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1. Introduction

[1] Jardani et al. [2006a] (hereinafter referred to as JDR)
present a self-potential survey showing circular anomalies
associated with shallow sinkholes in a chalk karst. They
perform various finite element modelings and data analysis,
and, in particular, use a three-dimensional (3-D) version of
the so-called dipole occurrence probability (DOI) tomogra-
phy [Iuliano et al., 2002a]. This method was proposed in its
2-D version by Revil et al. [2001] as a sequel of the charge
occurrence probability (COP) tomography initially devel-
oped by Patella [1997a]. COP and DOI aim at producing an
image of the probability density of the location of the
causative sources located underground and causing the
observed potential field anomalies. This probability is given
as a function of depth and horizontal coordinates as shown
in Figure 14 of JDR (and in Figure 1b). The paper by JDR is
among the latest of a series where either COP or DOI is
applied to electrical self-potential data [Patella, 1997a,
1997b; Lapenna et al., 2003; Revil et al., 2003; Wilkinson
et al., 2005; Jardani et al., 2006b], electrical resistivity data
[Mauriello et al., 1998; Mauriello and Patella, 1999a; Zhou
and Greenhalgh, 2002], electromagnetic prospecting
[Mauriello and Patella, 1999b], and then gravity and
magnetic data [Mauriello and Patella, 2001; Iuliano et
al., 2002a, 2002b; Chianese and Lapenna, 2007; Saracco
et al., 2007].
[2] In the present comment, we want to draw attention of

the readers unaccustomed with the physics of potential
fields that the appealing COP and DOI methods are based
on some misconceptions. Hereafter, we explain why the
affirmation made by JDR (paragraph 31) that ‘‘The DOI
function represents therefore the probability of finding in a
point of the subspace W a dipole responsible for the self-
potential anomaly observed at the ground surface’’ is false.
As a consequence, the claim by JDR (paragraph 30) to

‘‘provide algorithms to analyze quantitatively the self-po-
tential signals in terms of source location and geometry of
the source body’’ is doubtful.
[3] Before explaining and justifying our criticisms with

detailed mathematical and physical considerations, we first
point out several arguments which show that the DOI and
COP concepts are questionable:
[4] 1. The DOI method consists in computing the so-

called Source Occurrence Probability (SOP), h, recalled in
equation (12) of JDR and in the equivalent equation (2)
below. Unfortunately these equations reveal that the h
function may take negative values and therefore does not
satisfy the basic positiveness property necessary to give a
chance to h to be a probability distribution. A response often
made by users of SOP is that h is actually a signed
probability whose sign is the one of the sources causing
the analyzed potential field. Unfortunately, in what follows,
we show that this argument is not sufficient to eliminate the
negativity paradox and that h is actually not a probability
density but instead must be seen as a normalized scalar
product directly related to the upward continuation of
potential fields.
[5] 2. The spurious probabilistic interpretation attributed to

the h function may be further understood by considering the
simple example of the SOP analysis of the anomaly created
by an isolated dipole located at a point ps = (xs, ys, zs > 0)
below the surface. If the potential field caused by this source
is perfectly known in the horizontal plane z = 0 (as shown in
Figure 1a), the recovery of the source location is an inverse
problem which possesses a unique solution in z > 0. Obvi-
ously, for this particular case, the h function should restrict to
either the 2-D or the 3-D Dirac distribution, d(p � ps), in
order to assign a probability of 1 at the source location ps and
0 elsewhere. As can be seen in Figure 1b, the SOP is far from
being equal to the expected Dirac distribution and instead
spans a wide area. The failure of the SOP to correctly
reproduce the location probability d(p� ps) for this canonical
problem questions the sense of the probabilistic role attrib-
uted to the SOP by several authors.
[6] 3. These doubts concerning the probabilistic role

attributed to the SOP analysis are reinforced by the fact
that no stochastic process is involved (e.g., Gaussian white
noise, signal-to-noise ratio) in the mathematical derivations
[e.g., Patella, 1997a] leading to the SOP method. This
makes hard to consider the SOP as resulting from a
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3Laboratoire de Proche Surface, École et Observatoire des Sciences de

la Terre-Institut de Physique du Globe de Strasbourg, Centre National de la
Recherche Scientifique (UMR 7516) and Université Louis Pasteur,
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stochastic process by itself. Actually, the only argument
raised by the advocates of SOP is that the h function is
normalized (in absolute value). Let us recall that a normal-
ized function cannot automatically be considered as a
probability density function.
[7] We now turn on more technical and mathematical

details in order to explain the real sense of the SOP
function. We consider the 2-D case of spontaneous potential
fields created in media with a homogeneous electrical
conductivity. The simplifications have the advantage of
resulting in the simplest formulas while preserving the
fundamental physics of the problem. We use the framework
of the continuous wavelet transform to show that the SOP is
related to the wavelet transform of the analyzed potential
field and that further mathematical treatment is necessary to
obtain the source function [Moreau et al., 1997, 1999;
Hornby et al., 1999]. Because of the minor differences
between the DOI and COP methods (i.e., dipole versus
monopole), both methods may be treated in the same
theoretical framework.

2. Equivalence of SOP and Wavelet Transform

[8] In this section, we only recall the main formulas and
mathematical steps necessary to show that the SOP function
h is a particular version of the wavelet transform of the
potential field [Sailhac and Marquis, 2001]. The reader is
referred to our previous papers for further details and
applications to various type of data and interpretation
[Moreau et al., 1997, 1999; Sailhac et al., 2000; Gibert
and Pessel, 2001; Martelet et al., 2001; Sailhac and Gibert,
2003; Boukerbout and Gibert, 2006].
[9] As recalled by JDR, the SOP function is obtained by

taking the scalar product, i.e., the cross correlation, between

the measured field, f(x, y, z = 0) and a Green’s function,
G(x, yjxs, ys, zs), corresponding to both the measured physical
quantity (e.g., spontaneous potential, gravity, etc.) and to the
multipole nature of the point source chosen, i.e., a monopole
for COP [Patella, 1997a] or a dipole for DOI [Revil et al.,
2001]. The results presented below are valuable in both two
and three dimensions, but for clarity and conciseness of the
discussion, we only write the 2-D expressions.
[10] The SOP is defined by (see Patella [1997a] for

details)

h xs; zsð Þ ¼ C

Z þ1

�1
f x; z ¼ 0ð ÞG xjxs; zsð Þdx; ð1Þ

with C = (EfEG,zs)
�1/2 a normalizing factor where Ef and

EG,zs are the energies of f(x, z = 0) and G(xjxs, zs),
respectively.
[11] Considering the case of spontaneous potential treated

by JDR and a constant electrical conductivity, the Green’s
function is invariant by translation and may be written as
G(xs � x, zs). Equation (1) then takes the form of a
convolution product,

h xs; zsð Þ ¼ C

Z þ1

�1
f x; z ¼ 0ð ÞG xs � x; zsð Þdx: ð2Þ

Since the Green’s function satisfies the Poisson equation, G
is homogeneous. For instance, in case of dipole sources, G
is homogeneous with degree �1 and reads

G x; zð Þ ¼ 1

p
axþ bz
x2 þ z2

; ð3Þ

where q = (a, b) is the direction of the dipole source.

Figure 1. (a) Vertical component of the potential field caused by a vertical dipole located at xs = 0 and
zs = 15 (arbitrary units). (b) DOI function corresponding to anomaly (Figure 1a). (c) Wavelet transform
of the anomaly (Figure 1a) computed with an analyzing wavelet identical to the Green’s function used
to compute the DOI (Figure 1b). (d) Source function obtained by downward continuation of the wavelet
transform (Figure 1c).
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[12] In the general 2-D case, a Green’s function that
satisfies the Poisson equation involves N successive deri-
vations of the elementary Newtonian potential

G x; zð Þ ¼ Oq1Oq2 	 	 	 OqN

1

2p
ln x2 þ z2
� �

; ð4Þ

where Oq = q. r is the derivative operator in direction q,
and the directions qi depend on the multipolar nature of the
causative source. This function is homogeneous with degree
l = �N and thus verifies the following property:

1

a
G x=a; 1ð Þ ¼ al�1G x; að Þ; 8a > 0: ð5Þ

[13] Using a dilation factor a = zs and inserting the
homogeneity property (5) in the convolution formula (2)
gives

h xs; zsð Þ ¼ Cz1�l
s

Z þ1

�1
f x; z ¼ 0ð Þ 1

zs
G

xs � x

zs
; 1

� �
dx; ð6Þ

whose mathematical form is identical to that of a continuous
wavelet transform [e.g., Holschneider, 1995]. This is
illustrated in Figure 1c which represents the wavelet
transform of the potential field shown in Figure 1a and
where the Green’s function G is taken as the analyzing
wavelet.

3. Discussion

[14] We now stop the mathematical developments and
turn to a discussion concerning the consequences of equa-
tion (6). The following considerations are borrowed from
our papers cited above and where the mathematical proofs
are detailed.
[15] A first important consequence directly related to the

properties of the Green’s function G is that the h function is
a map of the upward continued and transformed potential
field f. We emphasize that this fact is rigourously mathe-
matically established and not only a matter of difference of
perception about the problem. The upward continuation
offset is simply equal to zs, and the transformation applied
to f depends on the choice of the Green’s function (i.e., the
source in the SOP terminology). For instance, the transfor-
mation corresponding to a horizontal dipole source is the
horizontal derivative while it is a Hilbert transform for a
vertical dipole source.
[16] Users of COP and DOI analysis assume (an indeed

do not question) that the variable zs corresponds to the
source depth. Owing to the mathematical sense of h recalled
in the preceding paragraph, this interpretation is confusing.
Actually, when plotting the h function, the users of SOP are
correct when they consider that zs is the depth of the point
source generating the Green’s functions G. The mistake
comes from the fact that the quantity, h, plotted at level zs is
neither a source term nor any downward continued quantity
but simply the transformed potential field upward continued
to the altitude zs. In other words, the vertical axis must be
directed upward instead of downward in the plots of the
SOP function (compare Figures 1b and 1c).

[17] In the particular case shown in Figure 1a, where the
analyzed potential field f is the Green’s function G itself,
the SOP function of Figure 1b is (up to an unimportant
normalization factor) the wavelet transform of a wavelet of
the same family. In the wavelet terminology, this corresponds
to the well-known reproducing kernel [e.g., Holschneider,
1995] whose shape is totally controlled by the mathematical
nature of the analyzing wavelet considered (i.e., G) and not
by the statistical distribution of the causative sources.
Hence, giving a probabilistic sense to h is meaningless.
[18] Retrieving the source function involves a transfor-

mation of the wavelet transform, i.e., of the SOP function,
and mainly involves a downward continuation which fo-
cuses the wavelet transform on the support of the sources in
the negative-dilation domain, i.e., in the lower half plane
corresponding to depth). This procedure is illustrated in
Figures 1c and 1d where the source term is located at the
apex of the conical pattern of the wavelet transform of the
analyzed potential field shown above. Such a downward
continuation is missing in SOP analysis. Because of the
huge exponential action of the continuation operator [e.g.,
Gibert and Galdéano, 1985], the support of the source
function is much more localized than the one of the h
function. This shows differently that interpreting h as a
probabilistic indicator for the locations of the causative
sources as done by JDR, among others, is particularly
hazardous.
[19] Users of the SOP method generally consider that

when the Green’s function is correctly chosen, the maxi-
mum of the h function provides the appropriate location of
the sources. Indeed this is true for an isolated pole when
using the Green’s function for a pole, and for an isolated
dipole when using the Green’s function for a dipole. This is
no longer valid when the homogeneity degrees of the source
and of the Green’s function differ, a situation often encoun-
tered with extended sources. For instance, in the case of a
local pole, the depth of the maximum of the h function is the
correct one when using a polar Green’s function, but it is
biased when using a dipole Green’s function. These results
are direct consequences of the properties of the reproducing
kernels cited above. Indeed, this also explains why the h
function (e.g., as cross correlation of local polar potential
with polar Green’s function) takes its anomaly of largest
amplitude and widest shape in the vicinity of the source
(assuming that the vertical axis remains oriented downward
as SOP users do) and gives SOP users the impression that
the SOP theory is correct. We invite them to keep in mind
that the h function is a map of the upward continued
potential field: as a classical consequence of the upward
continuation operator, the anomaly is wide even when the
source is local.
[20] As indicated above, the correct location of point

source is obtained by applying a downward continuation
to the wavelet transform, whatever the multipolar nature of
the source and the homogeneity degree of the analyzing
wavelet (i.e., G) [e.g., Moreau et al., 1999]. The case of real
extended source (i.e., other than point sources) is much
more complicated because only the equivalent point source
of an extended source is actually localized with the wavelet
transform. In the general case, for complex (e.g., other than
spherical) geometry of the source, the complex patterns of
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the h function have to be interpreted through a Taylor or
multipolar expansion of the wavelet transform [e.g., Sailhac
et al., 2000; Sailhac and Gibert, 2003; Boukerbout et al.,
2003]. Recovering the shape of an extended source from its
localized equivalent multipolar sources is a nonunique
inverse problem. For instance an infinitely number of
concentric spheres of mass M may be assigned to a point
mass M. Clearly, the h function is unable to correctly
represent this nonuniqueness.

4. Conclusion

[21] We hope that this comment will help practitioners to
understand the limits of the so-called COP and DOI
methods used in many studies. In particular, we claim that
(1) the probabilistic interpretation given to the h function
has no justification and the probabilistic vocabulary should
be avoided, (2) the h function is a particular wavelet
transform of the analyzed SP data and, like the wavelet
coefficients, h is not directly a tomography of the under-
ground causative sources but an image in the upward
continuation domain that shows some symmetries with
underground sources, (3) as a consequence of the above
points, the spatial extension of the h function has a com-
plicated relationship with the real shape of the source
function, which means that it cannot be plotted as if it
was a tomography of the source like expected in the SOP
method, and (4) it is our opinion that more traditional
techniques of potential field analysis with more serious
theoretical basis should be preferred to SOP methods. This
is for instance the case of filtering techniques [e.g.,
Boschetti et al., 2004; Fedi et al., 2004].

[22] Acknowledgments. This paper benefited from discussions with
Steve Pride and from reviews by Steve Park and two anonymous reviewers.
This is IPGP contribution 2332.
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