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Abstract 

In order to better understand the evolution of past climate-human-environment 

interactions in the North-western Alps during the Holocene, we have analysed the lipid 

content of two cores taken from the sediments of Lake le Bourget (French Alps). By using a 

specific molecular biomarker of Panicum miliaceum (broomcorn millet) previously defined 

and a new molecular marker of soil erosion, we demonstrate that the onset of millet 

cultivation coincides with the onset of major soils erosion in the catchment during the Middle 

Bronze Age. Although archaeological and archaeobotanical investigations indicate a discrete 

human occupation of the lakeshores at this period, they also point to a regional change in 

agricultural practices that deeply affected soils. The evolution of millet cultivation appears in 

strong connection with climatic variations, estimated in the same cores from the variations in 

titanium, a proxy of hydrological changes in the region. Social and cultural triggers cannot be 

discarded at this stage. Such an approach applied to more sedimentary archives shows high 

potential to unravel the temporal and spatial dynamics of human land-use. 

 

Keywords: Agriculture, Panicum miliaceum, Land Use, Bronze Age, Biomarkers, Lake 

Sediments. 
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Introduction 

The discrimination between anthropic and climatic triggers on the past evolution of 

continental surfaces entails the establishment of high resolution records based on specific 

tracers of climate parameters (e.g. temperature, precipitation), ecosystems modifications 

(vegetation, physico-chemical conditions) and human activities (e.g. land use). Mountainous 

ecosystems are especially sensitive to climate changes and are more likely to be the first that 

would be affected by a probable “Global Change”. Previous work revealed that Lake Le 

Bourget sediments (French Prealps, Figure 1) constitute high resolution archives of the 

paleohydrological changes that affected the Alps during the Holocene (Chapron et al., 2002; 

2005; Arnaud et al., 2005; Revel-Rolland et al., 2005). Indeed, Rhône River floods carry an 

allochthonous detrital fraction into Lake Le Bourget through the Savière canal and the 

Chautagne swamp (Figure 1) that is significantly distinct from the authigenic carbonate 

fraction. Hence, the frequency of Rhône River floods, which is connected to the precipitation 

regime over the Alps, can be unravelled from high proportions of detritic elements, such as 

titanium, in the sediments (Arnaud, 2003; Revel-Rolland et al., 2005). Nevertheless, critical 

questions remain on the possible human impacts that would bias the detritic signal up to now 

interpreted as purely climatic. Lake Le Bourget is rich in archaeological sites that range from 

the Neolithic up to Mediaeval times (Marguet, 2002; Billaud and Marguet, 2005). 

Archaeobotanical data acquired on a lake-dwelling site indicate early but moderate impacts of 

agriculture on land use during the Bronze Age (Bouby and Billaud, 2001). The extent to 

which these types of settlements and activities modified the landscape and the detrital signal 

in Lake le Bourget remains an open question. 

Numerous studies attest to the potential of molecular markers preserved in lacustrine 

sedimentary archives for reconstructing past climatic and environmental variability (e.g. 

Meyers and Lallier-Vergès, 1999; Meyers, 2003; Oldfield et al., 2003; Fisher et al., 2003) 
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although few studies report organic molecules that are unambiguously indicative of human 

activities. Recently, we brought evidences that the miliacin (olean-18-en-3β-ol methyl ether, 

Figure 2) preserved in Lake le Bourget late Holocene sediments originated from broomcorn 

millet (Panicum miliaceum), an allochthonous plant that was presumably introduced par Man 

in the catchment (Jacob et al., 2008; Jacob et al., in press). Then, we used the evolution of 

miliacin concentration in the sediment to infer the onset and the broad evolution of P. 

miliaceum cropping around the lake (Jacob et al., 2008). This finding was of high relevance to 

palynological approaches that only allow the recognition of a Cerealia type pollen without 

further discrimination. This molecular approach would also allow attesting to the presence of 

a cultivated plant where pollen grains are not preserved, such as in Lake le Bourget deep 

sediments. 

 

The present work is threefold. It first aims at bringing refining the evolution of millet 

cultivation during the Bronze Age by measuring miliacin concentrations in another core 

drilled in the same lake. This is, to our knowledge, an original attempt in comparing 

palaeoenvironmental signals recovered from molecular biomarkers in two cores drilled in the 

same lake, at some distance. Secondly, this paper proposes a new molecular biomarker 

specific of soil erosion: Trimethyl tetrahydrochrysene (TTHC; Figure 2). TTHC is a 

diagenetic derivative of oleanane-type pentacyclic triterpenes (Wakeham et al., 1980). It is 

reputed to be produced in leaf litters and soils by microbial alteration of higher plant 

triterpenoid precursors (Wakeham et al., 1980; Yunker et al., 1995). The comparison of 

miliacin and TTHC evolution with that of pollen acquired on littoral cores allows us 

discussing the onset of millet cultivation and its impact on soils within the frame of 

agricultural developments in Europe during the Bronze Age. 
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Settings 

Lake Le Bourget is a foreland lake located in front of the French NW Alps (45°N 45’ ; 

5°E 52’, 231.5 m a.s.l., 18 km long, 2-3 km wide, 146 m deep). The catchment area is 

characterized by a local watershed of 600 km2 related to the Leysse and Sierroz rivers. This 

catchment area extends considerably during major floods of the Rhône River, when its stream 

flows into lake Le Bourget through its normal outlet, the Saviere channel. (Figure 1). 

 

Materials and methods 

Core LDB01-I (N 45°44,848’; E 5°50,891’) was taken in 2001 on the western flank of 

the northern deep sub-basin of Lake Le Bourget (Figure 1) at 129 m water-depth, with an 

UWITEC coring device operated from a barge. Core LDB04-I (N 45°47,140’; E 5°50,440’) 

was retrieved in 2004, at 106 m depth, using the same device. The sediments deposited at this 

latter site are assumed to have better recorded the flooding activity of the Rhône River into 

the lake than core LDB01, taken at more distance from the Rhodanian influence (Chapron et 

al., 2002; 2005; Arnaud et al., 2005).  

A short core was retrieved at the Tresserve archaeological site (Le Saut de la Pucelle, 

Figure 1), on the eastern side of Lake le Bourget. The sampling and analytical scheme for 

pollen analyses are presented elsewhere (Magny et al., 2008; Richard and Gauthier, 2007; 

Gauthier and Richard, submitted). 

 

Age models 

The age model of core LDB01 is detailed in Arnaud et al. (2005). The age model for 

core LDB04 is described in Jacob et al. (2008). The dates used for establishing age models in 

both cores have been published elsewhere (Chapron et al., 2002; Arnaud et al., 2005; Jacob et 

al., 2008). They are synthesised in Table 1 and Table 2. The resulting age models for cores 
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LDB01 and LDB04 are illustrated in Figure 3. The 6-7 m interval in core LDB04 corresponds 

to a section that was disconnected from the rest of the core during coring process.  

Two 14C dates acquired at the base of the Tresserve core indicate that it reached 

sediments deposited during the Early Bronze (1880-1680 and 1920-1680 BC). The transition 

from Middle to Late Bronze Age is estimated from a combination of sedimentological and 

archaeological evidences. Laid woods collected at ca. 20 cm were dendrochronologically 

dated from the Final Bronze Age (931-825 BC). The transition from the Bronze Age to the 

First Iron Age is documented by a drastic decrease of anthropogenic indicators (see below). 

Although these elements do not allow constituting a precise age model, they are satisfactory 

for comparing the Tresserve record with that established from LDB04 core. 

 

Lipid analysis 

170 one cm-thick samples of sediment were selected for lipid analyses from the 14 m 

long LDB04 core. The sampling interval was 10 cm throughout the core except in the 2-5 m 

section where it was reduced to 3-5 cm. 25 samples were selected from core LDB01 within 

the 429-610 cm depth interval that corresponds to the 2250-110 BC time span.  

2 g of dried sediment were ultrasonically extracted three times with a mixture of 

dichloromethane:methanol (1:1 v/v). After centrifugation, the supernatants were combined 

and dried under nitrogen. The total lipid extract was then separated into acidic and neutral 

compounds on aminopropyl bounded silica according to Jacob et al. (2008). After addition of 

5α-cholestane (internal standard), the neutral fraction was analysed by Gas Chromatography-

Mass Spectrometry using a ThermoFinnigan TRACE-PolarisGCQ equipped with an AS 3000 

autosampler as described in Jacob et al. (2008).  

Due to possible coelutions with other compounds, the concentrations of miliacin and 

3,3,7-trimethyl-1,2,3,4-tetrahydrocrysene (TTHC) were estimated by measuring the areas of 
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their peaks on the m/z 189+204+218 and m/z 218+274 ion specific chromatograms, 

respectively. Miliacin concentrations were calculated using an external authentic standard 

(courtesy of Pr. R. Smith, Loughborough University, UK). TTHC was identified by 

comparing its mass spectra with published data (Wakeham et al., 1980). TTHC concentration 

was estimated after calculating a correction factor between the peak area on the ion specific 

chromatogram and the peak area on the Total Ion Current (TIC), and then reported to the area 

of the 5α-cholestane peak on the TIC.  

The carbon isotopic composition of TTHC was measured as described in Jacob et al. 

(in press). Briefly, the neutral fractions of eleven sediment samples dated back to the Bronze 

Age were combined and submitted to further fractionation. TTHC was recovered in the same 

fraction as miliacin. The δ13C of TTHC was measured in the same run as miliacin by using 

GC-C-IRMS with conditions previously defined (Jacob et al., in press). 

 

Titanium analysis 

Bulk titanium (Ti) concentrations were measured along the core at 1 cm spacing with a 

profiling XRF core scanner at the University of Bremen. Ti is given as counts per seconds. 

 

 7



Results 

Origin of TTHC 

The δ13C of TTHC extracted from Lake le Bourget sediments is - 40 ‰. Assuming 

that the δ13C of aromatic diagenetic derivatives of pentacyclic triterpenes is only depleted by 

1.5 to 4 ‰ with regard to their precursor (Freeman et al., 1994), a δ13C of about 37 ‰ is 

expected for the compound from which TTHC derives. This value is significantly different 

from the δ13C of miliacin of Lake le Bourget sediments (-23 ‰; Jacob et al., in press). This 

difference in carbon isotopic composition allows us excluding any genetic relationship 

between these compounds (such as TTHC deriving from miliacin) despite their structural 

analogies. 

 

Evolution of titanium, miliacin and TTHC in core LDB04 

The depth evolution of titanium, miliacin and TTHC in core LDB04 is reported in 

Figure 4 for the 2000 AD/ 6000 BC time interval. Titanium concentrations in the sediment 

remain around 200 Cps from 6000 to 2200 BC. The 3600-2200 BC time period corresponds 

to an interval affected by a slump deposit (cf. Chapron et al., 2005) and by a sedimentary 

hiatus due to coring operations that both prevented the establishment of a detailed age-depth 

model for this section. Consequently this time interval will not be discussed further. Ti 

concentrations reach up to 400 Cps during the 2200-1800 BC and 800-550 BC time intervals. 

The 550 BC-900 AD time period is characterized by varying titanium values in the 200-400 

Cps range with maximum values reaching 1000 Cps in some levels (i.e. at ca. 600 AD). Low 

Ti values around 900 AD (200 Cps) are followed by an increasing trend towards 1000 Cps 

around 1300 AD before decreasing down to the Present.  

The first appearance of miliacin is noted at ca. 1700 BC. Its concentration levels 

remain lower than 20 ng/g during the 1700-1400 BC interval and suddenly increase up to a 
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maximum of 200 ng/g around 850 BC. The drastic decrease recorded at 800 BC leads to 

miliacin concentrations ranging between 20 and 50 ng/g. They are followed by notable and 

varying concentrations between 80 and 400 ng/g until 800 AD. After this date, miliacin is still 

detected in Lake le Bourget sediments, but always at levels below 50 ng/g. 

TTHC concentrations are lower than 200 ng/g from 6000 to 1700 BC. After this date, 

TTHC levels first increase dramatically and then exhibit a strong variability in the 100-1000 

ng/g range up to the Present.  

 

Compared evolution of miliacin and TTHC in LDB04 and LDB01 during the Bronze Age 

In both cores miliacin appears at ca. 1700 BC and its concentrations remain lower than 

20 ng/g up to 1500 BC (Figure 5). Then, its concentrations increase to reach a maximum 

between 900 and 800 BC (represented by a single sample in core LDB01). before decreasing 

down to values lower than 100 ng/g after 800 BC. 

In contrast to miliacin, TTHC is present in the sediments before 1700 BC, but only at 

low levels (namely < 500 ng/g and 200 ng/g in cores LDB01 and LDB04, respectively). From 

this date TTHC concentrations increase strongly in both cores and then remain above the 

concentration levels recorded prior to 1700 BC (Figure 5).. Although some differences are 

noted in the evolution of miliacin and TTHC in both records, probably imputable to 

unidentified local factors, the main features (appearance of miliacin at 1700 BC, simultaneous 

increase in TTHC and decrease in miliacin after 800 BC) attest to their significance at a 

catchment-scale and points out the consistency of the age models in both cores. 

 

Pollen indicators at the Tresserve archaeological site 

The variations of pollen anthropogenic indicators (pollens of Cerealia type, footpath, 

ruderal and weed communities and Poaceae; Behre, 1981; Berglund and Ralska-
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Jasiewiczowa, 1986) recorded at the Tresserve site, are shown in Figure 6 together with the 

variations in Fagus pollen percentages and the total percentages of tree pollens (Magny et al., 

2008). A notable human impact in the region is recorded since the Early Bronze Age 

(between 100 and 70 cm), attesting to a continuous but discreet human impact in the region 

since this period. Lower values of anthropogenic indicators recorded during the second part of 

the Middle Bronze Age (from 60 to 40 cm) are interpreted as a lower human presence at this 

time and are in agreement with a woodland regeneration as attested by an increase in tree 

pollens (Richard and Gauthier, 2007; Magny et al., 2008; Gauthier and Richard, submitted). 

The strong increase in palynological anthropisation indices recorded at 931-825 BC at the 

Tresserve archaeological site (Figure 6) is attributable to the overrepresentation of 

anthropogenic indicators since the site was effectively occupied during this period. Forest 

pollen indicators such as Fagus show high values at the end of the Middle Bronze Age and at 

the beginning of the Late Bronze Age and during the Iron Age. 

 

 

 10



Discussion 

Early introduction of P. miliaceum around Lake le Bourget 

The scarcity of data concerning the first record of P. miliaceum in archaeological sites, 

mostly based on microfossil remains and charred seeds, does not yet allow defining the 

precise timing of its domestication and the exact routes of its diffusion. 

The first indices of millet agriculture in the Far East were dated back to the Early 

Neolithic (6th-7th millennium cal BC), but experimentations may have been conducted earlier 

in Asia (12,000 BP; see Pechenkina et al., 2005). Panicum miliaceum, as well as Setaria 

italica (foxtail millet), were cultivated as early as ca. 6000 BC in Northern China/Inner 

Mongolia and in the Yellow River basin by 5500 BC (Fuller, 2007). P. miliaceum remains 

were also detected at sites dated back to the 6th and 5th millennium BC in the Caucasus and 

Eastern Europe, around the Black Sea (Lisitsina, 1984). The apparent synchronicity of P. 

miliaceum primodomestication on both sides of the Eurasian steppes (Marinval, 1995; Zohary 

and Hopf, 2000; Weber and Fuller, in press) raises several important concerns that are out of 

the scope of this paper. 

P. miliaceum was not introduced in Europe as part of the “Near East Package” of 

cereals that arrived from the Fertile Crescent. It appeared in Eastern and Central Europe 

(Ukraine, Moldavia, Czechoslovakia, Southern Poland, Eastern Germany and Austria) during 

the 5th millennium BC (Zohary and Hopf, 2000; review in Köhler-Schneider and Caneppele, 

2007) but whether these finds represent P. miliaceum as a cultivated cereal or a weed is 

debated. Together with S. italica, it spread towards Western Europe and reached Western 

Germany at the beginning of the 4th millennium (Rösch, 1998). In Northern Italy, P. 

miliaceum cultivation might have started during the Early Bronze Age since remains were 

detected in Monte Covolo (Pals and Vorrips, 1979) and in Canár (Castiglioni et al., 1998; 
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Castelletti et al., 2001), and then in the Terramara di Montale site dated back to the Middle-

Late Bronze Age (1650-1200 BC; Mercuri et al., 2006).  

The oldest record of P. miliaceum in France (Fossé, Loire et Cher) dates back to 3500 

BC (cited in Marinval, 1995). Around Lake le Bourget, P. miliaceum remains were first 

identified at the La Motte-Servolex archaeological site (2000 BC; Netolitzky, 1914), although 

this old discovery must be taken with caution (Marinval, 1995). At the Grésine site (905-869 

BC), high abundances of P. miliaceum seeds and chaffs attest to a large consumption in the 

lake area during Late Bronze Age (Bouby and Billaud, 2001). Hence, the first appearance of 

miliacin in Lake le Bourget sediments around 1700 BC is in general agreement with the 

known timing of P. miliaceum arrival in Western Europe.  

 

Cultivation and land use during the Bronze Age 

The appearance of miliacin coincides with a drastic increase in TTHC concentration 

around 1700 BC in both cores. This implies a causal relationship between these two 

compounds in the sediment, i.e. a strong input of soil-derived TTHC due to millet cultivation. 

Since, according to forest pollen abundances, the environment remained clearly forested at 

this time (Figure 6), intensive deforestation is unlikely. Conversely, a modification of 

agricultural practises could have initiated this destabilisation of soils. During the Neolithic, 

the agricultural system was based on shifting cultivation on slash-and-burn fields and 

abandoned to the reforestation after four to five years (Rösch, 1998). The establishment of 

perennial fields with short fallow phases leading to more intense soil erosion during the 

Bronze Age (Rösch, 1998) most probably favoured the erosion of soils, leading to high 

concentrations of TTHC in the sediment. In addition, the transition from wooden tools to 

metal ones must have had a significant impact on the depth and efficiency of ploughing, and 

hence on soil erosion. 
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Only millet cultivation can be traced with our approach since no other tracer of 

cultivated plant has been evidenced in the studied sedimentary archives. Cereal pollens -that 

are classically difficult to distinguish from one another- have not even been preserved in Lake 

le Bourget deep sediments, as no other pollens did. Millet was most certainly cultivated with 

other cereals or legumes for which we have currently no specific tracer. But our miliacin-

inferred millet cultivation data show that the introduction of this cereal in the vicinity of Lake 

le Bourget was coincident with a change in agricultural practises. It would hence support a 

common diffusion scheme for millet and these new practises. 

 

Our data on the first intensive impact of human cropping on landscapes around Lake le 

Bourget are then compared to several records within the Alps. In Lej da Champfèr and Lej da 

San Murezzan (Upper Engadine, Swiss Alps), Cerealia type pollen grains were first detected 

in significant amounts around 1950 BC together with increasing charcoal proportions. They 

attest to the development of a special vegetation type after forest clearance by burning (Gobet 

et al., 2003). When comparing Bronze Age sites located in the north (lakes Soppensee and 

Lobsigensee) and in the south of the Alps (lakes Lagodi Origlio and Lagodi Muzzano), Tinner 

et al. (2003) showed that the first peaks of cultivation indicators (Cerealia and Plantago 

lanceolata) occurred around 1750 BC at both sites, with a stronger increase at ca. 1350 BC. 

According to plant macrofossils and geochemical indices monitored on a core drilled in 

Sägistalsee lake (Bernese Alps, Switzerland; Koinig et al., 2003; Ohlendorf et al., 2003), the 

onset of deforestation and soil destabilisation occurred around 1750-1550 BC. Evidence for 

intensive deforestations and landslides are recorded at 1700 BC in the Western Swiss Alps 

(Lake Schwarzsee, western; Dapples et al., 2002). At Lago Piccolo de Avigliana 

(Southwestern Alps, Italy), the first intensive land-use phase is dated back to 2100-1650 BC 

but farming activities (illustrated by increased proportions of Cerealia type pollens) are only 
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noted during the 1500-1350 BC period (Finsinger et al., 2006). Palynological evidence 

(charcoals and Cerealia type pollens) recovered from Lago Lucone (Northern Italy) indicate 

that the landscape was affected by intense human management during the Early Bronze Age 

(2200 BC; Valsecchi et al., 2006). Further south in Lago di Mezzano, Sadori et al. (2004) 

show an increase in human activities during the Early/Midlle Bronze age (3600 BP). Finally, 

from a sedimentary record in Adriatic, Oldfield et al. (2003) noted an acceleration of mass 

sedimentation and an increase in terrigenous input reflecting intensive forest clearance by 

1650 BC.  

These different records point to an increased impact of human influence on 

ecosystems in the Alps during the Early/Middle Bronze Age that could be linked to an 

increased demography, a denser settlement and a stronger economical demand from 1950 BC 

(Bätzing, 1991). The stronger impact on soil erosion cannot be attributed to a larger area 

cultivated since at this period pollen results indicate the persistence of a dense forest cover. 

More simply, it could be linked to the arrival of innovative agricultural practises such as the 

improvement of agricultural tools that allowed ploughing deeper in soils at this period. It is 

worthwhile noting that these improvements appear closely connected with the arrival of P. 

miliaceum cropping and it is tempting to consider both (agricultural innovation and millet 

cropping) as part of a “cultural package” that reached the region at this time. Again, the 

present scarcity of human land use records does not allow defining a precise scheme for the 

spread or timing of these innovations in the Alps.  

 

Climate-agriculture-land use interactions during the Bronze Age 

P. miliaceum does not require specific climatic conditions since it grows well in 

intensive heat (hot summers) and severe drought, up to 1000 m of altitude (Zohary and Hopf, 

2000; S. Jacomet, pers. com.). Therefore, the variations in miliacin concentration cannot be 
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explained by climatic variations that would directly affect plant growth. Reversely, these 

variations could result from cultural and societal changes that are, in part, linked with climatic 

changes. 

 

The Early/Middle Bronze Age 

The onset of millet cultivation and of intensive soil erosion occurs during the 

Early/Middle Bronze Age at 1700 BC, a period of rather favourable climatic conditions (as 

attested by low Ti values indicative of lower frequency of Rhône River floods, Figure 4) that 

followed the more humid climate prevailing during the 2200-1800 BC time period. Although 

Lake le Bourget surroundings were occupied since the Neolithic, archaeological surveys point 

to a discrete regional occupation of the lake shores during the Early Bronze Age (1800-1750 

BC in Annecy Lake, Billaud and Marguet, 2005).  

Low miliacin concentrations are recorded between 1700 and ca. 1500 BC. Although 

caution must be taken in interpreting subtle variations in molecular marker concentration, 

these low concentrations could reflect a restricted surface of millet cultivation due to a high 

water level, or could also attest to a low population density. In the meantime, the rarefaction 

of anthropisation indices derived from pollen analyses (Figure 6) attests to a lower human 

impact in the second part of the Middle Bronze Age (from 60 to 40 cm) than before (i.e. 

between 87 and 70 cm), in agreement with a increase in forest pollen percentages. Increasing 

Ti values between 1700 and 1400 BC indicate enhanced Rhône River floods, in agreement 

with a regional climatic pejoration in the western Alps (Magny, 2004; Magny et al., 2008) 

that is also detected in Central Europe (Haas et al., 1998; Zolitschka et al., 2003; Tinner et al., 

2003). Although low miliacin concentrations recorded in the 1700-1500 BC period can attest 

to a low demography, in agreement with the lack of human settlements at this period around 

Lake le Bourget (Billaud and Marguet, 2005) and a recovery of the forest cover, it could also 
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indicate that P. miliaceum was tested as a basic crop before its more intense cultivation during 

the Late Bronze Age (as attested by higher concentrations in miliacin). As a matter of fact, 

Köhler-Schneider and Caneppele (2007) noted that in Austria “millet had the status of a 

casual weed among other summer crops, long before it was cultivated itself”. The spike in 

miliacin recorded at ca. 1500 BC in core LDB01 (Figure 5) could be interpreted as a local 

increase in P. miliaceum cropping due to favourable conditions on the eastern border of the 

lake. 

The transition from the Middle Bronze Age to the Late Bronze Age is characterized by 

a notable increase of miliacin concentration and of palynological anthropisation indices 

(Figure 6). These results point to increasing human impacts in the region during the Late 

Bronze Age, further supported by the numerous archaeological sites dated from this period on 

the lake shores (Billaud and Marguet, 2005). This increasing impact occurs within a context 

of climatic amelioration as depicted by a decreasing trend of titanium that attest to lower 

Rhône River floods frequency and hence lower precipitation over the Alps (Figure 6). 

 

The Bronze Age - Iron Age transition 

The drastic decrease in miliacin concentrations at ca. 800 BC coincides with a 

decrease in anthropisation indices noted at the Tresserve site (Figure 6). These results are in 

agreement with the abandonment of the lakeshore by local populations at that time, as attested 

by dendrochronology data (Billaud and Marguet, 2005). In the meantime, high Ti values 

indicate a climatic deterioration (Figures 3 and 5) that is also attested by high water levels of 

lakes in the region (Magny, 2004). This climatic reversal during the 800-400 BC time period 

is well documented in the region (van Geel and Magny, 2002;  Magny, 2004). It is assumed to 

have mediated the abandonment of lake-dwelling habitats and the decline of agricultural 

activities. 
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It is worthwhile noting that TTHC concentrations do not decrease with decreasing 

miliacin concentrations at the Bronze Age/Iron Age transition. This would imply that, 

although agriculture stopped, soils remained unstable. Since the TTHC concentration in the 

sediment can be affected by many parameters, its varying values in the sediment records and 

the differences between cores LDB01 and LDB04 must be interpreted with caution and 

require further work. 

 

Conclusion 

The compared evolution of a specific tracer of millet cropping, a soil erosion marker 

and other environmental parameters allows us unravelling intimate relationships between 

climate, human land use and soil erosion around Lake le Bourget during the protohistory. The 

introduction of cultivated P. miliaceum in the watershed coincides with intensive soil erosion 

due to the coincident appearance of new agricultural practices. Both occurred during a period 

of discrete human occupation at the end of the Early Bronze Age. After increasing millet 

cropping during the Late Bronze Age, agricultural activities drastically decreased at the 

Bronze Age/Iron Age transition as a result of a climatic reversal.  

A better understanding of molecular taphonomy aiming at precising the relationships between 

molecular signals preserved in sediments and original environmental/anthropic conditions 

will undoubtedly greatly improve our comprehension of the dynamics of human societies in 

connection to environmental changes. 
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Table captions 

Table 1: 14C dates used for the establishment of core LDB01 age model. 

Laboratory code Depth (cm) 14C age (± 2σ) Median calibrated age (± 2σ) 
POZ 710 271 1200 ± 30 1010 – 1130 - 1230 
POZ 718 407 1800 ± 30 1570 – 1710 – 1860 
POZ 716 440.5 2250 ± 30 2150 – 2260 – 2340 
POS 717 619 3820 ± 30 4090 – 4200 – 4350 
POZ 715 667.5 4280 ± 30 4740 – 4840 – 4870 
POZ 721 791 5310 ± 30 5950 – 6080 - 6270 

 

Table 2: 14C and non-14C dates used for the establishment of core LDB04 age model. 

Non-14C age information 

Historical event Core Depth (mm) Age (yrs 
AD) Age (yrs cal. BP) 

Chernobyl accident (137Cs) LDB04-I 20 1986 -36 
Atmospheric bomb tests (137Cs and 
241Am) LDB04-I 50 1965 -15 

Eutrophication LDB04-I 80 1948 2 
LDB04-I 190 1888 62 Historical flood LDB04-I 240 1888 62 

Historical flood LDB04-I 640 1734 216 
14C age and calibration information 

Laboratory code Core Depth 
(mm) 

Correlated 
position on 

LDB04-I (mm) 
14C Age ± 2 σ 2σ mean cal Age (cal. BP) 

Poz-13986 LDB04-I 1440 - 435 ± 30 495 ± 35 
Poz-710 LDB01-I 2710 3350 1200 ± 30 1120 ± 110 
Poz-13983 LDB04-I 3100 - 1665 ± 30 1570 ± 60 
Poz-718 LDB01-I 4070 3810 1800 ± 45 1715 ± 145 
Poz-716 LDB01-I 4405 2505 2250 ± 30 2245 ± 95 
SacA4834 LDB04-I 4128 - 2770 ± 30 2870 ± 80 
Poz-13984 LDB04-I 4480 - 2815 ± 30 2920 ± 80 
Poz-13985 LDB04-I 4990 - 3300 ± 30 3525 ± 65 
Poz-10562 LDB04-I 5810 - 4160 ± 35 4160 ± 60 
Poz-14033 LDB04-I 6960 - 4640 ± 35 5385 ± 85 
Poz-721 LDB01-I 7910 7500 5310 ± 40 6110 ± 160 
Poz-14032 LDB04-I 7770 - 5870 ± 40 6690 ± 70 
Poz-10563 LDB04-I 8400 - 6610 ± 40 7505 ± 45 
Poz-13987 LDB04-I 9440 - 8080 ± 40 9015 ± 235 
SacA4836 LDB04-I 10835 - 8655 ± 45 9615 ± 85 
SacA4835 LDB04-I 9875 - 8720 ± 50 9695 ± 145 
SacA4837 LDB04-I 11655 - 9320 ± 35 10500 ± 100 
Poz-10565 LDB04-I 12180 - 9450 ± 50 10695 ± 85 
Poz-10566 LDB04-I 12940 - 9490 ± 50 10850 ± 170 
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Figure captions 

Figure 1: Location of Lake le Bourget (French Alps) and coring sites (LDB01 and LDB04). 

The grey arrow indicates the trajectory of Rhône River waters during floods, over the 

Savière canal and the Chautagne swamp. Numerous archaeological sites have been 

identified on the lakeshore such as Tresserve and Grésine, discussed in the text.  

Figure 2: Structure of (a) miliacin (olean-18-en-3βol ME) and (b) 3,3,7-trimethyl-1,2,3,4-

tetrahydrocrysene (TTHC). 

Figure 3: Age models of cores LDB01 and LDB04 established from 14C dates, radiometric 

markers for the historical period, lake eutrophication in 1948, and catastrophic floods. The 

stratigraphic position of some 14C dates measured on core LDB01 have been reported on 

core LDB04 by comparing the magnetic susceptibility and colour measurements performed 

at a 5 mm sampling step on both cores 

Figure 4: Evolution of titanium, miliacin and TTHC during the last 8000 yrs in the sediments 

of Lake le Bourget (core LDB04). Due to erroneous calculation in some levels, miliacin 

concentrations have been recalculated from Jacob et al. (2008). 

Figure 5: Compared evolution of miliacin and TTHC in cores LDB04 and LDB01 for the 

2200/500 BC period. 

Figure 6: Comparison of the evolution of miliacin and titanium in deep core LDB04 with the 

evolution of forest pollen (Fagus), Cerealia type pollens, Poaceae and other anthropogenic 

pollen indicators (footpath, ruderal and weed communities) retrieved from the Tresserve 

archaeological site, on the eastern Lake le Bourget shore. 
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