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Abstract 
 

In this work PIXE experiments were performed for measuring heavy and light 

elements (ranging from aluminium to lead) concentrations inside various polluted and 

unpolluted soils as well as liquid samples collected from different phosphate factory sewers in 

the El Jadida-Safi Atlantic coastal region (Morocco). In addition, uranium (238U) and thorium 

(232Th) contents were evaluated in the same samples studied by using CR-39 and LR-115 type 

II solid state nuclear track detectors (SSNTDs). The influence of the phosphate industry 

wastes on the concentrations of both radioactive and non-radioactive elements of the samples 

studied was investigated.  
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1. Introduction 

The Moroccan Office Chérifien des Phosphates (OCP) is a national company in load 

of all phosphate products. It is the second phosphate productive enterprise in the world, very 

little after American IMC Agrico Co. (Group Freeport McMoran). Mining is carried out on 

three main sites: Khouribga, Gantour and Boucraâ. The centres of transformation of 

phosphate into phosphoric acid are established in the littoral industrial park of Jorf Lasfar and 

Safi. The OCP is by far the first world exporter of rough phosphates and phosphoric acid and 

one of the largest international suppliers of fertilizers such as triple superphosphate (TSP) and 

diammonium phosphate (DAP). 

Internationally, interest of pollution in urban and global environments has increased 

significantly over the last decade (Cohen, 1998 ; USEPA Report 1999). Physicists, geologists, 

archaeologists, art conservators and others have utilised many analytical techniques for the 

determination of the compositions of polluted samples in environment, soil, rocks and 

minerals, and they continue to investigate emerging technologies for their utility. Their 

interest arises from the fact that a geologist can deduce information about the physical and 

chemical conditions under which a material was formed and through which the material has 

existed, from knowledge of soil, rocks and minerals composition. Specific materials are 

defined by their major elements, but it is the amount and distribution of the minor or trace 

elements that are more indicative of the materials geochemical environment. Thus analytical 

techniques, with more indicative limits, are of interest. Proton Induced X-ray Emission 

(PIXE) analysis used for more than thirty years, is a powerful yet non-destructive elemental 

analysis technique and is a promising tool for the study of trace element behaviour in a wide 

variety of materials (geological, archaeological, biological ….). The combination of a 

reasonable resolution of a few microns combined with a detection power in the ppm           

(10-6g.g-1) range offers possibilities for trace element mapping giving insight in trace element 

composition. PIXE method has been widely used for trace elemental analysis since Johansson 

et al. (1970) achieved mass detection limits in the region of 10-12g. The extensive literature on 

the subject includes several excellent review articles (Johansson S.A.E. and  Johansson 

T.B.,1976 ; Owers and Shalgosky, 1974). 

In the present work, the PIXE and SSNTD methods were employed to measure heavy and 

light elements in various material samples collected from different sites of the El Jadida-Safi  

Atlantic coastal region (Morocco). 
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2. Experimental methods 
Six solid samples (S1, S2, S3, S4, S5 and S6) were collected from different sites in the 

El Jadida-Safi Atlantic coastal region (Morocco) (Fig.1), pounded and homogenized. S1 was 

collected from a deposit of raw sulphur material in the Jorf Lasfar port, S2 and S6 were 

directly collected from two dumps of recent phosphate wastes resulting from the phosphate 

industrial activities in the study area, S3 and S4 were collected from the El Oualidia and Sidi 

Moussa agricultural zones and S5 was collected from the beach of the Safi city. Eight water 

samples were directly collected from the sewers of the phosphate factories situated in the 

same study area (Fig.1) and filtered. The resulting residues “foams”: WR1, WR2, WR3, 

WR4, WR5, WR6, WR7 and WR8 were dried. 

Almost 2 g of each soil and water residue sample were compacted in a pellet of 1.5 cm 

diameter and few mm thickness using a mechanical press. The obtained pellets were stuck on 

an aluminium disc. The prepared soil and water residue samples were then analysed by PIXE 

method. The PIXE experiments were performed at the CERI-CNRS, Orléans, using a 3.5 MV 

HVEC Van De Graaff accelerator.  The miniprobe focuses a 2.5 MeV proton beam to a target 

placed under vacuum (from 5x10-5 to 10-6 mbar). Detail descriptions have been reported 

previously by Zine et al. (1990) and by Choï (1996). The X-ray Si(Li) detector (Oxford 

instruments) is installed at a 135° angle with respect to the beam axis and is 2.4 cm distant 

from the sample. This detector is characterized by a 30 mm2 nominal surface area, a 3 mm 

nominal Si-crystal thickness and 7.5 µm-thick Be window. Its energy resolution at 5.9 keV is 

148 eV. The dead time of the Si(Li) detector is of 25 μs. A 135 µm-thick Be-filter is placed in 

front of the detector to prevent interactions with scattered protons. A 200 µm thick Al-funny 

filters and bored of a hole of 0.77 mm is superimposed on the Be-filter in order to attenuate 

the characteristic X-rays from major elements, which would disturb the electronic detection, 

increase pulse pile-up on the spectra and obliterate X-rays of trace elements. A mirror, placed 

in front of the target, reflects the image of the beam impact on the target to endoscopes, which 

magnifies at 200x (Gama et al., 2001). Standards and samples are polished and coated with a 

thin carbon layer in order to ensure conductivity. We used a beam current of 0.8 nA keeping 

the counting rate lower than 1x103 counts.s-1 to measure major and minor elements. The 

intensity of the proton beam is measured using a chopper calibrated relative to a Faraday cup. 

The relative uncertainty of charge integration is around 5 %. The typical beam spot size was 

about 0.5x0.5 mm2. The execution time for our samples was around 20-30 min, depending on 
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the count rate, but the actual time needed for a routine test may be shorter. For each sample, 

characteristic  X-rays produced from the proton bombardment at four different positions on 

the sample surface were measured. A typical PIXE spectrum and its corresponding GUPIX fit 

(Campbell and Maxwell, 1996) are shown in Fig.2.  

Disk shaped CR-39 (manufactured by Pershore Mouldings Ltd., U.K) and LR-115 type II 

(manufactured by Kodak Pathé, France and marketed by Dosirad, France) solid state nuclear 

track detectors (SSNTDs) of radius q =2 cm have been separately placed in close contact with 

a soil/water residue sample in a hermetically sealed (using a glue) cylindrical plastic container 

for one month (30 days) [12]. During this exposure α-particles emitted by the nuclei of the 

uranium-238 and thorium-232 series bombarded the SSNTD films. After the irradiation, the 

exposed films were etched in a NaOH solution at optimal conditions of etching, ensuring 

good sensitivities of the SSNTDs and a good reproducibility of the registered track density 

rates: 2.5 N at 60°C for 120 minutes for the LR-115 type II films and 6.25 N at 70 °C for        

7 hours for the CR-39 detectors (Misdaq et al., 2000). After this chemical treatment, the track 

densities registered on the CR-39 and LR-115 type II SSNTDs were determined using an 

optical microscope. Backgrounds on the CR-39 and LR-115 type II SSNTDs were evaluated 

by placing these films in empty well-closed plastic containers identical to those used for 

analysing honey samples for one month and counting the resulting track densities. This 

operation was repeated ten times: track densities registered on the CR-39 and LR-115 type II 

detectors were found to be identical within the statistical uncertainties. As the system is well-

sealed (there is no escape of radon and thoron) and the exposure time was 30 days, one can 

assume radioactive secular equilibrium between uranium, thorium and their corresponding 

decay products. For our experimental etching conditions, the residual thickness of the LR-115 

type II detectors measured by means of a mechanical comparator is 5 µm. This thickness 

defines the lower (Emin = 1.6 MeV) and upper (Emax = 4.7 MeV) energy limits for registration 

of tracks of α-particles in LR-115 type II films (Misdaq et al., 2000). All α-particles emitted 

by the uranium and thorium series that reach the LR-115 detector at an angle lower than its 

critical angle of etching '
cθ  with a residual energy between 1.6 MeV and 4.7 MeV are 

registered as bright track-holes. The CR-39 detector is sensitive to all α-particles reaching its 

surface at an angle smaller than its critical angle of etching cθ . '
cθ  and cθ  were calculated 

using a method described in detail by Misdaq et al.(1999). 

The global track density rates (tracks.cm-2.s-1), due to α-particles emitted by the uranium and 

thorium series inside a material sample, registered on the CR-39 and LR-115 type II detectors, 
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after subtracting the corresponding backgrounds, are respectively given by (Misdaq et al., 

2000) : 
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where Sd and Sd

' are respectively the surface areas of the CR-39 and LR-115 type II films, 

C(U) (µg.g-1) and C(Th) (µg.g-1) are the uranium (238U) and thorium (232Th) concentrations of 

the  sample, AU(Bq.g-1) = 0.0123 and ATh(Bq.g-1) = 0.0041 are the specific activities of a 

sample for a 238U content of 1ppm and a 232Th content of 1ppm, dS is the density of the 

sample (g.cm-3), Rj and Rj
' are the ranges, in the sample, of an α-particle of index j and initial 

energy Ej emitted by the nuclei of the uranium and thorium series, respectively, kj and k'j are 

respectively the branching ratios corresponding to disintegration of the nuclei of the uranium 

and thorium series and CR
jε , CR'

jε , LR
jε  and LR'

jε  are respectively the detection efficiencies 

of the CR-39 and LR-115 type II detectors for the emitted α-particles. The first terms (right of 

Eqs. (1) and (2)) correspond to the number of α-particles emitted by the uranium family (8α-

emitting nuclei), whereas the second terms correspond to the number of α-particles emitted by 

the thorium series (7α−emitting nuclei). 

Combining Eqs. (1) and (2), we obtain the following relationship between track density rates 

and thorium to uranium ratios : 
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The uranium content of a soil/water residue sample is given by (Eq.(2)) : 
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By calculating first the detection efficiencies of the CR-39 ( CR

j
ε and CR'

j
ε ) and LR-115 type II 

( LR

j
ε and LR'

j
ε ) SSNTDs for α-particles emitted by the thorium-232 and uranium-238 series 

inside a soil/water residue sample (Misdaq et al., 2000), and secondly by measuring track 

density rates (tracks.cm-2.s-1) registered on the CR-39 ( CR

G
ρ ) and LR-115 type II ( LR

G
ρ ) films 

one can evaluate the 238U and 232Th contents inside the considered material sample. 

3. Results and discussion 
 

For our PIXE analysis, the beam spot was directed at the surface of sample, and four 

measurements were made for each specimen. The extensive range of elements from Al to Pb 

is clearly visible, including many of the key metals of interest. The spectrum consists of a 

number of peaks corresponding to the Kα and Kβ X-rays due to several chemical elements in a 

sample (Fig.2). For the heaviest elements the cross section for K X-ray production is very 

small but instead the L X-rays turn up in the spectrum. The peaks are superimposed upon a 

continuous background originating mainly in the backing material. The first step in 

determining the element concentrations was to obtain the matrix composition from the 

Electron Probe Micro-Analyses (EPMA) (work done at BRGM-CNRS-University of Orléans, 

France). With this matrix composition and from the measured PIXE spectrum, the chemical 

composition (Z ≥ 13) in the sample could be obtained using a de-convolution program 

GUPIX (Campbell and Maxwell, 1996).   
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Different standards were utilized for calibrating our PIXE experiments (a list of the chemistry, 

name and origin of all standards is given in Table 1). Table 2 shows data obtained for trace 

and major elements for the fluoroapatite Ca5(PO4)3F (a) and the BR standard (c). Good 

agreement was found between data obtained by using the PIXE method and the certified 

values. The statistical limits of detection (LOD) values for elements analysed by means of 

their K x-ray emission spectra decreased from 30 µg/g for 20 < Z < 35 to 10 µg/g for  35 < Z 

< 55 and then increased again to 50 µg/g for Z>55. For the 60<Z<92 elements analysed by 

means of their L x-ray emission series, the LOD value is about 50 µg/g.   

Data obtained for the major (Si, P, S, Cl, K, Ca, Ti and Fe) and trace (Cr, Ni, Cu, Zn, 

As, Br, Sr, Y, Zr, Ag, Hg and Pb) elements concentrations of the studied samples are given in 

Tables 3 and 4, respectively. Figs.3 and 4 show the distribution of major and trace elements in 

the material samples studied. We noted that the S1, WR2, WR3, WR4, WR5, WR6 and WR8 

samples present higher sulphur concentrations than the other samples. This is because: 

- The S1 sample was collected from a deposit of raw sulphur material in the Jorf Lasfar port. 

- The WR2, WR3, WR4, WR5 and WR6 water residue samples were collected from the 

sewers of the Jorf Lasfar phosphate factory. Indeed, sulphur is intensively used in the 

transformation of phosphates. 

- The WR8 sample was collected from the sewer of the Safi phosphate factory. 

The S2, S6 and WR7 samples show larger phosphorus concentrations than the other samples. 

This is due to the fact that these samples were collected from phosphate waste dumps and a 

sewer of the Jorf Lasfar phosphate factory, respectively. The S2, S4, S5, S6 and WR7 samples 

contain more calcium than the others. This is because: 

- The S2 and S6 samples belong to phosphate waste dumps. 

- The S4 sample was collected from the El Oualidia agricultural area in which farmers used 

phosphate fertilizers to increase their agriculture production. 

- The S5 sample was collected from the beach of the city of Safi which is polluted by 

phosphate dusts because it is situated near a phosphate factory. 

- The WR7 sample was collected from the sewer of the Jorf Lasfar phosphate factory. 

We noted that the WR8 sample corresponding to a water sample collected from the sewer of 

the Safi phosphate factory contains higher Cu, Zn, As and Hg concentrations than the other 

water residue samples collected from the sewers of the Jorf Lasfar phosphate factory. The 

concentration of lead (Pb) is clearly higher in the WR2 water residue sample collected from 

the sewers of the Jorf Lasfar phosphate factory than in the other samples. 
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U and Th concentrations were evaluated in the studied soil and water residue samples  

(Table 5). The relative uncertainty on the U and Th concentration determination was about     

8 %. It is to be noticed that our SSNTDs’ method was already validated by many instrumental 

techniques such as Isotope Dilution Mass Spectrometry (IDMS), Neutron Activation Analysis 

(NAA) and gamma-ray spectrometry for liquid and solid material samples (Misdaq et al., 

2000). We noted from results shown in Table 5 that: 

  

- The S2, S4, S5 and S6 soil samples contain higher U concentrations than the S1 and S3 

ones. This is because the former samples were polluted by raw phosphate confirmed by their 

higher Ca and/or P percentage (Table 3) due to the presence of calcite (CaCO3) and apatite 

(Ca5(PO4)3(OH,F)) in these samples. 

-  There exist two uranium contamination sources for the studied water residue samples; a 

contamination due to only phosphate wastes (case of the WR7 which presents higher Ca and 

P contents) (Table 3) and a pollution due to the phosphoric acid processing wastes (case of 

WR2, WR3, WR5 and WR8 which present higher S content) (Table 3).   

 

4. Conclusion 
It has been shown by this study that by combining the PIXE method with a Solid State 

Nuclear Track Detectors’ technique one can evaluate the contents of light as well as heavy 

elements inside various solid and liquid material samples. It has been shown that pollution 

due to Cu, Zn, As and Hg is more important in the Safi phosphate industrial site than in the 

Jorf Lasfar one whereas pollution due to Pb is more important in the latter site than in the 

former one. A good correlation was found between S, Ca, P and U contents of the studied 

samples. It has been shown that the uranium concentration increase was due to both raw 

phosphate and phosphate industry wastes in the study area.  
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Table and figure captions 
 
 
Table 1. Nature and origin of the standard materials used for the PIXE experiments 

calibration 

Table 2. Comparison between certified values and data obtained by PIXE for trace and major 

elements for the fluoroapatite (Ca5(PO4)3F) (a)  and  natural basalt (BR)(b) standards 

Table 3. Data obtained by using PIXE for the concentrations (in % by weight) of major 

elements in solid and liquid samples collected from the Atlantic coastal region (Morocco), 

with zero referring to concentrations below the limits of detection  

Table 4. Values of the concentrations (in µg/g) of trace elements in the studied material 

samples obtained by PIXE, with zero referring to concentrations below the limits of detection.  

Table 5. Data obtained for uranium and thorium concentrations (in µg/g) for the studied 

material samples obtained by using the SSNTD method  

Fig. 1. The geographical situation of the study area 

Fig. 2. Typical PIXE spectrum obtained for the S1 sample 

Fig. 3. Distribution of major (a) and trace (b) elements in the solid samples studied 

Fig. 4. Distribution of major (a) and trace (b) elements in the water residue samples studied 
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Name, origin  Standard 

C320, Oxford Instruments Li2Ta2O6, B2O3, NaAlSi2O6, Mg2SiO4, 

Al2SiO5, SiO2, KAlSi3O8, Ca5(PO4)3F, TiO, 

FeS, FeCr2O4, NiO, SrTiO3, Nb2O5, CdSe, 

BaAl2Si2O8, Gd3Ga5O12, PbTe 

BR (88GOV1) SARM Laboratory  

(Nancy, France) 

Natural basalt 

 
Table 1 
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Element Certified values (in % by weight) PIXE method  
Si 0.42±0.01 0.38±0.04 
P 17.9±0.4 17.8±0.2 
Cl 0.020±0.001 0.010±0.001 
Ca 38±1 38±1 
La 0.27±0.01 0.20±0.01 
Ce 0.72±0.02 0.73±0.02 
Pb 0.037±0.002 0.032±0.001 

 
Table 2(a) 

 
 
 
 

Major element Certified values (in % by weight)
 

PIXE method 

P 0.46±0.02 0.44±0.02 
K 1.16±0.04 1.33± 0.02 
Ca 9.86 ±0.30 9.88 ±0.01 
Ti 1.56±0.05 1.56 ±0.05 
Fe 9.0 ±0.3 9.2± 0.1 

 
Trace element Certified values (in µg/g) 

 
PIXE method 

P 4600±140 4361±200 
K 11600±350 13266±50 
Ca 98600 ±690 98832±120 
Ti 15600±51 15546±110 
Fe 90000 ±630 91798±120     
V 235±7 255±25 
Cr 380±11 380±16 
Mn 1550±50 1384±23 
Ni 260±8 266±12 
Ga 19±1 18±2 
Sr 1320±40 1600±15 
Y 30±1 27±3 
Zr 260±8 275±14 
Nb 98±3 117±6 
Ba 1050±32 908±120 

 
 

Table 2(b) 



Sample Si P S Cl K Ca Ti Fe 

S1 20.5±0.2 0 45.7±0.1 0.40±0.02 0.36±0.01 4.00±0.01 0.340±0.005 1.80±0.02 

S2 10.7±0.3 21.0±0.2 2.81±0.02 0.63±0.01 0.030±0.003 39.61±0.01 0.13±0.01 0.30±0.01 

S3 23.6±0.1 1.2±0.1 0.2±0.02 18.50±0.04 1.24±0.02 26.40±0.04 0.10±0.01 0.70±0.01 

S4 4.5±0.2 0.90±0.06 0.50±0.01 1.30±0.01 5.1±0.2 41.20±0.03 0.20±0.01 0.32±0.01 

S5 2.4±0.2 0.4±0.1 0.32±0.01 0.90±0.01 5.3±0.2 38.1±0.1 0.13±0.01 0.51±0.01 

S6 9.6±0.1 10.4±0.1 1.00±0.01 1.44±0.01 0.40±0.01 29.00±0.02 0.12±0.01 2.52±0.01 

WR1 27.0±0.4 2.7±0.2 6.8±0.1 0.27±0.02 0 9.20±0.04 0.020±0.002 0.10±0.01 

WR2 15.0±0.1 3.2±0.1 16.55±0.03 3.00±0.02 0.45±0.01 25.52±0.02 0.20±0.01 1.15±0.01 

WR3 2.4±0.1 0.20±0.02 38.50±0.05 8.20±0.03 0.42±0.01 17.64±0.02 0.36±0.02 0.44±0.01 

WR4 6.3±0.3 0 37.8±0.2 3.15±0.04 0 24.23±0.05 0.020±0.002 0.060±0.005 

WR5 0.60±0.06 0 41.00±0.1 0.42±0.02 0 25.70±0.03 0.07±0.01 0.020±0.002 

WR6 2.0±0.1 0 39.3±0.1 0.50±0.02 2.0±0.1 24.52±0.03 0.060±0.005 0.020±0.002 

WR7 9.4±0.2 24.2±0.2 1.65±0.02 1.04±0.01 0.100±0.005 48.45±0.04 0.060±0.004 0.52±0.01 

WR8 6.2±0.1 0.9±0.1 7.50±0.02 0.64±0.01 0.600±0.005 6.44±0.01 0.200±0.003 51.31±0.04 

 
 

Table 3 
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Sample Cr Ni Cu 
 

Zn 
 

As Br Sr Y Zr Ag Hg Pb 

S1 0 
 0 126±9 263±8 0 0 371±9 19±2 90±8 0 0 477±15 

S2 0 787±108 1200±22 266±17 0 0 1095±80 935±22 0 0 0 293±41 

S3 137±11 0 0 0 0 117±5 772±14 114±8 2749±33 0 0 0 

S4 0 219±15 570±23 146±12 33±3 0 2329±20 21±2 30±2 13±1 0 204±25 

S5 0 571±44 410±24 186±15 34±3 45±4 1768±16 0 185±19 0 54±4 101±10 

S6 380±26 260±30 232±8 1594±30 124±17 84±8 2016±20 126±11 30±2 144±13 88±9 552±25 

WR1 0 0 0 0 0 0 268±21 407±28 0 0 0 0 

WR2 425±50 0 4460±75 547±50 265±40 281±30 1059±35 650±37 217±22 185±19 0 1700±124 

WR3 3617±186 500±46 1332±23 255±11 158±6 653±10 810±12 384±10 65±6 197±20 0 58±5 

WR4 0 0 83±8 51±5 0 47±10 463±23 280±20 67±6 0 0 0 

WR5 14140±404 0 72±7 45±4 0 0 495±9 91±6 31±2 0 0 0 

WR6 13131±381 0 2660±22 176±9 61±6 0 514±10 131±7 0 26±2 0 226±18 

WR7 0 640±60 365±15 207±10 0 0 1049±12 407±10 0 0 66±6 144±21 

WR8 0 0 10856±76 1537±51 861±27 0 431±18 44±4 112±16 52±5 366±37 87±9 

 

Table 4 
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Sample 
CR
Gρ x 10+5 

(tr.cm-2.s-1) 

LR
Gρ x 10+5 

(tr.cm-2.s-1) 
C(U) 

(µg g-1) 
C(Th) 
(µgg-1) 

S1 7.5 ± 0.3 2.3 ± 0.1 4.8 ± 0.2 3.1 ± 0.2 

S2 4.4 ± 0.2 1.4 ± 0.1 17 ± 1 11 ± 0.6 

S3 2.2 ± 0.1 0.70 ± 0.03 10.8 ± 0.6 15 ± 1 

S4 6.5 ± 0.3 2.0 ± 0.1 15 ± 1 9.4± 0.5 

S5 1.7 ± 0.1 0.54 ± 0.02 19 ± 1 14 ± 1 

S6 2.7 ± 0.1 0.85 ± 0.04 17 ± 1 19 ± 1 

WR2 0.16 ± 0.01 0.050 ± 0.001 21 ± 1 13.2 ± 0.7 

WR3 0.30 ± 0.01 0.090 ± 0.002 25 ± 1 19 ± 1 

WR5 0.22 ± 0.01 0.070± 0.001 9.2 ± 0.5 6.4 ± 0.3 

WR7 4.0± 0.2 1.20 ± 0.05 14 ± 1 9.7 ± 0.6 

WR8 3.1 ± 0.1 0.96 ± 0.04 23 ± 1 16 ± 1 

 
Table 5 
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Fig. 3(a) 
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Fig. 3(b) 
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Fig. 4(a) 
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