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Abstract

Valuable information about one-dimensional soil structures can be obtained by recording am-
bient vibrations at the surface, in which the energy contribution of surface waves predominates
over the one of other types of waves. The dispersion characteristics of surface waves allow the
retrieval of the shear-wave velocity as a function of depth. Microtremor studies are usually
divided in two stages: deriving the dispersion (or autocorrelation) curve from the recorded
signals and inverting it to obtain the site velocity profile. The possibility to determine the
dispersion curve over the adequate frequency range at one site depends on the array aperture
and on the wavefield spectra amplitude which can be altered by filtering effects due to the
ground structure. Microtremors are usually recorded with several arrays of various apertures
in order to get the spectral curves over a wide frequency band, and different methods also exist
for processing the raw signals. With the objective of defining a strategy to achieve reliable
results for microtremor on a shallow structure, we analyse synthetic ambient vibrations (verti-
cal component) simulated with 333 broad-band sources for a 25 m deep soil layer overlying a
bedrock. The first part of our study is focused on the determination of the reliable frequency
range of the spectral curves (dispersion or autocorrelation) for a given array geometry. We
find that the wave number limits deduced from the theoretical array response are good esti-
mates of the valid spectral curve range. In the second part, the spectral curves are calculated
with the three most popular noise-processing techniques (frequency-wavenumber, high resolu-
tion frequency-wavenumber and spatial auto-correlation methods) and inverted individually in
each case. The inversions are performed with a tool based on the neighbourhood algorithm
which offers a better estimation of the global uncertainties than classical linearized methods,
especially if the solution is not unique. Several array apertures are necessary to construct the
dispersion (autocorrelation) curves in the appropriate frequency range. Considering the final
velocity profiles, the three tested methods are almost equivalent and no significant advantage
was found for one particular method. With the chosen model, all methods exhibit a penetration
limited to the bedrock depth, as a consequence of the filtering effect of the ground structure on
the vertical component, which was observed in numerous shallow sites.

Key words:

Frequency-wavenumber, auto-correlation, inversion, surface waves, ambient vibrations, neigh-
bourhood algorithm
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Introduction

Recording microtremors with an array of sensors is an attractive tool for in-situ measurements
of shear-wave velocity (Vs) (Asten and Henstridge [1984]). This success among the scientific
community comes from the easiness to use passive sources as well as from the possibility of
investigating deep sedimentary structures at a very low cost compared to crosshole or downhole
techniques (Satoh et al. [2001b]). The applications of this method are not limited to earthquake
engineering but may also extend to general soil characterisation. The main assumptions behind
noise-array analysis are that ambient vibrations are mostly composed of surface waves and that
the ground structure is approximately horizontally stratified (Tokimatsu [1997]). In such an
one-dimensional heterogeneous media, surface waves are dispersive and show a variation of
the apparent velocity with the frequency. Love (SH) and Rayleigh (P -SV ) modes co-exist on
horizontal components whilst vertical components are only affected by Rayleigh-surface waves.
The majority of ambient vibration studies focuses only on vertical components and on the
Rayleigh modes (i.e. Satoh et al. [2001b], Wathelet et al. [2004], Picozzi et al. [2005], Kind
et al. [2005]), although some attempts were made to use Love waves as well (e.g. Chouet et al.
[1998], Okada [2003], Köhler et al. [2007]). Data processing for obtaining Vs profile from noise
array measurements is divided into two main steps: deriving a spectral curve characteristic of
the propagating waves (namely, a dispersion curve or auto-correlation curves), and inverting
this curve to retrieve the soil structure. In such methods, the resolution at depth is intrinsically
linked to the wavefield spectral amplitudes, as well as to the capabilities of the array of sensors.

Three approaches are of common use for analysing signals: the frequency wavenumber
method (Lacoss et al. [1969], Horike [1985]), the high resolution frequency wavenumber method
(Capon [1969], Asten and Henstridge [1984]) and the spatial auto-correlation technique (Aki
[1957], Ohori et al. [2002], Roberts and Asten [2004]). Frequency-wavenumber (f-k) analysis
assumes plane waves to travel across the array of sensors laid out at the surface. Considering
a wave with frequency f , a direction of propagation and a velocity (or equivalently kx and
ky, wavenumbers along X and Y horizontal axis, respectively) the relative arrival times are
calculated at all sensor locations and the phases are shifted according to the time delays. The
array output is calculated by the summation of shifted signals in the frequency domain. If
the waves travel with a given direction and velocity, all contributions will stack constructively,
resulting in a high array output (usually called the beam power, Capon [1969]). The location of
the maximum of the beam power in the plane (kx, ky) provides an estimate of the velocity and of
the azimuth of the travelling waves across the array. With the aim of improving the f-k method,
Capon [1969] added weighting factors to each sensor contribution in the computation of the
array output. They are calculated in order to minimize the energy carried by wavenumbers
differing from the considered one. The high resolution frequency-wavenumber technique is
theoretically able to distinguish two waves travelling at close wavenumbers in a better way than
the f-k method (Capon [1969], Horike [1985]). Empirical results (Woods and Lintz [1973]) show
that the resolving power of the high-resolution method is three to six times greater than the one
of the f-k method. However, as outlined by Asten and Henstridge [1984], the performance of
the method is very dependent upon signal to noise ratio and array design. Another possibility
for analysing the recorded signals is the spatial auto-correlation technique which assumes the
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distribution of sources in the noise wavefield to be random in time and space. In the case of a
single dispersive wave, Aki [1957] demonstrated that the auto-correlation ratios are functions
of the phase velocities and of the array aperture. This propriety was used by several authors
(Chouet et al. [1998], Roberts and Asten [2004]) to derive Vs profiles in varied conditions.

The second step for obtaining Vs profiles consists in inverting the spectral curves (disper-
sion curve or autocorrelation curves). The two frequency wavenumber techniques provide the
apparent dispersion curve which can be inverted using a classical linearized algorithm (Toki-
matsu [1997], Satoh et al. [2001b]), or direct search techniques like the neighbourhood algorithm
(Wathelet et al. [2004]) and the genetic algorithms (Kind et al. [2005], Parolai et al. [2005]).
Autocorrelation curves are commonly inverted in a two step process: the computation of the
dispersion curve from the autocorrelation data and the inversion of the dispersion curve (Chouet
et al. [1998]). Recently, Asten et al. [2004] and Wathelet et al. [2005] presented an adaptation
of this inversion process to obtain the Vs profile directly from the auto-correlation curves. A
further step was made by Parolai et al. [2005] and Picozzi et al. [2005] who performed a joint
inversion of phase-velocity dispersion and H/V ratio curves using a genetic algorithm, accepting
further assumptions on the wavefield structure.

Most of the authors having recently worked on noise array measurements favoured one of
the three processing methods (Ohori et al. [2002], Kind et al. [2005], Okada [2003]). Quan-
tifying the relative efficiency of the various ambient vibration methods is difficult for a real
site where the ”true” structure is often itself a matter of discussion. No papers are currently
published with a comparison of all common microtremor methods based on synthetic signals
which offers an undisputable reference for the model structure. We choose to simulate shallow
structures (depths less than 100 m) which are common in urban areas in Europe and were inves-
tigated during the SESAME project (Site Effects uSing AMbient Excitations, http://sesame-
fp5.obs.ujf-grenoble.fr).

The originality of this paper is to test and compare the ability of the three noise-array
techniques to derive the Vs profile on a synthetic simple case (a shallow single layer overlying a
half-space) with simulated ambient vibrations. The three methods are systematically applied
to three distinct array geometries with varying apertures. The same direct search technique,
the neighbourhood algorithm (Sambridge [1999]), is used for inverting both dispersion and
autocorrelation curves, allowing a comparison of the results. Whereas empirical relationships
are often used for common array layouts (e.g. Tokimatsu [1997]) we propose objective criteria
for selecting the spectral curve ranges appropriate for inversion, defined from the theoretical
array response. The validity of these criteria is checked on the synthetic case.

Spectral characteristics of microtremors

Array records of microtremors are increasingly used to obtain the Vs structure of both shallow
(i.e. lower than 100 m depth, e.g. Wathelet [2005], Di Giulio et al. [2006]) and deep sedimentary
layers (e.g., Satoh et al. [2001b,a], Scherbaum et al. [2003], Okada [2003]). Apart from the
limitation resulting from the array aperture, several authors found a low-frequency limit in the
determination of dispersion curves from vertical components. In the Tokachi Plain (Hokkaido,
Japan) where the resonance frequency varies from 0.17 to 0.34 Hz, Okada [2003] obtained
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dispersion curves down to 0.25 Hz with a maximum array aperture around 1 km. He noticed
that dispersion curves would need to be estimated below 0.2 Hz in order to obtain the bedrock
velocity with microtremors. In Melbourne (Australia), Roberts and Asten [2004] achieved a
minimum frequency of 2.5 Hz, while the fundamental resonance frequency was estimated to
2.3 Hz. In the Cologne area (Germany), Scherbaum et al. [2003] were able to determine stable
dispersion curves on several sites down to 0.7 Hz, which is close to the resonance frequency of
the area. Later, at one of these sites, Picozzi et al. [2005] found that the impedance contrast at
the sediment-bedrock interface can only be retrieved if the H/V ratio curve is jointly inverted
with the dispersion curve of Rayleigh wave. During the SESAME project (deliverable no.
D06.05, http://sesame-fp5.obs.ujf-grenoble.fr//SES TechnicalDoc.htm), various shallow sites
(10 to 100 m of sediments over a bedrock) were investigated with microtremor arrays using
5-sec sensors. The Colfiorito Basin (Italy) is a small-size alluvial structure with a resonance
frequency of about 0.9 Hz in its central part. On this site, Di Giulio et al. [2006] derived
dispersion curves down to 0.8 Hz, due to the drastic drop of energy by a factor 10 between
2 and 1 Hz on the vertical component(Figure 1(a) and (b)). A similar decrease occurs on
the horizontal components but at lower frequency (between 0.7 and 0.4 Hz). In the alluvial
plain of the city of Liège (Belgium), a trough of 4.5 Hz wide was observed in the Fourier
spectra of the vertical component (Figure 1(c)), just below the resonance frequency (5 Hz,
Figure 1(d)). All these examples illustrate the difficulty to obtain the part of the dispersion
curve just below the resonance frequency of a site, even with large arrays, due to the lack
of coherency of propagating waves. Using an oblique impulsive shot as a source, Scherbaum
et al. [2003] numerically showed that the Rayleigh wave dispersion curve is mostly excited at
frequencies higher than the resonance frequency of the layered medium which acts as a high-
pass filter. That does not mean that it is impossible to obtain the dispersion curve at all
frequencies lower than the resonance frequency, as shown by the works of Satoh et al. [2001b,a]
who succeeded in estimating the S-wave velocity structure of deep basins in Taiwan and Japan,
with phase velocities down to 0.2 Hz in favourable cases. In the Taichung basin (Taiwan, Satoh
et al. [2001b]), low Fourier amplitudes between 1 and 2 Hz at two sites prevented to compute
the phase velocities in this frequency range. The large spectral amplitudes at lower frequency
allowed the phase velocities to be estimated between 0.2 and 1 Hz. These results illustrate the
complexity of deriving S-wave velocity models from spectral curve inversion, which depends on
the array aperture, the filter effect of the medium and the wavefield excitation strength. For
shallow structures, numerous authors have faced a lack of coherency in the wave propagation
for frequencies just below the resonance frequency. This paper is focused on the numerical
simulation of 1D shallow structures in the range 0.2-15 Hz, for which a wide trough is observed
in the Fourier spectra of the vertical component below the resonance frequency.

Array capabilities

The performance of an array for deriving phase velocity values in a wavenumber or frequency
range depends on its geometry and on the wave field characteristics. At the present time there is
no global agreement about the capabilities of an array designed at recording ambient vibrations.
Asten and Henstridge [1984] recommended that the array diameter should be at least as large
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as the longest wavelength of interest and that the station spacing for any direction should be
less than half the shortest wavelength of interest so as to avoid aliaising in the wavenumber
domain. Tokimatsu [1997] proposed the following relationships between the minimum and
maximum sensor spacing (Dmin and Dmax) and the minimum and maximum wavelengths (λmin

and λmax) necessary to achieve reasonable results.

λmax < 3Dmax (1)

λmin > 2Dmin (2)

The first relation comes from active source methods for linear arrays and it allows reasonable
results to be obtained for ambient vibration arrays as well (Tokimatsu [1997]). The second one
is derived theoretically from Nyquist wavenumber. Considering a penetration of the order
of half λmax (Park and Xia [1999]) for surface waves, the maximum depth for which Vs can
be computed is about 1.5 Dmax. Accordingly, Satoh et al. [2001b] proposed the maximum
wavelength to be two to four times the maximum sensor separation. Gaffet [1998] stressed
out that the λmin limit obtained from the minimum sensor spacing is not well adapted to an
irregular array grid, as a minimum of 2 points per wavelength is not guaranteed over the entire
array. More recently, Kind et al. [2005] used the common rules of thumb to quantify the low
frequency limit of the deduced dispersion curve, and a manual interpretation to identify the
aliasing limits. After Woods and Lintz [1973], the resolving power of an array depends not
only on the diameter of the array but also on the spatial distribution of the sensors and on the
correlation between the events to be resolved. They proposed to estimate this resolving power
by using the theoretical array response function. This latter function, which we also use for
defining two wavenumber limits kmin and kmax, is given in the (kx, ky) plane by (Woods and
Lintz [1973], Asten and Henstridge [1984]):

Rth(kx, ky) =
1
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where n is the number of sensors in the array, and (xi, yi) are their coordinates. Rth is computed
in Figure 2(b), (e) and (h) for various array geometries (Figure 2(a), (d) and (g), respectivelly)
used in the next sections. Sections are made across each of them along several azimuths and
they are plotted by gray curves in Figure 2(c), (f) and (i).
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where A(f) is the amplitude spectrum. The array output is equal to the theoretical response
(equation 3) translated by vector (k(1)

x , k(1)
y ) and multiplied by the square of the amplitude.

For multiple plane waves travelling across the array, S(1) to S(m), the array output is
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where R(l) is the array output for the single plane wave l defined by equation (4), and S
(l)
i the

wave l recorded at station i. In this case, the array output is always lower than the sum of
translated theoretical responses, and it cannot be simply interpretated as the summation of the
individual shifted theoretical array responses.

From equation (3), the theoretical response Rth always exhibits a central peak which value
is one (kx and ky = 0) and secondary aliasing peaks which amplitude are less or equal to one.
Equation (4) shows that the position of the highest peak of the real array output is directly
linked to the apparent velocity and the azimuth of the propagating wave. For a simple wavefield
(equation (4)), aliasing occurs for all wavenumbers greater than half the wavenumber of lateral
peaks of Rth which reach a value of 1. For a complex wavefield (equation (5)), aliasing is likely
to occur at wavenumbers lower than this value, due to the summation of secondary peaks of
Rth. Concerning the resolving power, the thinner is the central peak of Rth, the more capable
is the array to distinguish two waves travelling at close wavenumbers (Asten and Henstridge
[1984]). Resolution and aliasing limits are then directly derived from the Rth map. Following
Woods and Lintz [1973], the resolution limit (kmin/2) is taken as the radius of the central peak
of Rth measured at the mid-height (0.5). We define the aliasing limit (kmax) as the lowest k
value (greater than kmin/2) obtained at the intersection of Rth with the horizontal line at 0.5,
considering all directions. These two limits are illustrated in Figure 2 (b), (e), (h) and (k)
by black circles while the bold black curves in Figure 2 (c), (f), (i) and (l) correspond to the
azimuths with the most restrictive limit. For simple and regular array geometries, kmin/2 and
kmax can be linked to the maximum and minimum distances between sensors. For irregular
and more usual arrays, these limits are dependent on the spatial distribution of sensors and can
be more rigorously defined from the theoretical array response. In the following sections, we
will check the validity of the wavenumber limits deduced from the theoretical array response
on ambient vibration synthetic data for the three processing techniques.

Simulated synthetic case

The synthetic ground model is composed of a soil layer with a thickness of 25 m overlying an
infinite bedrock. The properties of the two layers are specified in Table 1. The theoretical
Rayleigh dispersion curves (the fundamental and the first four higher modes in the case of an
elastic media) for this model are shown in Figure 3(a) between 1 and 15 Hz. For frequencies
below 15 Hz, only the first five modes exist and they appear to be well separated in the
velocity-frequency plane. Figure 3(b) shows the fundamental Rayleigh ellipticity curve and
the SH transfer function. The fundamental resonance frequency is 2 Hz while the peak of
the fundamental ellipticity is at 1.9 Hz. This little frequency difference, recently studied by
Malischewsky and Scherbaum [2004], is mainly influenced by the magnitude of the velocity
contrast between the sediments and the bedrock.

On this model we set up four arrays (labelled A, B, C and D), the geometries of which
are plotted in Figure 2(a), (d), (g) and (j), respectively. Array A is composed of nine sensors
roughly distributed around a central sensor, with an approximate aperture of 25 meters. Array
B is made of three triangles approximately rotated by 120◦ and with increasing aperture up
to 90 meters. Finally, arrays C and D are made of nine sensors roughly distributed around a



Wathelet et al. 8

central sensor, with an approximate aperture of 100 and 250 meters, respectively. Array D, the
aperture of which is ten times the bedrock depth, has been designed for showing the influence
of the site filtering. From the empirical rules mentioned in the section ”Array capabilities”, the
three other arrays should be able to estimate the S-wave velocity and depth of the bedrock, and
only the results of arrays A, B and C will be used for the inversion. Theoretical f-k responses
for arrays A, B, C and D are shown in Figure 2(b), (e), (h) and (k), respectively. The resolution
and aliasing limits defined in the previous section are summarized in Table 2. The expected
maximum wavelengths deduced from the theoretical array response (resolution limit, kmin/2)
and from Tokimatsu’s criterion (equations 1) are compared in the last two columns of Table 2.
For circular shaped arrays (A,C and D), λmax values deduced from the theoretical array response
are 13% lower than the ones estimated by Tokimatsu’s criterion, while the difference reaches
53% for a non circular array like array B. The former limits are thus more conservative than
the empirical rules.

Synthetic ambient vibrations were computed during 6 minutes using the method proposed
by Hisada [1994, 1995] and used by Bonnefoy-Claudet et al. [2006], which is valid for a one-
dimensional model with sources and receivers placed at any depth. A first dataset was generated
for arrays A to C with 333 source points randomly distributed between 140 and 750 m from the
array centers (Figure 4(a)). A second dataset with the same number of source points was also
generated for array D from 250 to 1500 m. Sources are punctual forces with delta-like functions
of random amplitudes and directions, and with a frequency spectrum from 0 to 15 Hz, showing
a flat part between 0.15 to 3 Hz (Figure 4(b)). The spectrum is limited to 15 Hz in order to
reduce CPU time. All types of waves are modelled, generating a complete wave field containing
body, Love and Rayleigh waves. Previous studies (e.g. SESAME Project, http://sesame-
fp5.obs.ujf-grenoble.fr/Delivrables/Del-D24-Wp13.pdf) pointed out that the approximation of
plane waves is valid for a ratio d/r over 2.5, where d is the distance between the array center
and the sources, and r is array radius (half of the aperture). Figure 4(c) shows, for the four
arrays A, B, C and D, the cumulative distribution of d/r ratios. It turned out that less than
1% (arrays B and C) and 3% (array D) of the sources did not match this requirement.

The spectra of the vertical (V) and one horizontal (H) component of the central station
are shown in Figure 4(d) and (e), as well as the H/V ratio (Figure 4(f)). The computation is
performed over a series of short time windows (e.g. from 10 to 50 cycles at a given frequency)
and statistics are obtained for all spectra (Koller et al. [2004]). The Fourier spectra show that
the energy of the vertical component vanishes in the vicinity of and below the fundamental fre-
quency (1.9 Hz), as reported in previous sections, while the energy on the horizontal component
decreases below 1.5 Hz. This high-pass filtering effect is particularly severe in this two-layer
structure where all the energy which is not trapped in the upper layer flows into the infinite
half-space. The frequency of the H/V peak (2 Hz) matches the resonance frequency of the soft
layer (Figure 3(b)).

Frequency-wavenumber method

The contributions of 333 sources are summed together to simulate ambient vibrations. To
estimate the uncertainty on the apparent velocity determination, the signals are split in several
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short time windows for which the beam power are computed. For each time window, the velocity
of the beam power peak is searched for wavenumbers below 1.5 rad/m and for velocities between
150 and 2000 m/s. From a coarse griding in the wavenumber plane, the vector (kx, ky) of the
highest peak is iteratively refined to an arbitrary small precision. Thus, for each frequency band,
an histogram of the velocities at the observed maxima is constructed (e.g. Figure 5(a) for array
C and 10 cycles) as proposed by Ohrnberger et al. [2004]. Slowness axis is chosen for the
statistics because slowness depends linearly upon the measured time shifts. This choice affects
the shape of the density probability function. The areas below the histograms are normalized
to one in the slowness domain, explaining the high values for the probability density functions.
The curves in Figure 5(c) are sections across the histograms of Figure 5(a) and 5(b) at 3 Hz.

The influence of the window length is first studied for array C by calculating the histograms
for time windows containing 10 and 50 cycles (Figure 5(a) and 5(b), respectively). The results
are compared to the theoretical dispersion curves drawn in the same figure. In Figure 5(a),
the velocity average deviates from the theoretical dispersion curve with a constant bias of 50
or 100 m/s towards lower velocity, whereas for the 50-cycle case (Figure 5(b)), all the velocity
estimates are closer to the theoretical curve and the standard deviations are much smaller.
Both cases are calculated with the same duration of signals (six minutes), resulting in five
times more windows in the 10-cycle case. To test the robustness of the statistics, one minute
and 12 seconds of signals are also processed with time windows of 10 cycles, containing the
same number of time windows as in the 50-cycle case calculated with the 6 minutes of signals.
The obtained histograms are the same as in Figure 5(a). Hence, with short time windows,
increasing the number of windows neither reduces the gap to the theoretical curve nor the size
of resulting error bars.

A similar processing is applied to the signals of arrays A, B and D (six minutes of signals
and time windows of 50 cycles). The velocity histograms of arrays A, B, C and D are compared
in Figure 6(a), 6(b), 5(b), and 6(c), respectively. The proposed validity curves are drawn in
the same way as in Figure 5.

For arrays A to C, the phase velocity values are correctly estimated between kmin and
kmax/2, except around 6 Hz for array A and over 3.5 Hz for array D. Between kmin/2 and kmin,
an increase of the uncertainty is observed for all arrays, associated with a deviation from the
theoretical dispersion curve for arrays A and B. Only in case of array C could the range be
extended to kmin/2 (Figure 5(b)). In Figure 5(b) (array C) and Figure 6(c) (array D), bad
estimations of velocity due to aliasing take place over kmax/2. A similar conclusion could be
drawn to a lesser extent for array B (Figure 6(b)). Due to the limited available frequency range,
the aliasing effect cannot be observed for array A (Figure 6(a)).

For array A, the measured velocity is slightly over the theoretical Rayleigh velocity around
6 Hz. If we consider a single source acting far from array A, a similar bump is observed in the
dispersion curve (Figure 7(a)), while the dispersion curve is perfectly retrieved with one source
from 2.5 Hz to 20 Hz for arrays B and C (not shown). Figure 7(b) and (c) shows the responses
of arrays A and B, respectively, in the plane (kx, ky) for the single source at 6.5 Hz. A single
large maximum appear for array A (Figure 7(b)) whereas two individual peaks are visible for
array B (Figure 7(c)), corresponding to the slownesses of the fundamental and the first higher
mode. Hence, the bad performances around 6 Hz, within the array limits deduced from the
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theoretical array response, is due to the presence of two dominant modes in the wavefield, that
array A is not able to resolve.

For the largest array D, a strong deviation from the correct phase velocity is observed below
2.2 Hz, which is also the lower limit of the dispersion curve for the single source analysis with
array A (Figure 7(a)). These results highlight the lack of energy below the resonance frequency,
resulting from the filtering of the layer. As explained before, the dispersion curve of array D is
not considered during the inversion.

For each array (except array D), an average and a standard deviation is calculated between
kmin and kmax/2 based on the histograms of Figure 5(b) and 6. The three curves are averaged
taking into account the respective weights (number of time windows) to construct the final
dispersion curve plotted in Figure 11 (b). The measured dispersion is reliable for frequencies
above 3 Hz. This limit is linked to the decrease of the Rayleigh wave energy (vertical component)
at and below the fundamental resonance frequency (2 Hz).

The obtained dispersion curve is inverted with five distinct runs of the neighbourhood
algorithm, generating a total of 50,000 models. The parameterised model consists of a sediment
layer whose wave velocity increases with depth according to a power law, and a half-space at the
base. The gradient introduces a supplementary degree of freedom for scanning more models,
compared to a uniform sediment layer over a half space. The parameters to invert are six: Vp

and Vs in the two layers, the layer thickness and the velocity increase between the top and the
bottom of the sediment layer. Contrary to a classical approach, Vp is kept as a parameter to
be sure that all possible value of Vs are investigated. Figure 11(a) shows the Vs profile for all
models fitting the dispersion curve with a misfit less than one. The misfit function is defined
by the following equation (Wathelet et al. [2004]),

misfit =

√

√

√

√

nF
∑

i=1

(xdi − xci)2

σ2
i nF

(6)

where, xdi is the velocity of data curve at frequency fi, xci is the velocity of calculated curve at
frequency fi, σi is the uncertainty of the frequency samples considered, and nF is the number
of frequency samples. The dispersion curves corresponding to the misfit threshold of one are
plotted in Figure 11(c). Dispersion curve inversion leads to a good definition of the Vs profile
for the first 25 m. Below this depth, a large range of Vs values may explain the measured
dispersion curve, due to the lack of information at low frequency.

High resolution method

For the four arrays A, B, C, and D, the dispersion curves were calculated by searching the
maximum of the high-resolution frequency wavenumber estimator defined by Capon [1969].
The estimator depends upon the cross spectral matrix calculated with frequency averaging and
inverted after an eigen value decomposition. The process is performed for sliding time windows
(50 cycles) during the 6 minutes of available signals. The results are shown in Figure 8(a)
to 8(d), for arrays A, B, C and D, respectively, as well as the four validity curves used for
analysing the results of the f-k method. From figure 8, the velocity estimation of arrays B and
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C is reliable between kmin and kmax/2, similarly to the results of the f-k method. For arrays
B and C, the high resolution method still provides acceptable results below kmin/2 (down to
around kmin/3 in both cases) and, extending the validity range at low frequency with, however,
a regular increase of the uncertainty. On the contrary, no improvement is provided by the
high resolution method at high frequency, as shown by the dramatic increase of error bars
over kmax/2. For array A, the method does not succeed better than the f-k method and also
overestimates the velocity between 6 and 9 Hz. For array D, no improvements are obtained for
frequencies below 2.2 Hz, confirming that the lack of resolution power does not come from the
array geometry but from the lack of energy in the wavefield (Figure 4(d)).

After selecting the velocity values between the validity curves (kmin/2 and kmax/2), an
average dispersion curve is calculated to feed the inversion algorithm. We performed exactly
the same inversion processes as for the f-k results (Figure 11 (c) and (d) ). The Vs value is
accurately retrieved down to the major impedance contrast but Vs below 25 m is not constrained
from the dispersion curve. In this case, the extension of the curve in the low frequency range
does not induce a significant improvement in the inverted Vs profile.

Spatial autocorrelation

Finally, the signals simulated for the three arrays A, B and C were analysed using the spatial
auto-correlation method described in Wathelet [2005]. The azimuths and the distances between
all couples of stations are shown in Figure 9 (a) to (c). The pairs of gray circles are the selected
rings for the spatial auto-correlation curves computation. Distances are summarized in Table 3.
A total of 15 auto-correlation curves (five by array) was calculated for time windows of 25 cycles.
Only one curve per array is shown in Figure 9 (d) to (f) with gray dots and gray errors bars.
The consistency of all 15 auto-correlation curves is checked on dispersion curves in Figure 10(a)
to 10(c), for arrays A to C, respectively. Only the samples fitting the criteria shown in Figure 10
(see Wathelet [2005] for details) are kept for the autocorrelation curve inversion. They are plot
with black dots in Figure 9 (d) to (f).

The 15 autocorrelation curves with the selected samples are inverted with five independent
runs keeping the same parameterisation as for the two preceding methods. The results are shown
in Figure 11. Only three autocorrelation curves among the fifteen are plotted in Figure 11(g)
to 11(i). A good agreement is found between the calculated curves and the observed auto-
correlations (black dots and their error bars) even below 2 Hz. Vs models deduced from the
inversion (Figure 11 (g) and (h)) exhibit the same features as the ones obtained with the other
two methods: the Vs value is correct in the top layer while Vs below the major impedance
contrast is very poorly resolved. Comparing Figure 11(a), 11(c) and 11(e), the auto-correlation
method offers a little more constraint on Vs in the bottom layer, resulting from the additional
information at low frequency. The dispersion curves corresponding to the models are drawn for
comparison with the theoretical ones in Figure 11(f). The auto-correlation method correctly
retrieves the dispersion curve for all frequencies above 2.5 Hz. Below this value, the uncertainty
on the curve determination dramatically increases (Figure 11(f)).
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Discussion and Conclusions

Three processing methods have been tested to retrieve the dispersion characteristics (dispersion
curves or autocorrelation curves) on a two-layer model from simulated noise array measure-
ments: the f-k method, the high-resolution method and the spectral autocorrelation technique.
The vertical components of synthetic signals were processed and the dispersion and autocorrela-
tion curves were inverted with the same technique (neighbourhood algorithm) to obtain the Vs

profile. During the first phase, a special attention was paid to the required time window length
and to the reliable frequency range of the spectral curves, which depends on the array geometry
and on the wavefield structure (number of simultaneously acting sources and the presence of
higher modes). We propose to estimate the reliable frequency range after the computation of the
theoretical array response which takes into account the real array geometry, contrary to more
classical rules of thumb calculated from the minimum and maximum distances between sensors
which are less conservative. Comparing the derived dispersion curves to the theoretical one,
we conclude that the wave number limits deduced from the theoretical array response are con-
sistent with the capabilities of the f-k method and can be used as first-order objective criteria.
Outside those limits, the calculated curves may exhibit strong bias. As a consequence, several
array apertures have to be systematically used to construct the dispersion curves piece by piece
to cover the widest frequency range. For the processed cases, a time window length of at least
50 cycles is required to obtain a low uncertainty on the dispersion curve. The high-resolution
f-k method was found to be more efficient for some arrays than the f-k approach in defining
the dispersion curve, particularly in the low frequency range. However, such improvement was
not systematically observed for all arrays and appeared to be linked to an increase of the un-
certainty. The comparison of the spectral curves before inversion (Figure 11(b), (d) and (g) to
(i)) shows that the high-resolution f-k and the auto-correlation methods allow information in
the low frequency range to be gained (down to 2.5 Hz and 2 Hz, respectively) compared to the
f-k technique (3 Hz). The combined application of the three techniques is then recommended
to check the validity and to increase the reliability of the results. For the three methods, a lack
of resolution power was observed for array A, even in the proposed validity limits, due to the
excitation of the first higher mode. From the inversion point of view, all three methods have
almost the same efficiency for retrieving the Vs profile of this two-layer synthetic case, down
to about 25 m which is the depth of the bedrock. For the shallow structure studied here, no
method is able to determine the magnitude of the velocity contrast between the sediments and
the bedrock, even with larger arrays. This limited penetration depth is a direct consequence
of the high-pass filtering effect of the ground structure on the vertical component, which is
particularly severe for a pure 2-layer medium. This phenomenon has already been frequently
observed in numerous real sedimentary sites as a trough in the spectral amplitudes below the
resonance frequency, which makes difficult the computation of the dispersion curve in this fre-
quency band. The presence of these low spectral amplitudes can be a limitation for assessing
the S-wave velocity in the top of the bedrock. To overcome this problem, Picozzi et al. [2005]
proposed to recover S-wave velocity of the bedrock by a joint inversion of the dispersion curve
and the shape of the H/V spectra, assuming a 1:1 ratio between the horizontal and vertical
loading forces. Even if such joint inversion is promising, this supplementary assumption can be
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hard to check for routine applications, and recent studies (Bard [2004]) pointed out that the
shape of the H/V ratio can be sensitive to different external conditions like wind or strong rains.
Another alternative to address the problem of penetration is to consider horizontal components
which are richer in low frequency waves than vertical ones.
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R. T. Lacoss, E. J. Kelly, and M. N. Toksöz. Estimation of seismic noise structure using arrays.
Geophysics, 34:21–38, 1969.

P. G. Malischewsky and F. Scherbaum. Love’s formula and H/V-ratio (ellipticity) of Rayleigh
waves. Wave Motion, 40:57–67, 2004.

M. Ohori, A Nobata, and K. Wakamatsu. A Comparison of ESAC and FK Methods of Es-
timating Phase Velocity Using Arbitrarily Shaped Microtremor Arrays. Bull. Seism. Soc.

Am., 92:2323–2332, 2002.

M. Ohrnberger, E. Schissele, C. Cornou, S. Bonnefoy-Claudet, M. Wathelet, A. Savvaidis,
F. Scherbaum, and D. Jongmans. Frequency wavenumber and spatial autocorrelation meth-
ods for dispersion curve determination from ambient vibration recordings. In Proc. of 13th

World Conf. on Earthquake Engineering, Vancouver, B.C., Canada, August 1-6, 2004.

H. Okada. The Microseismic Survey Method: Society of Exploration Geophysicists of Japan.

Translated by Koya Suto, Geophysical Monograph Series No. 12. Society of Exploration
Geophysicists, 2003.

Miller; R. D. Park, C. B. and J. Xia. Multichannel analysis of surface waves. Geophysics, 64:
800–808, 1999.

S. Parolai, M. Picozzi, S. M. Richwalski, and C. Milkereit. Joint inversion of phase velocity
dispersion and H/V ratio curves from seismic noise recordings using a genetic algorithm, con-
sidering higher modes. Geophysical Research Letter, 32:L01303, doi:10.1029/2004GL021115,
2005.

M. Picozzi, S. Parolai, and S. M. Richwalski. Joint inversion of H/V ratios and dispersion
curves from seismic noise: Estimating the S-wave velocity of bedrock. Geophysical Research

Letter, 32:L11308, doi:10.1029/2005GL022878, 2005.

J. C. Roberts and M. W. Asten. Resolving a velocity inversion at the geotechnical scale using
the microtremor (passive seismic) survey method. Exploration Geophysics, 35:14–18, 2004.

M. Sambridge. Geophysical inversion with a neighbourhood algorithm: I. Searching a parameter
space. Geophys. J. Int., 138:479–494, 1999.



Wathelet et al. 16

T. Satoh, H. Kawase, T. Iwata, S. Higashi, T. Sato, K. Irikura, and H.-C. Huang. S-Wave
Velocity Structure of the Taichung Basin, Taiwan, Estimated from Array and Single-Station
Records of Microtremors. Bull. Seism. Soc. Am., 91:1267–1282, 2001a.

T. Satoh, H. Kawase, and S. I. Matsushima. Estimation of S-Wave Velocity Structures in and
around the Sendai Basin, Japan, Using Array Records of Microtremors. Bull. Seism. Soc.

Am., 91:206–218, 2001b.

F. Scherbaum, K.-G. Hinzen, and M. Ohrnberger. Determination of shallow shear wave velocity
profiles in the Cologne/Germany area using ambient vibrations. Geophys. J. Int., 152:597–
612, 2003.

K. Tokimatsu. Geotechnical site characterization using surface waves. In Ishihara (ed), edi-
tor, Proc. 1st Intl. Conf. Earthquake Geotechnical Engineering, volume 3, pages 1333–1368.
Balkema, 1997.

M. Wathelet. Array recordings of ambient vibrations: surface-wave inversion. PhD thesis,
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Tables

Thickness Vp Vs Density Qp Qs

25 m 1350 m/s 200 m/s 1.9 t/m3 50 25
– 2000 m/s 1000 m/s 2.5 t/m3 100 50

Table 1: Properties of the synthetic model.

Array name Min. dist. Max. dist. kmin/2 kmax/2 fmin fmax
2π

kmin/2
3Dmax

A 8 m 25 m 0.095 0.75 4.2 ≥ 15.0 66 75
B 13 m 87 m 0.037 0.25 3.0 7.6 170 261
C 34 m 99 m 0.024 0.20 2.4 6.2 262 297
D 84 m 248 m 0.0096 0.075 1.4 4.0 655 744

Table 2: For arays A to D, minimum and maximum distances between sensors, minimum and
maximum wavenumbers deduced from the theoretical frequency-wavenumber responses in Fig-
ure 2(b), (e), (h) and (k). The next columns are the minimum and maximum frequencies read
on the theoretical Rayleigh fundamental mode corresponding to kmin/2 and kmax/2, respec-
tively. The last two columns are the expected maximum wavelength calculated from kmin/2
and from Tokimatsu’s criterion (equations 1, Tokimatsu [1997]).
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Array name Min. radius Max. radius Number of pairs
A 7.8 9.4 9
A 12.1 13.2 9
A 15.3 17.0 9
A 21.2 22.5 9
A 24.4 25.3 9
B 12.5 18.0 6
B 22.0 26.3 9
B 34.7 43.3 12
B 49.1 63.8 12
B 73.8 87.3 6
C 33.5 35.0 9
C 48.4 54 9
C 63.9 65.1 9
C 85.6 87.3 9
C 97.5 99.4 9

Table 3: Distance limits for the selected rings for arrays A, B and C. The last column is the
number of station couples included in each ring. Distances are expressed in meters.
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Figure 1: Top: vertical (black curves) and horizontal (gray curves) spectra measured on mi-
crotremors at two real shallow sites: (a) Colfiorito plain, Italy, and (c) Liège city, Belgium.
Plain lines are average curves and dashed lines represent one standard deviation. Bottom:
corresponding H/V ratios measured at (b) Colfiorito plain and (d) at Liège city. The average
and the standard deviation of the peak frequency is indicated by the grayed areas.
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Figure 2: (a), (d), (g) and (j) Geometries of arrays A, B, C and D, respectively. (b), (e), (h) and
(k) Their corresponding theoretical frequency-wavenumber responses. The circles correspond
to the chosen wavenumber limits detailed in Table 2. (c), (f), (i) and (l) Sections across several
azimuths for the theoretical frequency-wavenumber grids of arrays A, B, C and D, respectively.
The black curve corresponds to the orientation of the line drawn in Figure (b), (e), (h) and (k).
Note that the wave number scale is not the same for arrays A-B and C-D.
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Figure 3: Synthetic model. (a) Dispersion curves for Rayleigh modes: fundamental mode
(thick plain line), first (thick dashed line), second (thin plain line), third (thin dashed line),
and fourth higher modes (thin dotted line). Other modes do not exist in the plotted range. (b)
Fundamental Rayleigh ellipticity curve (dotted line) and theoretical SH transfer function for
the synthetic model (plain line).
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Figure 4: Simulated wavefield: (a) Spatial distribution of sources (black dots) and receivers
(gray dots). (b) Source Fourier amplitude spectrum. (c) Distribution of sources versus the
ratio of distance to array (d) and its radius (r). (d) and (e) Fourier spectra recorded at the
receivers of the arrays on the vertical and east components. The plain line is the average and
the dashed lines are located at one standard deviation. (f) Average H/V ratio observed for the
stations of the arrays A, B, C and D. Grey bands indicate the average and standard deviation
of the frequency peak values observed for each individual time window.
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Figure 5: Frequency-wavenumber analysis for array C, influence of the time window length. (a)
Histograms of velocities with a beam power peak obtained for time windows of 10 cycles. For
each plot, the thin lines are the theoretical dispersion curves for the synthetic model (first four
modal curves of Figure 3). The four exponential curves represent constant wavenumber values:
kmin/2 (continuous line), kmin (dot-dash line), kmax/2 (dots) and kmax (dashed line). (b) Same
processing for time windows of 50 cycles. (c) Cross sections at 3 Hz, through the histograms of
Figure (a) and (b), shown by dotted and plain lines, respectively. Horizontal axis is in slowness
(see text)
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Figure 6: Frequency-wavenumber method applied to arrays A (a), B (b) and D (c) with time
windows of 50 cycles as in Figure 5(b). The histograms and the curves are of the same type as
in Figure 5.
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Figure 7: Wavefield composed of a single far source: (a) Frequency-wavenumber analysis for
array A. The black dots show the dispersion curve obtained from the frequency-wavenumber
method. The other curves are similar to the ones in Figure 5. (b) and (c) Array responses
calculated at 6.5 Hz for arrays A and B, respectively.
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Figure 8: Dispersion curves derived from the high resolution frequency-wavenumber method
applied to arrays A (a), B (b), C (c) and D (d). The black lines with dots and error bars,
obtained from computations, are compared to the theoretical dispersion curves (thin plain
lines). The gray exponential curves are similar to the ones in Figure 5.
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Figure 9: (a), (b) and (c) Azimuth-inter-distance plots for arrays A,B and C, respectively: each
dot represents one couple of stations. The pairs of gray circles show the limits of the chosen
rings. (d), (e) and (f) Examples of auto-correlation curves obtained for arrays A, B and C,
respectively. The black dots and error bars are the samples selected according to criteria of
Figure 10.
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Figure 10: (a) to (c) Analysis of the autocorrelation curves obtained for arrays A to C, re-
spectively: grids in frequency-slowness domain representing the density of dispersion curve
solutions. The plain lines are the wave number limits deduced from the solution density grids.
The dashed and the dot-dashed curves are the limits of the apparent dispersion curve or the
limits of the area with a high density of solutions.
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Figure 11: Results of dispersion curve inversion obtained with the three signal processing
methods: frequency-wavenumber ( Figure (a) and (b) ), high resolution method ( Figure (c)
and (d) ) and spatial auto-correlation ( Figure (e) to (i) ). (a), (c) and (e) Vs models and
(b), (d), and (f) the corresponding dispersion curves. The dots and error bars represent the
experimental dispersion or spatial auto-correlation curves deduced from the processing of arrays
A to C. The black lines of Figure (a) and (c), (e) are the velocity profiles of the synthetic model.
In Figure (g) to (i), only three of the 15 auto-correlation curves are shown.


