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Abstract 

This paper presents the Paris Basin numerical modelling at a high sequential resolution scale 
(1–5 my). Simulations were carried out from the computation of thermal gradients and 
conductivities varying with the burial of genetic units. Geologic heating rates are also 
calculated throughout the burial of the stratigraphic sequences. Thermal energies are then 
deduced. The Paris Basin is well known for its hydrocarbon potential in Liassic sediments. 
This study is focused on an east–west cross-section through the basin. The results show 
spatial and temporal variations of thermal parameters from the western to the eastern part of 
the profile. The reactivation of Hercynian fracture systems during the Mesozoic may be 
responsible for the computed variations in thermal conductivities and thermal gradients. 
Major geodynamic events also played a role in the simulated thermal history. Variations of 
the thermal energy are observed and are well correlated with the burial history of the basin. 
We suggest linking the simulated thermal energies to the thermal cracking of the organic 
matter. Our results are consistent with the prediction of hydrocarbon potential in the 
Cretaceous period. Consequently, this approach provides new insights to improve petroleum 
generation modelling issues. 

Keywords: Paris Basin; Organic matter; Numerical modelling; Thermal energies; Geologic 
heating rates 

1. Introduction 

During the Early Jurassic evolution phase of the Paris Basin, transgressions allowed for the 
deposition of open-marine clays and the development of anoxic medium conditions 
favourable to the preservation of organic matter (OM) and thus to the formation of 
hydrocarbon source rocks ([Espitalie et al., 1987], [Ziegler, 1988], [Hanzo and Espitalie, 
1993] and [Disnar et al., 1996]). In the central part of the basin, the Hettangian–Sinemurian 
sediments are well known for their hydrocarbon potential (Espitalie et al., 1987). The Paris 
Basin has already been the subject of a great number of studies aiming at reconstructing its 
evolution and the history of hydrocarbon genesis in its oil-prone formations. As to the 
maturity of the organic matter, geochemical analyses indicate that in the central part of the 
basin, the transformation ratio reached 80% for Hettangian–Sinemurian sedimentary units, 
and 40% for Lower Toarcian shales (Espitalie et al., 1987). For Early Jurassic source rocks, 



the major hydrocarbon expulsion phases occurred during the Late Cretaceous and the Tertiary 
period (Espitalie et al., 1987). 

Scientists commonly use basin modelling for reconstructing thermal history and investigating 
hydrocarbon genesis. During the subsidence of a basin, sedimentary sequences are subjected 
to increasing pressure–temperature conditions. These conditions entail the rock's compaction 
and the simultaneous decrease in porosity and increase in thermal conductivity. Due to higher 
thermicity related to the burial of source rocks, thermal energy is provided to sedimentary 
organic matter thus generating hydrocarbons ([Tissot and Welte, 1984], [Disnar, 1986] and 
[Disnar, 1994]). Although most common commercially available softwares (Temispack, 
PetroMod, …) are powerful tools for basin modelling, we developed and used the (1D) 
computer program TherMO'S ([Amir, 2002] and [Amir et al., 2005]). A flow chart of the 
model is displayed in Fig. 1. Here, we focus on the computation of thermal parameters from 
burial basin simulations within a stratigraphic sequence framework. 

In this paper, we present and discuss the results obtained by applying TherMO'S to 19 
boreholes located in the central part of the Paris Basin and delineating an E–W cross-section 
(see Fig. 2) ([Amir, 2002] and [Amir et al., 2005]). The basin modelling is based on a 
stratigraphic sequence database built up from well logging and correlation of maximum 
flooding and flooding surfaces ([Robin et al., 1996] and [Robin, 1997]). 
 

The first part of the present paper is dedicated to the methodology and the data used. The 
second part presents the results of the simulations. Finally, in the last section of the paper, we 
discuss to what extent the spatial and temporal variations of thermal parameters are related to 
the Paris Basin history and whether there might be implications for organic matter maturation 
processes. 

2. Methods and data 

2.1. Modelling 

In this work, we used the (1D) TherMO'S software we developed to estimate the thermal 
parameters of the sedimentary basin at the stratigraphic scale. A detailed description of the 
model is published in Amir et al. (2005). The simulated burial curves are obtained from the 
porosity–depth empirical law as commonly used in basin modelling (Allen and Allen, 1990). 
Then, using calculated palaeo-porosities values, the thermal palaeo-conductivities are 
estimated from the geometric mean model of Vasseur et al. (1995). To reconstruct the thermal 
history of the basin, basal heat flux values are firstly proposed and re-adjusted throughout the 
thermal modelling procedure (Amir et al., 2005). For each sequence, thermal gradients and 
temperatures are computed from Fourier's law, using thermal palaeo-conductivities previously 
calculated during the burial procedure. Then, next steps of this thermal procedure are based 
on the Arrhenius law. In 1986, (Disnar, 1986) and (Disnar, 1994) published a model to 
estimate palaeo-temperatures using optimum temperatures issued from Rock-Eval pyrolysis. 
Here, we considered a similar modelling but we suggest deducing thermal energies according 
to the thermal parameters computed throughout each sequence burial simulation. Finally, the 
organic matter optimum thermal cracking temperatures measured in the laboratory with a 
Rock-Eval pyrolyzer constrain the calibration of the thermal parameters. 



2.2. Data 

The data we used for the Paris Basin case study involve (1) a Mesozoic stratigraphic database, 
(2) surface palaeo-temperatures estimated from isotopic analysis (Bowen, 1966) and (3) 
organic matter optimum thermal cracking temperatures issued from Rock-Eval pyrolysis 
(Espitalie et al., 1987). 

The stratigraphic database was worked out from well-log correlations ([Robin et al., 1996] 
and [Robin, 1997]). Correlated for all the boreholes studied, maximum flooding surfaces 
(MFS) were taken as the lower limit for transgressive deposits. Similarly, the flooding 
surfaces (FS) were taken as the lower limit for regressive deposits. The percentage of shale 
recorded in the well-logs was also one of the main parameters considered for the 
identification of the transgressive–regressive periods. Finally, each isochron was dated with 
reference to Odin's (1994) dating scale. The lithologic composition for the Hettangian MFS 
for selected wells is shown in Fig. 3. 

Organic geochemistry concepts applied to describe the sedimentary organic matter (SOM) 
maturation involve two main parameters, namely the optimum cracking temperature and the 
corresponding kinetic energy. Both these parameters are measured either from laboratory 
maturation experiments or by temperature-programmed Rock-Eval pyrolysis ([Espitalie et al., 
1985a] and [Espitalie et al., 1985b]). In this study, we used published values for the optimum 
thermal cracking temperature (Espitalie et al., 1987). 

3. Results 

3.1. Burial history simulation 

Fig. 4 shows the curves simulated for selected wells located on the cross-section. The burial 
sequence is marked by two main tendencies: (i) between 205 and 151.3 Ma, a fast subsidence 
is observed, (ii) from 151.3 Ma to 80 Ma, the burial rate slows down. Table 1 presents the 
burial rate spatial variation calculated for specific periods. 

Distinct successively slow and fast burial phases are evidenced from the West to the East of 
the profile (Fig. 4). The increase of burial rate recorded within the Pliensbachian period and at 
the end of the Malm period looks different depending on the wells' location. Specifically, 
comparing the results obtained for wells A and H (Table 1), we found that the burial rate 
evolves differently with time and space. For example, between 202.2 and 191.9 Ma, the 
calculated rate is 26.6 m/My and 10.6 m/My at sites A and H, respectively. 

3.2. Spatial and temporal evolutions of thermal parameters 

3.2.1. Thermal conductivities 

Thermal conductivities commonly increase with time during burial history (Fig. 5a). Values 
range from 0.8 W/m/K for Early Liassic time to 2.2 W/m/K during the Lower Cretaceous 
period. However, from the western to the eastern part of the profile, thermal conductivities 
evolve at different rates during the basin burial. The geometric mean model used to calculate 
thermal conductivity permits integration of mineral composition and porosity of rocks 
(Vasseur et al., 1995). Variations of burial entail variations in porosity. This causes lateral 



conductivity changes. Hence, a spatial and temporal evolution of thermal conductivity is 
observed throughout the basin history. 

3.2.2. Thermal gradients 

The thermal gradients decrease according to the burial sequence history (Fig. 5b). However, 
distinct spatial and temporal evolutions are well highlighted in the western and in the eastern 
part of the profile. Comparing the values obtained for well A and H (Table 2), we found that 
the highest decrease of the thermal gradient occurred within the Liassic period, i.e. between 
202.2 and 191.9 Ma. The rate of this decrease differs from well A and H. For well A, this 
period corresponds to one of the greatest burial rate phase (26.6 m/My) while the burial rate 
was only 10.6 m/My for well H. This difference results in a greater decrease of the thermal 
gradient for well A (24 °C/km) in comparison to well H (14.6 °C/km). From 141 to 120 Ma, 
we found that the decrease of the thermal gradient was very low (−0.8 °C/km for both wells) 
and corresponded to the finishing Malm–Lower Cretaceous period marked by the slowest 
burial rate estimated to 4.8 and 7.2 m/My for wells A and H, respectively. From the end of the 
Malm, gradient values are ranging between 30 and 50 °C/km (Fig. 5b). 

3.3. Geologic heating rate and thermal energy 

The modelling was carried out using the classical Arrhenius theory. The model estimates 
geologic heating rates, the organic matter optimum cracking temperatures, and the 
corresponding activation energy. The geologic heating rates are calculated from the burial 
rates and the thermal gradients. Thus, due to the spatial and temporal variations observed for 
both parameters, the geologic heating rates also display distinct lateral and vertical evolution 
(Fig. 6). The data shown in Table 3 indicate the influence of geologic heating rate variations 
on the energies estimated for wells A and H. Throughout the burial history, we found distinct 
geologic heating rates ranging between 0.03 °C/My and 10.9 °C/My. The results also indicate 
that increasing the heating rate also decreases the energy, and the conversely is also true. 

Distinct evolutions are observed between wells A and H. Furthermore, we notice that 
variations of the heating rates occur within very short time intervals (Table 3). For example, 
between 187.5 and 187.2 Ma (time interval: 0.3 my), an increase of the heating rates is 
estimated at 5.7 °C/My resulting in a decrease by 1.3 kcal/mol for the energy. Between 160.9 
and 159.4 Ma, an increase of 6 °C/My for the geologic heating rates is immediately followed 
by a decrease of the same amount for well A. For well H, the same evolution is observed 
although the amount of increase is weaker (3 °C/My). For both cases, this causes a variation 
of the energy by 1–2 kcal/mol. The most important variation occurs during the Malm. At 
151.3 Ma, we found the heating rates increase by 10.9 °C/My and 5 °C/My, for wells A and H 
respectively. Consequently, the energy decreases by 2 kcal/mol for both wells. Finally, from 
the Lower Cretaceous, the energies are estimated between 46 and 49 kcal/mol. The 
corresponding geologic heating rates all range below 2 °C/My. 

4. Discussion 

Basin analysis typically considers constant or linear thermal gradients. In this work, the 
computation of the thermal gradients takes into account the spatial and temporal variations of 
thermal conductivities. This approach permits the estimation of thermal energies from the 
spatial and temporal variations of the geologic heating rates. 



Previously published data largely agree with the results obtained. Considering all the Liassic 
horizons penetrated by well A, the mean thermal gradient we computed also matches with 
previous studies dealing with the present day thermal regime of the Paris Basin (50–
70 °C/km) ([Amir et al., 2005] and [Gaulier and Burrus, 1994]). 

Variations in burial rates and effects on the simulated thermal parameters can be explained 
from published geodynamic investigations on the Paris Basin. In 1980, Megnien suggested 
the occurrence of syn-sedimentary faulting and more generally reactivation of Hercynian 
structures during the Pliensbachian stage. Later, Ziegler (2005) underlined the occurrence of 
repeated Mesozoic reactivation of fracture systems transecting the Paris Basin. He also 
emphasised the control of subsidence by geodynamic processes from the Permian to Early 
Cretaceous times. Finally, he suggested the occurrence of a Stephanian–Permian tectono-
magmatic event followed by thermal subsidence. This could explain the high thermal gradient 
values we estimated in our modelling for the Liassic period. Episodes of thermal anomalies 
during the basin evolution were also suggested in other studies based on clay minerals 
experiments ([Spötl et al., 1996] and [Liewig et al., 1987]). 

The major contribution of this work deals with the modelling of spatial and temporal 
variations of thermal energies according to the basin history. The great issue concerns the 
possible influence on chemical reactions and organic matter thermal cracking in particular. 
During its thermal degradation, the organic matter evolves depending on distinct molecular 
hydrocarbon classes basically depending on its composition. Consequently, the question of 
frequency factor choice in the Arrhenius law is complex. To reproduce the formation of each 
component type issued from the thermal cracking of the sedimentary organic matter, scientists 
use distinct frequency factors ([Ungerer et al., 1988], [Behar et al., 1988] and [Behar et al., 
1992]; Burnham and Sweeney, 1989; [Burnham and Braun, 1990], [Vandenbroucke et al., 
1999] and [Al Darouich, 2005]). Here, we use a constant frequency factor for the whole study 
and focus on the temporal variation for the thermal energy distribution. The results obtained 
show that thermal energies values computed for the end of the Malm–lower Cretaceous 
interval are consistent with kinetic models favourable for hydrocarbon genesis. Moreover, 
according to Espitalie et al. (1987), hydrocarbon production began in the Cretaceous period. 

5. Conclusion 

Understanding the temporal and spatial variations of thermal parameters in basin modelling 
has implications for petroleum issues. Experimental and fundamental research show that 
thermal cracking of the organic matter depends on the heating rate. Thermal parameters 
recorded within sedimentary deposits constrain organic and mineral reactions occurring 
during the formation and evolution of a basin. The key objective of this work was to seek how 
far spatial and temporal variations of thermal conductivity and thermal gradient affect the 
kinetic transformation of the sedimentary organic matter. This approach permits the 
calculation of thermal energies that can be linked to occurrence of chemical reactions in case 
they correspond to activation energies. The comparison between the thermal energy values 
provided by burial history and tectonics, and activation energies measured in laboratory 
experiments, might help to better assess and constrain kinetic distribution models. In this 
work, the variations of the thermal parameters directly relate to syn-sedimentary tectonics and 
geodynamic processes. Kinetic computational modelling could be considerably improved. 
Finally, kinetic energy models computed according to basin history might also help to 
estimate the timing of organic–inorganic interactions within a stratigraphic sequence 
framework. 
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Figures and Tables 
 

 
 
Fig. 1. Flow chart of the TherMO'S computer program. Tmax corresponds to the optimum 
thermal cracking temperature of the organic matter. 
 
 
 
 
 
 
 
 



 
 
Fig. 2. Boreholes location on the E–W studied cross-section. Faults are represented by bold 
dashed lines (FS: Seine Fault; FSy: Sennely Fault; FL: Loire Faut; FC: Chaunoy Fault; FB: 
Bray Fault; FStMBos: St Martin de Bossenay Fault). 
 
 
 

 
Fig. 3. Lithologic composition for the H1 isochron representing the lower limit of the mid-
transgressive Hettangian sequence. The histogram shows the percentage of shale and 
limestone recorded for selected boreholes located within the E–W transect. 
 



 
Fig. 4. Simulation of the burial history for the mid-transgressive Hettangian deposits for 
selected wells along the E–W profile. 



 

 
 
Fig. 5. (a) Simulation of the thermal conductivities evolution throughout the burial history of 
the mid-transgressive Hettangian deposits for selected wells along the profile; (b) simulation 
of the thermal gradients evolution throughout the burial history of the mid-transgressive 
Hettangian deposits for selected wells along the profile. 



 

 
 
Fig. 6. Geologic heating rates computed with TherMO'S for wells A and H. 
 
Table 1. : Variation of the burial rate along the profile 
Period 
(my) 

Time interval 
(my) Results: burial rate (m/my) 

  Well 
A 

Well 
C 

Well 
H 

Well 
I 

Well 
J 

Well 
P 

Well 
S 

202.2–
191.9 10.3 26.6 22.7 10.6 19.7 19.5 16.3 17.6 

188.1–176 12.1 9.1 9.3 21.2 11.7 13.9 21.7 21.2 

176–168.3 7.7 5.2 4.8 6.2 4.8 3.1 2.1 2.5 

168.3–
160.5 7.8 21.5 24.7 27.6 28.1 26.9 40.0 38.3 

160.5–
151.3 9.2 26.8 18.7 15.3 14.7 13.8 9.6 9.8 

151.3–143 8.3 24.7 41.1 42.0 43.1 46.5 54.8 53.1 

141–120.7 20.3 4.8 5.1 7.2 9.3 9.1 11.3 9.6 

120.7–
104.2 16.5 4.0 7.4 10.1 10.2 11.7 12.1 13.5 

104.2–87 17.2 6.1 9.5 14.0 12.8 14.1 15.5 18.0 

Rates of burial are expressed in m/my. 



Table 2. : Effects of the burial rate variations on thermal parameters computed with 
TherMO'S 
 
Time interval (my) Burial rate (m/my) ΔK (W/m/K) ΔGt (°C/km) 

 Well A Well H Well A Well H Well A Well H 

202.2–191.9 26.6 10.6 (+) 0.27 (+) 0.15 (−) 24 (−) 14.6 

188.1–176 9.1 21.2 (+) 0.1 (+) 0.08 (−) 5.5 (−) 5.7 

176–168.3 5.2 6.2 (+) 0.03 (+) 0.06 (−) 1.8 (−) 2.6 

168.3–160.5 21.5 27.5 (+) 0.14 (+) 0.18 (−) 6 (−) 8.2 

160.5–151.3 26.8 15.3 (+) 0.18 (+) 0.1 (−) 6.4 (−) 3.6 

151.3–143 24.7 42 (+) 0.13 (+) 0.17 (−) 3.7 (−) 5.4 

141–120.7 4.8 7.2 (+) 0.03 (+) 0.03 (−) 0.8 (−) 0.8 

120.7–104.2 4 10.1 (+) 0.04 (+) 0.04 (−) 0.9 (−) 1.1 

104.2–87 6.1 14 (+) 0.03 (+) 0.05 (−) 1.2 (−) 1.2 

 
Table 3. : Effects of the geologic heating rate variations on the thermal energies estimations 
Age (my) Geologic heating rates (°C/my) Thermal energy (kcal/mol)

 Well A Well H Well A Well H 

205 0.037 0.045 40.269 40.339 

202.2 1.109 0.481 38.664 39.082 

200.4 4.427 1.183 38.873 38.803 

197.1 2.121 0.702 40.199 39.431 

195.6 1.883 0.702 40.548 39.431 

194.5 2.143 2.180 40.758 39.013 

191.9 1.084 1.254 41.596 39.78 

189.3 1.134 1.921 41.945 40.129 

188.1 1.447 1.775 42.015 40.478 

187.5 0.601 3.454 42.644 40.339 

187.2 6.359 3.454 41.316 40.339 

186.3 0.625 0.552 42.994 41.666 

182.9 0.997 0.806 43.134 41.806 



Age (my) Geologic heating rates (°C/my) Thermal energy (kcal/mol)

 Well A Well H Well A Well H 

182.6 0.677 0.806 43.414 41.806 

176 0.172 0.144 43.974 42.505 

174.4 0.208 0.378 43.834 41.945 

172.5 0.105 0.176 44.324 42.435 

170.6 0.451 0.315 42.994 41.666 

168.3 0.538 0.708 42.994 41.316 

167.3 1.666 1.787 42.505 40.967 

164.8 1.001 1.305 42.505 40.967 

163.7 1.124 2.761 42.575 40.827 

162.3 1.088 1.459 42.784 41.596 

160.9 0.690 0.987 43.204 42.015 

160.5 6.051 3.412 42.015 41.386 

159.4 0.161 0.206 44.534 43.274 

158.5 1.360 0.565 43.274 42.644 

156.6 0.396 0.763 44.184 42.644 

154 0.441 0.277 44.254 43.414 

152.2 0.095 0.092 45.304 44.184 

151.3 10.940 5.090 43.414 42.085 

149.5 0.810 0.877 45.444 43.414 

148.6 0.404 2.021 46.004 43.204 

147.5 3.577 7.567 44.954 43.344 

145.6 1.150 1.102 46.074 44.954 

143.9 0.465 0.740 46.845 45.444 

143 1.738 2.447 46.145 44.884 

141.7 0.338 0.404 47.406 46.285 

141 2.138 2.907 46.215 45.094 

123.6 0.147 0.206 47.617 46.425 



Age (my) Geologic heating rates (°C/my) Thermal energy (kcal/mol)

 Well A Well H Well A Well H 

120.7 0.049 0.241 48.459 46.215 

119.1 0.148 0.203 47.617 46.355 

118.1 0.047 0.232 48.459 46.215 

117.6 0.379 0.742 46.916 45.374 

117.2 0.237 0.463 47.266 45.724 

116.7 0.284 0.648 47.126 45.584 

116.3 0.236 0.809 47.266 45.514 

116.1 0.472 1.154 46.775 45.304 

115.8 0.315 0.923 47.126 45.514 

115.6 0.472 0.922 46.845 45.584 

115.3 0.314 0.768 47.196 45.724 

115.1 0.471 0.230 46.916 46.635 

114 0.852 2.119 46.565 45.094 

110.7 0.099 0.166 48.178 46.986 

108 0.099 0.068 48.178 47.617 

106 0.070 0.341 48.388 46.495 

104.2 0.233 0.630 47.547 46.145 

101 0.116 0.424 48.038 46.495 

98.5 0.074 0.144 48.388 47.336 

96 0.185 0.126 47.757 47.476 

91 0.412 0.768 47.617 47.126 

88 0.500 1.504 47.827 47.547 

87 0.227 0.309 48.459 48.739 

The pre-exponential coefficient is A0 = 1.6 × 1014 (type II – organic matter, marine origin). 

 
 
 


