such extremal hypotheses are a common approach in
regime theory when treating alluvial river systems [e.g.,
Huang and Nanson, 2002; Eaton et al., 2004; Huang et al.,
2004]. If the channel is in an energy configuration higher
than the minimum, excess energy is expended to change
channel shape. We use this approach here, but with the new
erosion law (equation (19)). A complete discussion of
underlying assumptions and their justification will be of-
fered elsewhere. The full derivation of the steady state
equations is given in Appendix B. Because of the complex-
ity of this treatment (equation (B17)) and the large number
of variables it involves, we present only one worked-out
case to illustrate the general functional form of relations
between steady state channel morphology and boundary

conditions. For our calculations we use an average precip-
itation rate P = 2 m a�1, a critical Shields stress tc* = 0.03,
B = 0.1 m kg�1 s (equation (B8)), C = 2.5 � 104 m�2

(equation (B9)), and n = 0.035 m�1/3 s, close to conditions
in the Liwu River.
[22] Using steady state relations for landscape evolution

Q ¼ PA ð21Þ

Qs ¼ bUA ð22Þ

E ¼ U ; ð23Þ

steady state bedrock channel width and slope can be derived
as functions of the upstream drainage area A, the average
precipitation rate P, and the rock uplift rate or base level
lowering rate U. The fraction of sediment transported as bed
load b is assumed to be equal to 0.4 in the following.

4.1. Scaling With Drainage Area

[23] Figure 3 is a numerical summary of the dependence
of channel slope and width on drainage area, for various
uplift rates. The channel bed slope shows a concave-up
profile in log-log space, the curvature of which is more
pronounced for higher uplift rates. The proportion of
alluvial cover steadily increases with drainage area
(Figure 3c). This behavior contributes to a greater curvature
of the slope area relationship in comparison to a shear stress
erosion model without tools and cover effect: for small
drainage areas (i.e., sediment flux), the channel must
steepen when the drainage area is reduced, to compensate
for the relatively low number of tool impacts per unit area of
channel bed (tool-starved regime); for large drainage areas,
the slope decreases less rapidly than with the simple shear
stress model when drainage area is reduced, because a high
enough sediment transport capacity must be maintained to
allow for erosion of bedrock. Our model predicts a progres-
sive downstream transition from a tools- to a cover-domi-
nated regime, corresponding to a progressive alluviation of
the bedrock channel. This is broadly consistent with field
observations [e.g., Snyder et al., 2003a].
[24] Next, we consider the channel width-area scaling

predicted by the model. For large drainage areas, the
predicted scaling converges with the observed power law
scaling in bedrock rivers with a power of �0.5 [Whipple,
2004] (Figure 3); the point of convergence shifts to larger
drainage areas with increasing uplift rate. For example, for
U = 0.5 mm a�1, a power law is a good approximation for
drainage areas larger than �5 km2; for U = 1.0 mm a�1 the
critical drainage area increases to �10 km2. For drainage
areas smaller than this cutoff value, the gradient of the curve
in log-log space is larger than 0.5, implying that in these
small catchments, channel width decreases more rapidly
with decreasing drainage area. This effect offsets the
scarceness of tools in channels with small drainage areas,
and secures a sufficient rate of particle impacts on the
channel bed to counter the imposed rock uplift.
[25] The width-to-depth ratio increases with increasing

drainage area (Figure 3d). The precise shape of the curve
and the total increase over the tested range of drainage areas

F04006 TUROWSKI ET AL.: COVER EFFECT IN BEDROCK ABRASION

6 of 16

F04006



varies slightly with uplift rate. For small drainage areas
(<10 km2), an increase in uplift rate results in a decrease of
the width-to-depth ratio, and for larger drainage areas an
increase in uplift rate results in an increase of the width-to-
depth ratio. This reversal is related to the slower increase in
bed cover at low-drainage areas (Figure 3c).
[26] A further point of interest is the predicted linear

scaling of both width and slope with drainage area for
U = 0. The predicted behavior is due to equation (22),
which only allows solutions with Qs = 0 for U = 0. This is
not a realistic situation and the model must be extended to
describe sediment transport explicitly for this boundary
condition.

4.2. Scaling With Uplift Rate and Sediment Supply

[27] The dependence of slope and width with rock uplift
rate is shown in Figure 4. The graphs in Figure 4 extend to
unnaturally high uplift rates of 10 m a�1 to show the full
behavior of the curve. For conditions different from the ones
used here, the curves may shift to the left, to lower uplift
rates. For all drainage areas, channel slope is more sensitive
than channel width to uplift rate (see also Figure 3), but two
regimes are observed. At small uplift rates (U < 1 mm a�1)
the channel geometry is almost insensitive to variations in

uplift rate. At higher uplift rates, slope increases rapidly
according to a power law with an exponent of �1.45, and
width decreases more slowly according to a power law with
an exponent of ��0.45. The complex form of equations
(B12)–(B17) makes a direct interpretation of these results
difficult, but a comparison with predictions using a simple
linear shear stress incision law of the form [Howard and
Kerby, 1983; Howard, 1994; Whipple and Tucker, 1999]

E ¼ ke tb � tcð Þ ð24Þ

instead of equation (13) gives some insights. Using
the optimization of potential energy expenditure and
equation (24), Lague et al. [2005a] found the following
steady state solutions:

W ¼ 28=13n6=13
tc
rwg

þ U

rwgke

� ��3=13

PAð Þ6=13 ð25Þ

S ¼ 8

n

� �6=13 tc
rwg

þ U

rwgke

� �16=13
PAð Þ�6=13: ð26Þ

Figure 3. (a) Slope, (b) width, (c) bed cover dependence on drainage area, and (d) dependence on
drainage area. The solid line is a power law with a power of �0.5 on the slope plot and 0.5 on the width
plot. In Figure 3c, the dashed line marks the transition between detachment-limited and transport-limited
conditions.
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These solutions are shown as solid lines in Figure 4. To first
order, the evolution of the channel bed slope with uplift rate
is similar for both incision laws, suggesting that stream
long-profile response to uplift rate can be adequately
modeled by equation (24), at least for drainage areas
smaller than 10,000 km2, and sediment flux effects do not
need to be taken into account. This may partly explain the
success of the stream power erosion law, as most studies
focus on long-profile development. The insensitive region
for low uplift rates corresponds to the case where

tc
rwg

>
U

rwgke
; ð27Þ

and the uplift term can be neglected. In this domain channel
response is threshold limited and the channel geometry is
set by the critical shear stress and the water discharge,
similar to what has been described for incising gravel bed
rivers [Talling, 2000]. For large U, the threshold term can be
neglected and channel response is dominated by uplift. The
slope uplift rate relationship follows a power law whose
exponent is essentially a function of the friction law used
(16/13 for the Manning friction law [Lague et al., 2005a]).

In the sediment supply-dependent model this exponent
varies slightly with drainage area, a sensitivity that is not
found in the simple shear stress model (equation (26)).
[28] Channel width-uplift rate relations for the two inci-

sion laws are different. Although threshold-limited and
uplift-limited regimes are predicted for low and high uplift
rates, respectively, the width-uplift relation for the simple
shear stress model does not show a central maximum and
has a much lower gradient at high uplift rates than that
obtained with a sediment-supply dependent incision law
including a tools and cover effect. The maximum in the
width-uplift relation for our incision law corresponds to a
decrease in the rate of increase of the cover extent
(Figure 4c). A similar functional form, but more pronounced,
can be seen in the relationship between width-to-depth ratio
and uplift rate (Figure 4d). In our model, increasing uplift rate
results in an increase of the sediment supply. Equation (17)
stipulates that the erosion rate increases because of increased
sediment flux, and in order to maintain a match with the
imposed uplift rate, channel width and slope must adjust. As
the uplift rate increases above the threshold-limited regime,
erosion rates increase approximately linearly with sediment
supply (and hence uplift rate) and the channel is predicted to

Figure 4. (a) Slope, (b) width, (c) bed cover dependence on uplift rate, and (d) dependence on uplift
rate. The solid line in Figures 4a and 4b gives prediction using a simple incision law (equations (25) and
(26)). In Figure 4c, the dashed line marks the transition between detachment-limited and transport-limited
conditions.
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widen in response. For large uplift rates, erosion rates increase
slowly with sediment supply, and the channel width is
reduced to focus erosion.
[29] Figure 5 shows solutions for channel width and slope

as functions of erosion rate E, with constant discharge Q
and sediment supply Qs. The parameterization corresponds
to a river with very large sediment discharge crossing a
localized zone of rapid rock uplift that does not contribute
sediment to the channel. At high erosion rates both the
width-erosion and slope-erosion relationships approximate a
power law whose exponent is independent of sediment
discharge. At lower erosion rates, E < 10 mm a�1 in the
example, the sensitivity of channel slope and width to
erosion rate increases with decreasing sediment flux. Chan-
nels with a small sediment supply are starved of tools for
incision, and are expected to contract in order to maintain a
sediment flux per unit channel width required to meet the
imposed erosion rate.

4.3. Scaling With Erodibility

[30] Finally, we consider the effects of variations of
substrate erodibility on channel geometry and bed cover
(Figure 6), using the ratio of Young’s modulus to the square
of the rock tensile strength (cf. equation (3)) as a proxy for
erodibility similar to ke (cf. equations (25) and (26)). The
range of values for this ratio in Figure 6 covers all common
rock types. Typical values are 5 � 10�4 Pa�1 for basalts,
10�3 Pa�1 for marble, and 10�2 Pa�1 for sandstones and
shales; that is, rock strength decreases for increasing ratio.
The values used for LW and SFEC are 5.5 � 10�4 Pa�1 and
10�3 Pa�1, respectively. Channel geometry becomes less
sensitive to rock strength as drainage area increases, and
strong dependencies are only predicted for very hard rocks
such as andesites and basalts, assuming that discontinuities
in the rock mass do not dominate fluvial erosion. Slope,
width, and width-to-depth ratio are independent of rock
strength for ratios greater �2 � 10�3 Pa�1. This is due to a
threshold effect (cf. equations (25) and (26) and the dis-
cussion on control of rock uplift rate in section 4.2). For
weak substrates, low channel slope and large width combine
to give a shear stress just above the threshold, and erosion
rates can only be adjusted by varying the extent of bed

cover. Channel slope increases when the ratio drops below
�2 � 10�3 Pa�1, whereas width decreases. The extent of
bed cover drops with increasing rock strength to a minimum
at intermediate to high strengths, depending on drainage
area. For very hard rocks cover rises again. Then, the
channel is still in the tools-dominated regime and the
increase of cover corresponds to an increase in erosion rate,
which is necessary to counteract the decrease in erosion rate
due to the decrease in erodibility.

5. Discussion

5.1. Modeling the Cover Effect

[31] Fluvial erosion models without a cover term or with
a linear cover formulation fail to fit experimental observa-
tions of wear at high sediment transport rates. The modified
Sklar and Dietrich [2004] abrasion model combined with an
exponential formulation for the cover effect provides a very
good description of the experimental sediment load-erosion
rate data obtained by Sklar and Dietrich [2001] for all
sediment transport rates.
[32] Predicted erosion rates using equation (19) give

realistic values for field settings. However, these values
are sensitive to the input parameters. As an example, the
long-term average channel-lowering rate at SFEC has been
estimated at 0.9 mm a�1 from dated river terraces [Merritts
and Bull, 1989]. By varying 8, d and tc, erosion rates
predicted for this river range between about 0.1 and 2.5 mm
a�1. Using values listed in Table 1 gives results at the top
end of this range. Furthermore, erosion rate is inversely
proportional to the rock resistance coefficient kv, for which
only an order of magnitude estimate is available [Sklar and
Dietrich, 2001, 2004] (Appendix A). Parameters character-
izing rock strength can vary considerably in a series of tests
on the same rock (e.g., tensile strength measurements
commonly show deviations of more than 20% of the mean).
Other values may vary spatially over short distances (e.g.,
substrate properties) or in time (e.g., median grain size).
[33] Erosion rates in the Liwu River have been measured

in several ways. Direct measurements of erosion at Lushui
station since 2000 have yielded an average rate of
5.5 mm a�1 [Hartshorn et al., 2002; also unpublished data,

Figure 5. Slope and width as functions of erosion rate; sediment supply is held constant. Q = 60 m3 s�1.
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2001–2007]; the catchment-wide erosion rate over the past
30 a estimated from river gauging data is 12.5 mm a�1

[Dadson et al., 2003]; dated strath terraces give millennial
fluvial incision rates of 6 mm a�1 and 11 mm a�1 [Liew,
1988]; and average mid to late Holocene incision rates from
cosmogenic nuclide analysis are 26 mm a�1 [Schaller et al.,
2005]. Incision rates predicted by our model range from
16 mm a�1 to 45 mm a�1, at the top end of the measured
rates. Predicted values are most likely to correspond to the
catchment-wide erosion rates reported by Dadson et al.
[2003], as we have used the same data set to estimate the
erosive high flow discharge and associated sediment flux. It
should be noted that predicted incision rates are likely to
decrease when the history of sediment storage in the
channel is taken into account. A large flood due to typhoon
Long Wang in October 2005 left large amounts of sediment
in the Liwu River, which took several months to evacuate.
During this time bedrock erosion was minimal because of
complete cover. Predicted wear rates are therefore likely to
overestimate incision.
[34] The quality of the model predictions is affected by a

large number of simplifications, notably the rectangular
channel cross section, straight channels, 8 = 1, effective
discharge, and effective grain size; together with uncertain-

ties on field measurements of long-term incision rate, rock
strength, and grain size distribution. The cover factor 8, the
rock resistance coefficient kv, and the effective discharge are
arguably the least well defined, with only weak, empirical
constraints. Moreover, even when abrasion is the dominant
mechanism of bedrock channel wear, other mechanisms
such as quarrying, plucking, solution and cavitation can
play an important role [Hancock et al., 1998; Hartshorn et
al., 2002; Snyder et al., 2003a; Whipple et al., 2000;
Whipple, 2004]. For example, at Lushui station, block
removal is an important wear mechanism during floods,
which are predominantly responsible for widening of the
channel [Hartshorn et al., 2002]. Although impacting
particles may drive block removal, the abrasion equation
does not provide an accurate description of this mechanism.
[35] Uncertainties in field and lab parameters and model

simplifications make a useful comparison with other models
for bedrock channel geometry difficult. Furthermore, the
necessary data is available only for a few field sites. More,
and more detailed field studies are needed to supply this
data and to discriminate between available erosion laws.

5.2. Predicted Steady State Geometry

[36] Model predictions show some differences from mod-
els commonly applied to interpret natural data on channel

Figure 6. (a) Slope, (b) width, (c) bed cover, and (d) width-to-depth ratio as functions of the ratio of
Young’s modulus to the square of the rock tensile strength. Legend for all plots is shown in Figure 6c.
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geometry. For example, slope-area relationships are com-
monly modeled by power laws, giving a straight line in log-
log space [e.g., Hack, 1957; Flint, 1974; Tarboton et al.,
1989; Whipple, 2004]. Concave-up slope-area relationships
in log-log space, as in our model, have been predicted with
various sediment-dependent incision models [Whipple and
Tucker, 2002], using different formulations of the tools
and cover effect, including a simplified version of the Sklar
and Dietrich [1998] model. Models tested by Whipple and
Tucker [2002] exhibit a strongly curved slope-area relation-
ship in log-log space that is inconsistent with observations.
Although the curvature predicted by our model is much
smaller, we are not aware of any published field examples
that clearly exhibit this mode of slope-area scaling. How-
ever, if the curved slope-area relation does exist in nature,
then it is likely to be masked by large scatter in slope-area
data, for example, because of DEM quality and/or spatial
variability of rainfall, rock uplift rate, and substrate proper-
ties. Curvature of predicted slope-area scaling is likely to be
reduced by inclusion of downstream-fining into the model
[cf. Whipple and Tucker, 2002]. Regardless, forced power
law fits to the slope-area data from our model have
exponent values between about �0.35 and �0.50, depend-
ing on drainage area. This is within the range of values
(�0.3 to �0.6) reported for natural bedrock rivers [Whipple,
2004].
[37] While width-discharge scaling relationships con-

verge with the commonly used power law models with an
exponent of �0.5 [Leopold and Maddock, 1953; Park,
1977], width-uplift relations are not well constrained in
nature. Field studies report either a reduction in width with
increasing uplift rate [Duvall et al., 2004; Harbor, 1998;
Lavé and Avouac, 2001; Amos and Burbank, 2007;
Whittaker et al., 2007], or no change at all [Snyder et al.,
2003a]. These observations are consistent with our model
predictions: whereas channel response is in the threshold-

limited domain in the case observed by Snyder et al.
[2003a], it is dominated by uplift in the other studies.
[38] Assuming a constant width-to-depth ratio for a given

channel type, Finnegan et al. [2005] have derived a scaling
between width, discharge and slope, which is given by the
equation

W ¼ W

D

W

D
þ 2

� �2=3
" #3=8

Q
3=8S�

3=16n
3=8 : ð28Þ

In agreement with equation (28), Wobus et al. [2006b] have
found a roughly constant width-to-depth ratio in their model
of a detachment-limited channel with freely adjustable cross
section. Moreover, in their model, width scales with slope
according to a power law with an exponent of ��0.2.
However, as pointed out by Turowski et al. [2006],
hydraulic geometry data reported by Leopold and Maddock
[1953] and subsequent workers show a weak power law
scaling of the width-to-depth ratio with discharge with an
exponent of around 0.1. In our model, the width-to-depth
ratio is a function of drainage area (Figure 3d) with a weak
scaling similar to the data of Leopold and Maddock [1953]
(forced power law fits have exponents between �0.08 and
�0.25 for the data shown in Figure 3d), uplift rate
(Figure 4d) and erodibility (Figure 6d). We believe that
the prediction of a roughly constant width-to-depth ratio in
the Wobus et al. [2006b] model is an artifact of the lack of a
critical shear stress for the onset of erosion, and the absence
of sediment transport and its effects on bedrock incision
from the model.
[39] Figure 7 shows the scaling between width and slope

for various uplift rates. Relationships are slightly concave
up in log-log space, with a more pronounced curvature
for higher uplift rates. Solid lines are predictions using
equation (27) with a constant width-to-depth ratio of ten.
Dashed lines were obtained with the same equation, using
width-to-depth ratios corresponding to width and slope
values as predicted by our model (cf. Figure 3). Although
the latter approach traces functional forms better than the
former, absolute width values differ from model results by a
factor of about five.
[40] Whittaker et al. [2007] have found a relatively low

scaling exponent of ��0.34 for width and slope data from
channels crossing the Fiamignano fault in the Italian Appe-
nines. They have concluded that these channels are in a
transient state, responding to an increase in uplift rate about
1 million a ago, and suggested that stronger nonlinear
scaling may be a signature of transient channels. However,
a similar effect is predicted by our model for steady state
channels at higher uplift rates. The scaling exponent in the
width-slope relation cannot be used to distinguish between
transient or steady channel states.
[41] The predicted, progressive alluviation of bedrock

channels with increasing drainage area is broadly consistent
with field observations, but it is not associated with a very
strong signal in the slope-area relationship. Corresponding-
ly, we anticipate that it may be difficult to find a discernible
geometric signature of tool-dominated regimes compared to
cover-dominated regimes. This problem is increased by the
large variability in extent and thickness of alluvial cover in
mountain channels, caused by stochastic sediment supply

Figure 7. Predicted long-profile relationship between
channel bed slope and width, for various uplift rates. The
lines are comparisons with the Finnegan et al. [2005] model
(equation (28)) at U = 0.5 mm a�1 (low values) and U = 10
mm a�1 (high values), using a constant width-to-depth ratio
of 10 (solid lines) and the width-to-depth ratios predicted by
our model (dashed lines; cf. Figure 3d).
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from hillslopes, modulated by the temporal variation in
water discharge. Therefore it is hard to make a direct
comparison between the short-term bed cover state, and
slope-area relationships that are derived from models with
longer timescales.
[42] To avoid the complexities arising from the combina-

tion of a complete water discharge distribution with an
already complex incision model, and the minimization of
potential energy, we have used an effective discharge of
constant value, as did Sklar and Dietrich [2006]. Previous
work has shown that at steady state, the effective discharge
varies with uplift rate [Snyder et al., 2003b; Lague et al.,
2005b]. Even though these previous studies did not allow
for a width change with uplift rate or lithology, we expect
that the scaling of slope with uplift rate at low uplift rates
would be altered. For example, Lague et al. [2005b] have
shown that the constant slope regime is replaced by a power
law dependency between slope and uplift rate. Further work
using both a full discharge distribution and freely variable
width is needed.

6. Conclusion

[43] Using a probabilistic argument, we have derived an
exponential formulation for the cover effect in bedrock river
channels. This formulation can replace linear sediment load-
cover relations in existing models of fluvial erosion such as
the model of bedrock abrasion by saltating bed load by
Sklar and Dietrich [2004], to obtain a very good match with
experimental bedrock erosion rates for a wide range of
sediment transport rates.
[44] In a closed system, our erosion model predicts that

erosion rates do not vanish above certain values of grain
size or transport stage, as in earlier studies, but rather
approach zero asymptotically at infinity, giving small, but
finite erosion rates for high ratios of sediment supply to
transport capacity. In comparison with a linear model for the
cover effect the new model predicts higher erosion rates.
Differences between predictions increase with increasing
ratio of sediment supply and transport capacity. Moreover,
the maximum erosion rate predicted by our model is �1/3
larger, occurring when the sediment flux is equal to the
transport capacity (assuming 8 = 1), rather than at half the
transport capacity, as with the linear formulation [Sklar and
Dietrich, 1998, 2004].
[45] Parameterized in accordance with field and experi-

mental observations, our model predicts river incision rates
of the correct order of magnitude in well-documented
settings. However, given the large number of parameters
in the model, it is always possible to find a combination of
values that will predict an observed incision rate. Therefore
we view this work as a further step toward better under-
standing of the relationship between incision, sediment flux
and channel geometry in bedrock rivers, rather than as an
operational tool for precise calculation of long-term bedrock
incision rates for given boundary conditions.
[46] Assuming minimization of potential energy expen-

diture, we have used the described erosion model to derive
relationships between channel morphology (slope, width,
bed cover, width-to-depth ratio) and boundary conditions
(discharge, erosion rate, sediment supply). We predict a
slightly concave-up slope-area relationship in log-log space

whose degree of curvature is a function of rock uplift rate.
This deviation from the received, power law behavior of a
simple, detachment-limited model arises from the progres-
sive downstream increase of alluvial cover, and a shift from
a tools-dominated regime for small drainage areas/dis-
charges to a cover-dominated regime for large drainage
areas/discharges. For realistic values of drainage area and
uplift rate, available data do not allow clear discrimination
between the model derived herein and a straight power law
relationship between channel bed slope and drainage area.
[47] The variation of channel slope with uplift rate tracks

results from a simple shear stress model [Lague et al.,
2005a]. This is not the case for channel width, which we
predict to increase with uplift rate, and then to decrease
more rapidly than in the simple shear stress model. For
small values of uplift rate both width and slope are largely
insensitive to variations in tectonic forcing. This is due to a
threshold effect. The lack of detailed field data, and the use
of a constant effective discharge instead of the full water
and sediment discharge distribution, currently limit the
applicability of this particular result. However, the result
highlights how scaling of channel width and rock uplift rate
could be used as an additional constraint for the character-
ization and validation of incision laws.
[48] The channel width-to-depth ratio is predicted to vary

with both drainage area and uplift rate. This indicates that
the scaling between channel width and bed slope is neither a
unique indicator of tectonic forcing at steady state, as
suggested by Finnegan et al. [2005], nor a signature of
transience or steady state, as suggested by Whittaker et al.
[2007].
[49] Because of threshold effects, channel geometry is

found to be insensitive to varying rock strength for weak to
intermediate strength substrates. In such substrates, erosion
rates are adjusted instead by variation of the alluvial cover.
As rock strength increases, channel slope and width adjust
to increase shear stress and cover drops to a minimum,
before it rises again to counteract the rapid increase in slope.
[50] Further experimental work and tighter constraints on

rates and characteristics of representative bedrock rivers,
especially direct observations of bed cover over a range of
conditions, should help test and refine the proposed alluvial
cover model and more generally the Sklar and Dietrich
[2004] abrasion model, enabling their use in evaluations of
the long-term incision of mountain channels.

Appendix A: Estimation of the Rock Resistance
Coefficient kv

[51] The ratio of the sediment mass to the sediment mass
transport capacity ms/mt is equal to the ratio of sediment
flux to sediment transport capacity (see section 2.2.2):

ms

mt

¼ qs

qt
: ðA1Þ

The normalized erosion rate can then be written as

E0 ¼ Es2
t rsatot ¼ KSes2

t rsatotqse
�8qs

qt ¼ K 0mse
�8ms

mt ðA2Þ
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with

KSes2
t rsatotqs ¼ KSes2

t rsatotqt
ms

mt

¼ K 0ms: ðA3Þ

By using the equation

E0 ¼ K 0mse
�8ms

mt ðA4Þ

to fit to the data in Figure 1, mt/8 and K0 can be found. At
the maximum ms = mt/8, as well as qs = qt/8. An order of
magnitude estimate for the sediment flux and hence the
transport capacity at the maximum erosion rate can be
obtained from data given by Sklar and Dietrich [2001]. The
sediment flux is given by

qs ¼
VAc

W
rs ¼

wl
2

lh

l
rs: ðA5Þ

Here l = 11 cm is the radius of the tank, h � 2–3 cm the
maximum height of transport above the bed, and w = 1000
rpm the angular velocity. The factor of 1/2 is introduced to
obtain the velocity at half radius. Considering that the
angular velocity is given some distance above the bed and
that the sediment will probably move slower than the water,
a transport capacity of qt/8 � 20 kg m�1 s�1 seems
reasonable.
[52] Assuming that the transport capacity does not change

with changing sediment mass, the transport stage can be
estimated using the bed load transport equation (13):

Ts ¼
t*
tc*

¼ 1þ qt

5:7rs

� �2=3 rw
Drg

� �1=3 1

tc*d
: ðA6Þ

Using a value of 0.03 for the critical shear stress for the
onset of motion from Yalin’s curve for a grain size of 6 mm
gives Ts = 27.5, so the suspension effect term (equation (3))
cannot be neglected. The particle fall velocity has been
calculated using the method of Dietrich [1982]. The rock
resistance coefficient kv can then be written as

kv ¼
0:08DrgYrsatotqtSe

K 0rwmt

Ts � 1ð Þ�
1=2 : ðA7Þ

Given that K0 = (0.50 ± 0.02) MPa2 h�1 and mt/8 = (133.7 ±
4.2) � 10�3 kg from a nonlinear fit to the data in Figure 1
and atot = 1.2 � p � 10�2 m2 [Sklar and Dietrich, 2001], kv
� 106.

Appendix B: Constitutive Equations and
Derivation

[53] The channel geometry is controlled by the three
independent parameters erosion rate E, water discharge Q,
and sediment supply Qs; and is specified by the geometric
channel bed slope S, parameters width W, depth D, cross-
sectional area Ac, wetted perimeter Pw, and hydraulic radius
Rh, and the hydraulic parameters flow velocity V and bed
shear stress tb. The median grain size is assumed to be
independent of drainage area, as argued by Attal and Lavé

[2006]. The eight dependent parameters are related by four
general equations:

the continuity equation Q ¼ VAc ðB1Þ

the force balance at the bed tb ¼ rwRhS ðB2Þ

the Manning flow resistance equation V ¼ 1

n
R
2=3
h S1=2 ðB3Þ

the definition of the hydraulic radius Rh ¼
Ac

Pw

: ðB4Þ

An additional two equations come from the assumption of a
rectangular cross section:

the cross�sectional area Ac ¼ WD ðB5Þ

and the wetted perimeter Pw ¼ 2DþW : ðB6Þ

To close the system, two additional equations are necessary.
We use the erosion law derived above (equation (13)):

E ¼ CQs

W

tb
tc

� 1

� ��1=2

exp �BQs

W

tb
tc

� 1

� ��3=2
 !

; ðB7Þ

with

B ¼ 8Drg
5:7rs

rw
t3c

� �1=2

ðB8Þ

and

C ¼ 0:08DrgY
kvrws2

t

; ðB9Þ

and the optimization of potential energy expenditure [Lague
et al., 2005a]

dS

dW
¼ 0: ðB10Þ

Using equations (B1)–(B6) to eliminate all parameters apart
from S, W, and tb gives:

2nQ
tb
rwg

¼ nQSW �W 2S�
1=6

tb
rwg

� �5=3

: ðB11Þ

Taking the derivative with respect to W, applying (B10),
rewriting with the help of (B11), and solving for S:

S ¼ tb
rwg

2

W

2þ 2

3

W

tb

dtb
dW

1þ 5

3

W

tb

dtb
dW

: ðB12Þ
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(B12) can be used to eliminate S in (B11):

2
5=6 1�W

tb

dtb
dW

� �
nQ ¼ W

11=6 2þ 2

3

W

tb

dtb
dW

� ��1=6

� 1þ 5

3

W

tb

dtb
dW

� �5=6 tb
rwg

� �1=2

: ðB13Þ

To eliminate
dtb
dW

, take the derivative of (B7) and solve:

dtb
dW

¼ � 2tc
W

tb
tc

� 1

� � BQs �W
tb
tc

� 1

� �3=2

3BQs �W
tb
tc

� 1

� �3=2
: ðB14Þ

Substituting (B14) into (B12) gives an equation of the form
S = f(W, tb, Qs). To arrive at a solution it is necessary to
make the substitution

F ¼ W�1 tb
tc

� 1

� ��3=2

: ðB15Þ

The erosion law (B7) can then be written as

tb
tc

� 1

� �
¼ E

CQsF
exp BQsFð Þ: ðB16Þ

Substituting equations (B14)–(B16) into equation (B13),
one obtains

2
4=3 1þ 2E exp BQsFð Þ

E exp BQsFð Þ þ CQsFð Þ
BQsF� 1

3BQsF� 1

� �

� CQsFrwg
E exp BQsFð Þ þ CQsF

� �1=2

nQ ¼ F
13=12

E

CQs

exp BQsFð Þ
� ��13=4

� 1� 2E exp BQsFð Þ
3 E exp BQsFð Þ þ CQsFð Þ

BQsF� 1

3BQsF� 1

� ��1=6

� 1� 10E exp BQsFð Þ
3 E exp BQsFð Þ þ CQsFð Þ

BQsF� 1

3BQsF� 1

� �7=6

: ðB17Þ

This equation allows the calculation of F as a function of
the boundary condition E, Qs and Q (factors like rock
strength or critical shear stress are encompassed in the
parameters B and C). For given F, tb can be calculated from
equation (B16). W is then computed from equation (B15),
and slope S using equations (B12) and (B14).
[54] Equation (B17) has generally only one physically

possible solution (real positive slope and width). However,
in some cases it generates two or more configurations, that
correspond to local minima of the S = f(W) relationship (i.e.,
dS/dW = 0). However, these solutions can be neglected, as
they predict clearly unrealistic values for width, slope and
flow velocity (several orders of magnitude too high or too
low) and show incorrect scaling behavior with drainage area.

Notation

A upstream drainage area, m2.
aexp exposed bed area, m2.
atot total bed area, m2.

B constant prefactor in exponent, m kg�1 s.
C constant prefactor of erosion law, m�2.
D flow depth, m.
d representative grain size, m
E erosion rate, m s�1.
E0 normalized erosion rate, Pa2 kg s�1.
F net transfer from suspended load to bed load, m s�1.
e base of the natural logarithm.
g acceleration due to gravity, m s�2.
h thickness of sediment stored in the channel, m.
Ir particle impact rate, m�2 s�1.
ke prefactor simple shear stress incision law, m kg�1.
K erosion factor (flux), m�2 kg�1.
K0 normalized erosion constant (mass), Pa2 s�1.
Km erosion factor (mass), m�2 kg�1 s�1.
kv dimensionless rock resistance coefficient.
l radius of experimental tank, m.

mi sediment mass stored in the channel, kg.
ms sediment mass supplied from upstream, kg.
mt sediment mass transport capacity, kg.
n Manning’s roughness coefficient, m�1/3 s.
P average precipitation rate, m s�1.
qs sediment supply per unit width, kg m�1 s�1.
qf sediment flux per unit width, kg m�1 s�1.
qt transport capacity per unit width, kg m�1 s�1.
Q water discharge, m3 s�1.
Qs sediment supply, kg/s.
Ra fraction of exposed bed area.
Rh hydraulic radius, m.
S channel bed slope.
Se suspension effect term.
t time, s.

Ts transport stage.
U uplift rate, m s�1.
u* shear velocity, m s�1.
V flow velocity averaged over channel cross section, m

s�1.
W flow width, m.
wf particle settling velocity, m s�1.
x along-stream distance, m.
Y Young’s modulus of substrate, Pa.
b fraction of sediment transported as bed load.
k dimensionless constant of integration.

Dr density difference between sediment and water, kg
m�3.

rs density of sediment, kg m�3.
rw density of water, kg m�3.
st rock tensile strength, Pa.
t* Shields stress.
tc* critical Shields stress.
tb bed shear stress, Pa.
tc critical shear stress, Pa.
8 cover factor.
F variable dependent on shear stress and width, m�1.
w angular velocity, s�1.
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Attal, M., J. Lavé, and J. P. Masson (2006), New facility to study river
abrasion processes, J. Hydraul. Eng., 132, 624–628.

Dadson, S. J., et al. (2003), Links between erosion, runoff variability and
seismicity in the Taiwan orogen, Nature, 426, 648–651.

Dietrich, W. E. (1982), Settling velocity of natural particles, Water Resour.
Res., 18, 1615–1626.

Duvall, A., E. Kirby, and D. Burbank (2004), Tectonic and lithologic con-
trols on bedrock channel profiles and processes in coastal California,
J. Geophys. Res., 109, F03002, doi:10.1029/2003JF000086.

Eaton, B. C., M. Church, and R. G. Millar (2004), Rational regime model of
alluvial channel morphology and response, Earth Surf. Processes Land-
forms., 29, 511–529.

Fernandez Luque, R., and R. van Beek (1976), Erosion and transport of
bed-load sediment, J. Hydraul. Res., 14, 127–144.

Finnegan, N. J., G. Roe, D. R. Montgomery, and B. Hallet (2005), Controls
on the channel width of rivers: Implications for modelling fluvial incision
of bedrock, Geology, 33(3), 229–232, doi:10.1130/G21171.1.

Finnegan, N. J., L. S. Sklar, and T. K. Fuller (2007), Interplay of sediment
supply, river incision, and channel morphology revealed by the transient
evolution of an experimental bedrock channel, J. Geophys. Res., 112,
F03S11, doi:10.1029/2006JF000569.

Flint, J.-J. (1974), Stream gradient as a function of order, magnitude and
discharge, Water Resour. Res., 10, 969–973.

Foley, M. G. (1980), Bed-rock incision by streams, Geol. Soc. Am. Bull.,
91, 2189–2213.

Gilbert, G. K. (1877), Land sculpture, in The Geology of the Henry Moun-
tains, Utah, edited by C. B. Hunt, chap. 5, Mem. Geol. Soc. Am., 167,
99–150.

Hack, J. T. (1957), Studies of longitudinal stream profiles in Virginia and
Maryland, U. S. Geol. Surv. Prof. Pap., 294, 45–80.

Hancock, G., and R. S. Anderson (2002), Numerical modeling of fluvial
strath terrace formation in response to oscillating climate, Geol. Soc. Am.
Bull., 114, 1131–1142.

Hancock, G., R. S. Anderson, and K. X. Whipple (1998), Beyond power:
Bedrock river incision process and form, in Rivers Over Rock: Fluvial
Processes in Bedrock Channels, edited by K. J. Tinkler and E. E. Wohl,
Geophys. Monogr. Ser., vol. 107, pp. 35–60, AGU, Washington, D. C.

Harbor, D. J. (1998), Dynamic equilibrium between an active uplift and the
Sevier River, Utah, J. Geol., 106, 181–194.

Hartshorn, K., N. Hovius, W. B. Dade, and R. L. Slingerland (2002),
Climate-driven bedrock incision in an active mountain belt, Science,
297, 2036–2038.

Howard, A. D. (1994), A detachment-limited model of drainage basin
evolution, Water Resour. Res., 30, 2261–2285.

Howard, A. D., and G. Kerby (1983), Channel changes in badlands, Geol.
Soc. Am. Bull., 94, 739–752.

Huang, H. Q., and G. C. Nanson (2002), A stability criterion inherent in
laws governing alluvial channel flow, Earth Surf. Processes Landforms,
27, 929–944.

Huang, H. Q., H. H. Chang, and G. C. Nanson (2004), Minimum energy as
the general form of critical flow and maximum flow efficiency and for
explaining variations in river channel pattern, Water Resour. Res., 40,
W04502, doi:10.1029/2003WR002539.

Kooi, H., and C. Beaumont (1996), Large-scale geomorphology: Classical
concepts reconciled and integrated with contemporary ideas via a surface
processes model, J. Geophys. Res., 101, 3361–3386.

Lague, D., J. M. Turowski, P. Davy, and N. Hovius (2005a), The width (and
slope) of an incising river: Analytical solution and comparison with
natural and experimental rivers, paper presented at General Assembly
2005, Eur. Geosci. Union, Vienna.

Lague, D., N. Hovius, and P. Davy (2005b), Discharge, discharge varia-
bility, and the bedrock channel profile, J. Geophys. Res., 110, F04006,
doi:10.1029/2004JF000259.
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