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S U M M A R Y
To determine the regional shear wave velocities in the lithosphere it is frequently necessary
to use two-station dispersion curves. We investigate the influence of non-plane wave energy
on such dispersion curves, and compare them to two other better known sources of error:
deviations from great-circle paths and uncorrelated noise. To study the influence of non-
plane waves created from distant heterogeneities we create complex wavefields in a laterally
homogeneous medium by adding interfering waves to a main plane wave. We then calculate
the apparent phase velocity between two seismic stations located 100–400 km apart. Using
realistic values for the sources of error, we conclude that the contribution of each is similar
for 200-km-long profiles. Our conclusions on non-plane waves are made under the assumption
that non-plane energy from distant heterogeneities varies randomly with hypocentre location.
If this is correct, then only five to 10 events with different hypocentres are required to obtain a
stable dispersion curve with less than 1 per cent error. The influence of uncorrelated noise and
non-plane waves diminish for longer profiles, while the errors due to great-circle deviations are
independent of profile length and systematically bias the dispersion curve to higher velocities.
We recommend the inclusion of some off-profile broad-band stations for surface wave studies
on a regional scale, because such supplementary stations make it possible to apply first-order
corrections for off great-circle propagation. The strong influence from the different sources of
error, combined with our lack of precise knowledge of the nature and amplitude of non-plane
energy, implies that the interpretation of two-station measurements should be restricted to
major changes in regional earth structure.

Key words: lithosphere, seismic velocities, seismic wave propagation, surface waves.

1 I N T RO D U C T I O N

With the increasing number of broad-band sensors available for tem-
porary field experiments, it is becoming feasible to analyse teleseis-
mic surface waves on a regional scale using techniques that require a
large number of seismic stations in a 2-D array (e.g. Friederich 1998;
Pollitz 1999; Li et al. 2003; Bruneton et al. 2004). Such techniques
make it possible to include different aspects of local diffraction and
in particular to take into account non-plane incident wavefields.
Many temporary passive seismic experiments still have a relatively
low number of broad-band sensors (to approximately 100 s period)
or use sensors located along an essentially linear profile. In such
cases, which are the focus of this study, the only possible approach
for teleseismic surface wave analysis is to perform some kind of
two-station measurements, combined when appropriate with sim-
ple tomography techniques.

Since Wielandt (1993) formalized the concept that surface wave
fronts generally do not propagate with the so-called ‘structural ve-

locity’, that is, the velocity predicted from the local modes of the un-
derlying structure (Maupin 1988), several authors have questioned
the validity of two-station measurements (e.g. Friederich et al. 1994,
2000). Here we only summarize the main issues pertaining to non-
plane wave fronts, and refer the reader to the papers by Friederich
et al. for more detailed information.

Non-plane incoming waves create a wavefield that has varying
amplitudes and oscillating phases. Non-plane waves can be viewed
as a summation of plane waves of varying amplitude and propagation
direction, and it is the interference of these waves that creates the
varying amplitudes and phases. The resulting wave front advances
with a dynamic velocity that can be significantly different from the
structural velocity, even when the amplitude of the non-plane energy
is small.

The non-plane energy is created by the diffraction of surface
waves in a laterally heterogeneous medium. Surface wave diffrac-
tion has already received considerable attention over the last several
decades, (e.g. McGarr & Alsop 1967) and a complete review is not
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appropriate here. The difficulty with surface wave diffraction re-
sides in the strong coupling between modes and wave types, and the
complex relationship that exists between such conversions and Earth
heterogeneities (e.g. Gregersen 1978; Kennett 1984; Snieder 1986;
Nolet 1987; Maupin 1988; Marquering et al. 1996; Pedersen et al.
1996; Maupin 2001; Yoshizawa & Kennett 2002). We do not yet
understand all the phenomena related to surface wave diffraction,
and we cannot yet invert for surface waveforms without introduc-
ing model smoothing and applying some approximation to the wave
equation.

Independent of the origin of the non-plane energy, it is theoreti-
cally possible to calculate the structural velocity from the dynamic
velocity using a corrective term that uses the second spatial deriva-
tives of the natural logarithm of the wave amplitude (Wielandt 1993).
However, this correction is unrealistic in practice due to insufficient
station density. Even when many stations are available it is only
possible to recover relatively smoothly varying wave fronts (e.g.
Friederich 1998; Pollitz 1999; Bruneton et al. 2004).

We here focus on two-station phase velocity measurements as this
is the standard way to estimate the absolute S-wave structure be-
tween pairs of seismic broad-band stations. For such measurements
the magnitude of the errors induced by non-plane waves remains un-
certain. It is also unclear whether averaging over a large number of
events is sufficient to determine a phase velocity that is close to the
average structural velocity between the two stations. If two-station
measurements do not give useful results due to non-plane energy,
it then serves no purpose to include small numbers of broad-band
sensors in temporary field experiments.

The scope of this paper is to determine the stability of two-station
dispersion curves in the presence of non-plane wave energy, in-
dependently of how this energy is created. We will represent this
non-plane energy as a sum of random plane waves. This statistical
approach is equivalent to assuming that non-plane energy is not dom-
inated by heterogeneities close to, or within, the area in which the
seismic stations are located. This assumption is unlikely to be valid
within regions of strong lateral heterogeneity. The determination of
local 3-D heterogeneous structure by analysis of teleseismic surface
waves requires the use of a 2-D broad-band network (e.g. Friederich
1998; Pollitz 1999; Li et al. 2003; Bruneton et al. 2004). In this
paper we assume that a 2-D network is not available and that we are
required to use two-station measurements.

Whether or not two-station phase velocities are indicative of the
average structure beneath the station profile in the presence of local
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Figure 1. Influence of great-circle deviations upon apparent phase velocities. Left: Definition of the geometry. The triangles show the stations which define the
station profile (bold line). α is the angle in degrees between the station profile and the great-circle, shown by the thin line. θ is the angle in degrees that defines
the great-circle deviation, that is, the angle between the great-circle and wave propagation direction (or slowness vector), shown as a dashed line. Right: The
ratio between apparent Capp and structural C phase velocity as a function of α and θ .

heterogeneities, depends on (a) the exact 3-D earth structure, (b) the
station locations within the structure and (c) the incidence direction
of the surface waves (e.g. Pedersen et al. 1996). With improved tools
for calculation of seismic wave propagation in 3-D heterogeneous
earth models, it will soon be feasible to carry out such case studies
for a given field experiment. Here we focus on general conclusions
concerning the errors due to non-plane waves created at some dis-
tance to the array. To estimate the significance of these errors, we
compare their effects to those of deviations from great-circle paths
and uncorrelated noise.

2 D E V I AT I O N S F RO M G R E AT - C I RC L E
P RO PA G AT I O N

Deviations from great-circle propagation can be very difficult to
estimate at individual stations due to the complexity of the wavefield.
Array analysis of 20–100 s period waves in the French Alps (Cotte
et al. 2000) showed that the deviations may be greater than 30◦.
Cotte et al. (2000) used ray tracing (Woodhouse & Wong 1986) to
predict angular deviations of 35s surface waves. They predicted that
large-scale earth structures account for approximately ±20◦ while
the local structure was responsible for another ±10◦–15◦. Alsina &
Snieder (1996) observed strong deviations at a broad-band array in
Netherlands, while smaller deviations were observed in the Iberian
Peninsula (Alsina et al. 1993).

In cases where source–receiver paths are employed for surface
wave tomography, it is possible to use observed deviations from the
great-circle paths to further constrain earth models (e.g. Laske &
Masters 1996; Yanovskaya 1996; Yoshizawa et al. 1999). In such
cases, ray tracing can be included in the inversion (e.g. Laske &
Masters 1996; Kennett & Yoshizawa 2002). However, for local
two-station measurements the deviations can only be considered as
noise as they are dominated by the earth structure outside the study
area.

In absence of great-circle deviations, the velocity C(f ) between
two stations is given by

C( f ) = D cos(α)

�t( f )
(1)

where f is frequency, �t is the difference of arrival times of the
wave at the two stations, D is the interstation distance, and α is the
angle between the station profile and the great-circle (see Fig.1a).
D cos(α) is the length of the projection of the station profile onto
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Figure 2. Apparent phase velocities (grey lines) using 20 realizations of deviations from great-circle propagation. The reference (structural velocity) dispersion
curve is shown by the solid black line and the error bars show the average apparent dispersion curve and associated standard deviation. The difference between
the structural and average apparent velocities is of the order of 0.5 per cent in the left column and 2 per cent in the right one. In the upper left corner of each plot
is the value of α (the angle in degrees between the station profile and the great-circle) and θ max (the upper limit of the deviation in degrees from the great-circle
path).

the slowness vector. In the presence of great-circle deviations, this
projection is no longer valid and the velocity calculated by eq. (1)
no longer yields the real velocity C but an apparent velocity Capp.

In this and the following sections we use the term ‘structural
velocity’ for the phase velocity defined by the medium within which
the waves propagate (C in eq. 1) We use the term ‘apparent velocity’
(Capp) for the velocity between two stations as measured with a two-
station phase velocity measurement.

The ratio R(f ) at frequency f between Capp(f ) and C(f ) (in the
absence of other sources of error) can be expressed as

R(α, θ ( f )) = Capp( f )/C( f ) = cos(α)/ cos(θ ( f ) + α), (2)

where θ is the (frequency dependent) deviation from the great-circle
path. Fig. 1 shows R(α,θ ) for realistic values of α and θ . Even in the
case where the station profile and the source–receiver great-circle
are almost aligned (α < 5◦), the phase velocity errors can still be up
to 5–10 per cent.

To estimate the variability of the resulting dispersion curves, and
to compare that variability with error estimates in the following
sections, Fig. 2 shows a series of dispersion curves obtained with
different values of α and θ . In all calculations, we use a reference
(structural velocity) dispersion curve C( f ) which is constant at
4 km s−1 for frequencies lower than 0.02 Hz, and decreases lin-
early from 4 km s−1 to 3 km s−1 for frequencies between 0.02 and
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0.1 Hz. This simple dispersion curve ensures coverage of the range
of wavelengths usually explored in lithospheric surface wave stud-
ies. In each plot α is constant; the values being 2◦ at the top, 5◦ at
the centre and 10◦ at the bottom. To allow for the fact that devi-
ations are generally not constant with frequency, θ varies linearly
with frequency between θ (0.01 Hz) and θ (0.1 Hz), these two limits
being chosen arbitrarily between ±θ max, where θ max takes the value
of 10◦ (left column) and 20◦ (right column).

The systematic shift between the apparent velocities, averaged
over 20 realizations, and the structural velocities is of the order of 0.5
per cent for θmax = 10◦ and 2–2.5 per cent for θmax = 20◦. The large
variability of the great-circle deviation θ dominates the systematic
shift to higher apparent velocities whereas increasing α introduces a
higher error to each individual curve without significantly affecting
the shift.

Note that this simulation does not by any means maximize the
errors because the random selection of θ ensures that the mean value
of θ is approximately 0◦, and the mean absolute value of θ is of the
order of θmax/2. In field experiments of sufficient duration to record
a large number of events, a typical maximum value of α would
be of the order of 5◦. It is not uncommon, however, during short
experiments or when the station profile geometry is unfavourable,
for the maximum value of α to reach 7◦–8◦. Our results show that,
compared to the effect of θ , an increase in α does not have a catas-
trophic result if a high number of events from different epicentral
areas (i.e. different values for θ ) are used to produce the average
apparent dispersion curve.

3 U N C O R R E L AT E D N O I S E

In this section, we investigate the influence of phase perturbations
induced by noise that is not correlated between stations, that is,
noise generated by local sources. This kind of noise can be con-
sidered event independent. If the phase of uncorrelated noise was
fully random and independent of frequency, it would be easy to sup-
press its effect through smoothing of the dispersion curve. In field
data, however, the phase of the noise is not fully random and any
individual event may have significant bias, which does not oscillate
strongly with frequency. As the uncorrelated noise varies strongly
both in time and space, we cannot assume that it has any particu-
lar phase characteristics. We consequently use constant amplitude
noise with random phases, which provides us with the potential size
of the errors on the dispersion curve caused by uncorrelated noise.

To explore the influence of uncorrelated noise, we calculate the
displacement of a plane acoustic wave at two sensors separated by
a distance D = 200 km. The medium is characterized by the same
dispersion curve as in the previous section and the profile is parallel
to the propagation direction.

In the plane and for a given frequency f , a plane acoustic wave
can be calculated at any point (x, y) by

�u(x, y) = �∇φ, (3)

where u is the displacement and φ(x,y) is the scalar wave-potential:

φ(x, y) = A exp

(
ikx x + iky y − i

2π

f
t + iφ0

)
. (4)

kx and ky are the wavenumbers in directions x and y and φ0 is the
wave phase at t = 0 and (x , y) = (0, 0).

Note that φ traditionally is used both for the wave potential and
for the phase of a wave, but since we no longer need to refer to the

wave potential, φ will be used to designate phases in the remaining
part of the paper.

We add random noise to the signals at the two stations in such a
way that the amplitude of the noise divided by the amplitude of the
signal is constant N in each calculation and the phase of the noise
is fully random. We measure apparent phase velocities

Capp( f ) = D

�t
(5)

between the two stations by transforming the phase difference
�φ( f ) of the two signals into a time delay �t

�t( f ) = �φ( f ) + M2π

2π f
. (6)

As the profiles are relatively short, M = 0 at low frequency. We
estimate the value of M at successively higher frequencies by in-
crementing M by 1 every time an approximate 2π phase jump is
encountered. This very simple method is likely to fail sometimes
at high frequencies in the presence strong phase oscillations due to
random noise. We, therefore, subsequently adjust the value of M so
that the �t falls within half a period of the time delay predicted by
the apparent phase velocity averaged over all events. This procedure
has to be carried out over one to two iterations, because the aver-
age apparent velocity changes slightly when corrections are applied
to M .

In practice the signal-to-noise ratio is generally difficult to esti-
mate for surface waves, mainly due to the temporal variability of the
noise on broad-band stations, especially for temporary installations.
The event-dependent frequency–time filtering often applied prior to
phase velocity measurements further complicates the estimate of
the signal-to-noise ratio. The required ratio will also depend on the
station profile length as well as on frequency, because the influence
of uncorrelated noise decreases with the ratio between profile length
and wavelength. We here use noise levels of N = 0.1 and N = 0.25
to cover the range of realistically expected values in temporary field
experiments.

Fig. 3 shows the average apparent velocity along a D = 200 km
profile, using 20 noise realizations for each profile. Due to the ran-
domness of the phase, the average apparent velocities are practically
identical to the structural velocities when enough events are used.
The number of events required to obtain a reliable dispersion curve
will depend on the profile length and noise level. For a 200-km-
long profile, the standard deviation overestimates the errors when
20 events are used, while the standard deviation and the error on the
dispersion curve were comparable with as few as five events.

4 N O N - P L A N E I N C O M I N G WAV E S

In this section, we explore different station configurations and am-
plitudes of non-plane waves to determine how two-station apparent
velocities behave in the presence of interfering incoming waves. In
the numerical experiments we use the same homogeneous ‘medium’
as in the previous section. A plane acoustic wave of unit amplitude
is incident from the north. To create a non-plane wavefield we use an
approach similar to that of Friederich et al. (2000), which consists
of introducing additional plane waves with independent arbitrary
amplitudes and incidence angle to the main incoming wave. Each
wave is calculated by eqs (3)–(4) and subsequently added to obtain
the total wavefield. To cover the range of frequencies used for typical
lithospheric studies we use frequencies between 0.01 and 0.1 Hz.

Numerical tests using between 10 and 100 additional waves to
create the non-plane waves showed that only the total energy of
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Figure 3. Apparent phase velocities (grey lines) along 200-km-long profiles using 20 noise realizations. The amplitude of the noise relative to the amplitude
of the incoming wave is N = 0.1 (left) and N = 0.25 (right). The black line is the reference (structural velocity) dispersion curve and the error bars show the
average apparent dispersion curve and associated standard deviation.

the additional waves compared to that of the main incoming wave
determines the phase velocity errors (i.e. the difference between the
apparent and the structural velocity). Consequently the number of
waves over which this energy is spread has a negligible effect. We
choose to follow Friederich et al. (2000) and use 50 plane waves to
create the non-plane energy.

We measure apparent phase velocities Capp(f ) using the phase
difference of the total wavefield between pairs of stations located
D km apart on a N–S profile (see eqs 5 and 6). In the velocity cal-
culation we ignore the contribution of other waves to the phase and
as a result Capp(f ) may differ from the structural velocity C(f ). We
will use the terminology suggested by Wielandt (1993) and define
the ‘dynamic phase velocity’, at any point (x, y), as the apparent
velocity along infinitely short profiles. Capp(f ) will in this section
correspond to some integration of this dynamic phase velocity along
the profile.

In this first calculation we choose a particularly simple model
in which all random parameters (amplitude A, incidence angle β,
and phase shift φ0) of the 50 additional waves vary linearly with
frequency. The values of these three parameters are determined ran-
domly at 0.01 and 0.1 Hz, and they evolve linearly between these two
frequencies. The intervals within which the random values are cho-
sen is: β ∈ [−βmax;βmax] for the incidence angle (from the North);
φ0 ∈ [−π ;π ] for the phase shift; and A ∈ [0;Amax] for the ampli-
tude. Amax is the maximum secondary wave amplitude divided by
the amplitude of the main incident wave.

The addition of the secondary waves results in a wavefield with
varying amplitude and dynamic velocity (see Fig. 1 in Friederich
et al. 2000). For example at 0.02 Hz, and with Amax = 0.02 the sum
of the energy of the additional waves is approximately 0.4 per cent
of that of the main wave. In this case the dynamic velocity within the
area has minimum and maximum values of approximately 3.5 km
s−1 and 4.5 km s−1, that is, a variation of more than 10 per cent around
the structural velocity of 4 km s−1. These values show that non-
plane effects can be catastrophic for phase velocity measurements.
The question is how this translates into two-station apparent phase
velocity measurements.

Fig. 4 shows Capp( f ) curves using three different profile lengths,
and for 20 realizations in each plot. With Amax = 0.02 the apparent
velocity curves are stable up to at least a period of 100 s for the
200 km profile, that is, up to wavelengths twice the profile length.
Due to our assumption that the events are independent, the apparent

velocity curves scatter around the structural velocity. The realization
with the highest difference between the dynamic velocity and the
structural velocity (approximately 18 per cent) gives up to 2 per
cent differences between apparent and structural velocities for the
200-km-long profiles. More importantly, the average difference in
velocities is only up to 0.5 per cent for periods between 50 and
100 s.

These results are encouraging, as they tend to show that the av-
erage apparent dispersion curve is much more stable than the local
values of the dynamic velocities, particularly when we use a suf-
ficiently large number of uncorrelated events. However, we do not
know the amplitude of the non-plane wavefield and it is not obvious
how to reliably determine it. For example, if we estimate the total
energy E total in our simulations as the average over 301 × 301 =
90 601 points evenly spaced in an area of 1200 × 1200 km2, E total

oscillates within 0.95–1.05 while the theoretical value lies around
1.005, depending on the realization.

Any such energy measurement on field data is very difficult as
the station coverage is too poor to provide a reliable estimate. So
far, the best estimate comes from Friederich et al. (1994). They
pre-processed teleseismic broad-band records to extract the sur-
face waves and subtracted the best-fitting plane wave from the
resulting traces. The remaining average energy over the area was
then attributed to non-plane energy, including uncorrelated noise.
They showed that the ratio En of total non-plane energy to the
plane wave energy increases strongly with frequency, and varies
within approximately an order of magnitude for different earth-
quakes. The majority of their observations are located between two
lines

log En( f ) = A log( f ) + B, (7)

with A = 2.4 for the two lines, B = 2.1 for the lower line and 3.4
for the upper line. In the remaining part of this section, we base the
estimations of non-plane energy on these observations. The upper
line corresponds to En values of approximately 0.04 at 0.01 Hz and
0.21 at 0.02 Hz and which extrapolate to 10 at 0.1 Hz. Recalling that
Fig. 4 corresponded to non-plane energy of 0.004, these observed
values of non-plane energy must surely be catastrophic to any two-
station measurements. The only positive point is that the non-plane
energy decreases at long periods.

The amplitude of each of the 50 additional waves is calculated by
assuming that each of them carries an amount of energy which is a
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Figure 4. Apparent phase velocities (grey lines) measured along profiles
that are 100 km (top), 200 km (centre) and 400 km (bottom) long. In each
plot the apparent velocities correspond to 20 different realizations of non-
plane waves, with Amax = 0.02 and βmax = 180◦. The black line is the
reference (structural velocity) dispersion curve.

fiftieth of En(f ) where En(f ) is defined by

log En( f ) = 2.4 log( f ) + B. (8)

For each additional wave, B is chosen randomly between 2.1 and
3.4. The apparent phase velocities calculated for 20 realizations are

shown in Fig. 5(a) for additional waves coming from all directions
(−180◦ < β < 180◦) and in Fig. 5(b) for wave propagation within
(−90◦ < β < 90◦). Two different ranges of incidence directions of
the additional waves were used because fundamental mode Rayleigh
waves are mainly scattered in the forward direction, whereas higher
modes and Love waves have a more complex diffraction pattern
(e.g. Snieder 1986).

Even though the simulations using additional waves from all di-
rections have the highest variations in dynamic phase velocities due
to the rapidly oscillating amplitudes of the total wavefield, the use
of the total phase difference between the two endpoints of the pro-
files tends to average out these extreme values. On the contrary, the
‘forward scattering’ case (−90◦ < β < 90◦) has much slower vari-
ations in the wavefield and, therefore, smaller spatial oscillations of
the dynamic velocity. These oscillations can be systematic along a
profile, however, giving rise to dispersion curves that are completely
outside any acceptable error bounds.

The standard deviation is up to approximately 4 per cent of the
average apparent velocity, however, one must also keep in mind
that the smallest errors govern the inversion of the dispersion curve,
because dispersion curves are smooth in the period range considered.
It is clear, however, that if the amount of non-plane energy is as strong
as assumed here it will not be possible to extract any but the largest
changes in structure, because any small lateral differences between
two profiles will lie within the error bars.

Considering the errors, it is surprising that the average appar-
ent velocity falls so close to the structural velocity. Our choice
of 20 realizations or ‘events’ for each simulation may be overly
optimistic: a typical 6–8-month summer experiment is often too
short to have so many events for each profile, even though the
two-station profiles most often are set in the direction of maximum
seismicity.

Decreasing the number of events may still result in average ap-
parent phase velocities close to the structural phase velocities. Fig. 6
shows the effect of decreasing the number of events to five (left col-
umn) or 10 (right column), in each case using additional waves from
the same half-plane as the main wave ((−90◦ < β < 90◦, top), or
from all directions (−180◦ < β < 180◦, bottom). The variability of
the average apparent dispersion curves corresponds approximately
to the standard deviations of Fig. 5 when the number of events is as
small as five.

Obviously these results depend strongly on profile length. The
scaling with profile length is more complicated than it would ap-
pear in Fig. 4 because the amount of non-plane energy varies with
frequency. Increasing the profile length simply decreases the scatter
in the dispersion curves for each event, even if the decrease is not
as simple as in Fig. 4. For 400-km-long profiles, the apparent phase
velocity is always close to the structural phase velocity, within at
most ±1.8 per cent when the additional waves arrive from all direc-
tions and ±2.5 per cent in the ‘forward scattering’ case. This means
that even a single event gives a meaningful result in terms of the
structural velocity, and averaging over just a few independent events
will ensure that the apparent phase velocity is accurate within ±0.5
per cent.

The case of decreasing profile lengths is more complex, because
the profile length becomes comparable to the wavelength at increas-
ingly shorter periods. For example, when the profile length is re-
duced to 100 km the error bars simply increase by a factor of 2–3
at long periods. However, at intermediate periods (20–50 s), the
average apparent dispersion curve shows not only increased scat-
ter, but also a systematic shift towards higher apparent velocities.
The average apparent velocities has a maximum difference with the
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Figure 5. Apparent phase velocities (grey lines) measured for 20 realizations of additional plane waves using values for non-plane energy taken from Friederich
et al. (1994). In the left plot the additional waves are incident from all directions (βmax = 180◦), and in the right plot they are incident from the same half-plane
as the main wave (βmax = 90◦). The black line is the reference (structural velocity) dispersion curve and the error bars show the average apparent dispersion
curve and associated standard deviation.
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Figure 6. Average apparent phase velocities along 200-km-long profiles. In each plot five average curves are plotted (squares) and the parameters of the
calculation are given in the top left corner of each plot. The five average apparent velocities are in each case obtained over five (left column) or 10 (right column)
‘events’. The top of the figure corresponds to additional waves incident from the same half plane as the main wave (βmax = 90◦), and the bottom to additional
events from all directions (βmax = 180◦). The amplitude of the additional events is randomly chosen as explained in the text. The black line is the reference
(structural velocity) dispersion curve.

structural velocities of 0.15–0.2 km s−1 at approximately 25 s period
where the total non-plane energy can be high as the plane energy.
For many of the events, a simple ‘polarization analysis’ (consisting
of rotating the records until the energy on the transverse component
is minimal) shows that at intermediate periods the waves no longer
propagate N–S between the stations. Consequently, the additional

non-plane waves will locally result in a deviation of the wavefield
from the great-circle path. This effect would systematically increase
the apparent velocities (see Fig. 1). With the complexity of overlap
between Rayleigh waves and the Love wave coda, it is questionable
whether a polarization analysis could be used to correct for this
effect. This implies that when the station profiles are short, some
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off-profile stations should always be included in the array setup to
be able to correct for the propagation direction.

5 C O N C L U S I O N S

Phase velocity measurements between two closely located stations
exhibit significant errors and, as a consequence, we can only ex-
pect to retrieve large differences in earth structure between different
station pairs.

Because non-plane energy is not necessarily the dominant source
of error, it is possible, however, to obtain the structural velocity
between two stations using data from a relatively small number of
events. The errors induced by non-plane energy are no higher than
those arising from uncorrelated noise and from off great-circle prop-
agation in the case of 200-km-long profiles, and the errors decrease
with increasing profile length.

These conclusions are based on the assumption that each event
is dominated by event-independent non-plane energy, which is ob-
viously incorrect if events from only the same epicentral area are
used or if strong diffractions are created close to the seismic sta-
tions. It is not known whether teleseismic waves from the same
direction but different epicentral distances have similar non-plane
energy. To fully answer this question, full wave diffraction in realis-
tically heterogeneous global models must be carried out. Such tests
may soon be feasible (e.g. Chaljub et al. 2003). A partial answer can
come from the calculation of great-circle deviations as was done by
Cotte et al. (2000), who showed that even with smooth earth models,
great-circle deviations can generally be expected to depend on both
backazimuth and epicentral distance. This arises because the surface
waves carry very different diffraction histories and the distortion of
the wave fronts is consequently likely to vary for different epicentral
areas. It is nevertheless unclear whether waves that cross hetero-
geneities close to the study area, but which have previously gone
through different diffraction histories, will show systematically bi-
ased dispersion curves. In view of these uncertainties, methods that
correct for non-plane energy should be used whenever the station
configuration and the amount of data allow. Such methods also nat-
urally make it possible to correct for deviations from great-circle
propagation.

It is essential to have sufficient events from different epicentral
areas to overcome the problems of non-plane waves. However, to
obtain a sufficient number of epicentral areas for which the records
can be used, it is sometimes necessary to relax the constraint that the
alignment of great-circle and station profile must be almost perfect,
and this may introduce additional errors due to off great-circle prop-
agation. Errors due to off great-circle propagation may be significant
even when the station profile—great-circle alignment is good. Such
errors are of the same order of magnitude or even larger than those
arising from non-plane waves, even when the profile is perfectly
aligned with the great-circle.

Array analysis is necessary to correct for deviations from the
great-circle propagation. Even though errors from non-plane en-
ergy may be smaller than initially assumed, some off-profile stations
in otherwise linear broad-band arrays must be included if reliable
results are to be obtained.
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