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SUMMARY 

Ocean loading effects cause 3D displacements large enough to affect space geodesy measurements 

either at the sub-diurnal periods or at longer time scales by the means of spurious signals. GPS 

measurements, in turn, could provide local improvements of the models in coastal areas if their ability 

to precisely monitor such rapid displacements is assessed. In this paper, we use 105 days of continuous 

GPS measurements collected in 2004 in the French Brittany and Cotentin region to investigate: 1- the 

precision achieved by the GPS analysis on measuring 3D sub-diurnal displacements and amplitude 

and phase of the tidal constituents, 2- the quality of the most recent ocean tide model FES2004 in such 

a complex coastal context. Indeed, in this area, tide amplitudes are among the largest in the world (up 

to 16 cm of loading displacements on the vertical component) and are believed to show strong 

shallow-water tides. From a state of the art GPS analysis using the scientific GAMIT software over 2h 

sessions, we test two independent strategies for the realization of the reference frame. The position 

time series are then compared with the displacements predicted by the FES2004 model applied on an 

elastic Earth model. The two sets of results are consistent with each other at the same level of 

agreement than with the predicted displacements, namely 3 to 5 mm on the horizontal components, 

10 mm on the vertical. This assesses the capability of this technique for measuring 3D ocean tide 

loading deformation. We validate the FES2004 model in the Brittany area, even though it slightly (2-

7 mm) underestimates the 3 components amplitudes. With a harmonic analysis of the observed 

position time series, we obtain nevertheless an agreement at a sub-millimeter level for the M2, N2, O1, 

Q1 tidal constituents and at a millimetre level for the K1 and S2 tidal constituents. Moreover, we can 

extract a significant M4 load signal at the 95% confidence level from the GPS time series at the 

stations located in the Mont St Michel area. The detection of other shallow-water constituents would 

be helpful to understand the amplitude deficit between the FES2004 predicted and GPS observed 

displacements. 

 

Key words: GPS – Ocean Tide Loading – Crustal Deformation - Brittany 
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1 INTRODUCTION 

Atmospheric, hydrological, and oceanic mass transfers cause some important loadings of the Earth 

(e.g., Blewitt et al. 2001) and show some significant diurnal and seasonal position variations at the 

several millimeter level on the vertical component with mainly semi-annual and annual periods (Dong 

et al. 2002; Penna & Stewart 2003). On one hand, the knowledge of these loading effects, that affect 

GPS position estimates, has greatly improved since a few years (Blewitt et al. 2001; van Dam et al. 

2001). Some atmospheric and hydrological loading estimations and ocean tide loading (OTL) 

prediction models are available to correct GPS position estimates either at the data processing stage, or 

at the time series interpretation stage. On the other hand, Penna & Stewart (2003) and Penna et al. 

(2007) showed that each unmodelled (sub-) daily periodic displacement can propagate into spurious 

long wavelength features in the GPS vertical position time series. The amplitude of the spurious signal 

strongly depends on the amplitude of the unmodelled displacements and on the site location. Penna et 

al. (2007) suggest vertical displacement errors up to about 12.5 mm, including up to 8 mm due to OTL 

mismodelling. Moreover, King et al. (2003) show that if both vertical OTL is not accounted for (or in 

a lower level, mismodelled) and the carrier phase ambiguities are not solved in GPS processing, the 

horizontal GPS positions may be biased by up to 40-50% of the vertical signal amplitude. Hence, 

unless using accurate ocean tide loading models in GPS processing, some spurious signal can bias the 

estimation of positions and velocities requested for high accuracy studies such as plate tectonics or 

reference frame realization. It is then important to evaluate the accuracy of the OTL models. 

The OTL displacements are computed using an OT model and an Earth model. The accuracy of the 

OTL model is mostly limited by the accuracy of the OT model. Usually, OT model predictions are in 

good agreement in deep oceans but can differ in complex areas (i.e. complex coastal areas and 

complex continental shelves). In these areas, the production of OT model is more challenging than in 

deep oceans because sparse tide gauge data are used and global models could not integrate some local 

processes like wave interactions, strong bathymetric variations, and bottom friction phenomena 

(Dragert et al. 2000; Llubes et al. 2001). One possible way to improve OT or OTL models in these 

areas would be to integrate a new independent data set, such as GPS observations, in addition to data 

from tide gauges and altimetry (Dragert et al. 2000; Khan & Tscherning 2001; King & Aoki 2003). 
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The GPS technique has the potential to measure the OTL displacements as shown by several studies 

for the vertical OTL displacements (Baker et al. 1995; Khan & Tscherning 2001; Allinson et al. 2004; 

King et al. 2005) and by much fewer studies for the horizontal OTL displacements (Khan & 

Scherneck 2003). The question arising is to know if one can achieve a sufficient precision and 

accuracy on the 3D GPS OTL displacements to integrate them in OT model implementations or to 

constrain OTL models in the regions where models fail. 

In this paper, to estimate the potential and the necessity of the GPS measurements to be integrated as 

constraints in future OTL models, we (1) evaluate the resolution and accuracy of the 3D OTL 

displacements derived from GPS observations, and (2) investigate the quality of the OTL 

displacements derived from the most recent OT model FES2004 (Lyard et al. 2006). To perform our 

goal, we use GPS data acquired in the Brittany-Cotentin region, in northwestern France, where the 

ocean tide amplitude is among the largest in the world. It is also a place where the ocean tide signal is 

influenced by a high coastal indentation in Brittany, and by strong local shallow-water tides. The large 

amplitude and complexity of the OT makes this region an area of great interest to measure OTL 

displacements and validate predicted ones. 

In the following, we first describe the NW-France ocean tide loading campaign (section 2), and the 

FES2004 OT model (Lyard et al. 2006) and derived OTL model (section 3). We then define a valid 

network processing strategy (section 4) that allows one (1) to accurately measure the 3D OTL 

displacements in a global reference frame, (2) to extract the major tidal OTL constituents (semi-

diurnal and diurnal ones) as well as higher frequency terms, and (3) to directly compare observed and 

predicted OTL displacements (section 5). 

 

2 NW-FRANCE OCEAN TIDE LOADING CAMPAIGN 

In Europe, ocean tides are the strongest on the Atlantic and Channel coasts. Their amplitude can reach 

14 m in Cotentin and Brittany, which induces 5 to 16 cm vertical crustal peak-to-peak displacements 

and about one third of this displacement on the horizontal components. Figure 1 shows the vertical 

displacements due to the M2 load, main tidal constituent in the studied area, from FES2004 (Lyard et 

al. 2006). Moreover, due to the weak bathymetric variations and to the short wavelength geometric 

features of the coastline, the shallow-water tides are amplified in this coastal area. Hence, OTL 
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displacements are high enough to be measured in this region, as well as could be the energic shallow-

water constituents of the ocean tide loading although they are usually difficult to characterize. 

In 1998 and 1999, GPS and gravimetry data sets were used to study the OTL effects in Brittany (3-4 

days, Vey et al. 2002; Llubes et al. 2001). The gravimetric analysis (Llubes et al. 2001) showed a 

good correlation but an amplitude discrepancy of 16% between the observed and predicted signals at 

Brest (BRST, Fig. 1). The GPS analysis (Vey et al. 2002) showed that the amplitude of the signal is 

large enough to be measured by GPS but that the data set was too short to validate models. To go 

further in the study of the OTL effects in Brittany-Cotentin, a new multi-geodetic-technique campaign 

(GPS, absolute and relative gravimetry, inclinometry, tide gauges, satellite laser ranging) took place 

from March to October 2004 (Llubes et al. revised). 

In this paper, we focus on the results of the GPS campaign. Twelve GPS stations collected data from 

March to June 2004 during 105 days in addition to 3 stations of the French GPS Permanent Network 

(RGP) located in the studied area (Fig. 1). Most of the campaign stations were installed on the north 

coast where ocean tides are the most significant. The other stations were installed on the south coast 

and inland to observe the Earth crust’s response to the propagation of the main load.  

 

3 OCEAN TIDE AND OCEAN TIDE LOADING MODELS 

Owing to the availability of TOPEX-Poseidon altimetry data in the 1990s and to the effort undertaken 

by the tidal scientific community to develop new tidal models, the accuracy of OT models has greatly 

improved (Andersen et al. 1995; Shum et al. 1997; Baker & Bos 2003; Andersen et al. 2006). It now 

reaches a centimeter level accuracy in the deep ocean. A new release of the FES tidal atlas was 

recently produced, namely FES2004 (Lyard et al. 2006). It is computed from tidal hydrodynamic 

equations and from data assimilation based on the same modelling approach as FES99 (Lefèvre et al. 

2002). With a better discretization of the finite element grid, in particular near the coastal areas, and 

the introduction of loading and self-attraction terms in the tidal equations, the French Tidal Group was 

able to better compute the hydrodynamic solutions for shelf areas, especially on the Atlantic ocean. 

Moreover, the assimilated data set, including tide gauge data, TOPEX-Poseidon and ERS altimetric 

data, increased since the previous FES2002 release (Lyard et al. 2006). Comparisons of the FES2002 

model, the GOT00.2 model (Ray 1999), and the new FES2004 model with tide gauge data show an 
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improvement of the FES2004 model of about 10 to 30% for the semi-diurnal constituents (except K2) 

with respect to the 2 other models (Lyard et al. 2006). Comparison of FES99 (Lefèvre et al. 2002) and 

FES2004 models with altimetric data (Jason-1 and ENVISAT data) also shows an overall 

improvement of FES2004 model (12% and 7% respectively). The major improvement in FES2004 

comes from a better accuracy of the prediction of the tidal constituents in coastal and continental shelf 

areas (about 30% compare to Jason-1 data) without decreasing accuracy in the deep ocean. 

To predict the OTL displacements, an OT model and an Earth model are required. The OTL effects 

are described by the convolution between the surface mass load derived from the OT model and 

Green’s functions, which are a linear combination of load Love numbers, describing the response of 

the Earth model to that load (e.g., Farrell 1972). The accuracy of the OTL displacements greatly 

depends on the accuracy of the OT models. We chose to compare the 3D observed OTL displacements 

derived from the GPS data to the 3D predicted OTL displacements derived from FES2004 OT model 

(Lyard et al. 2006) because FES2004 is the most recent ocean tide model available. Moreover, it 

clearly tries to better reproduce ocean tides in hydrodynamically complex coastal regions like 

Brittany–Cotentin. 

We want to investigate the accuracy of the OTL model in quantifying the quality of the main predicted 

constituents as in classical OTL analysis but also in estimating the quality of the 3D OTL predicted 

displacements to provide quantitative information on the accuracy of the OTL correction used in 

standard GPS analysis. For that latter purpose, we build the 3D OTL predicted position time series. 

Eleven tidal constituents are classically used by GPS software routines correcting OTL effects, namely 

M2, S2, N2, K2 for the semi-diurnal ones, K1, O1, P1, Q1 for the diurnal ones, and Mf, Mm, Ssa for 

the long period ones. We use these terms to compute the 3D OTL predicted position time series in 

order to be consistent with standard GPS analysis and represent as closely as possible the complete 

observed signal. In FES2004, they are provided on a regular rectangular grid of 1/8 degree which 

corresponds to cells of 13.8 km by 9.3 km at the latitude of our study which is much better than the 

resolution provided by other OT models (McCarthy & Petit 2004). We get the site-dependent 

amplitude and phase values corrected for the center of mass motion of the Earth due to ocean tides for 

the 11 tidal constituents from the Bos and Scherneck OTL Provider 

(http://www.oso.chalmers.se/~loading/). The coastline used is the one of the Generic Mapping Tools 

package (P. Wessel and W. H. F. Smith, http://gmt.soest.hawaii.edu/) with a spatial resolution better 
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than 500 m. We then compute the OTL vertical and horizontal displacements with the Fortran routine 

hardisp.f of D. Agnew based on his former routine distributed with the SPOTL software (“Some 

Programs for Ocean-Tide Loading”, Agnew 1996, 1997) which use the elastic Green’s functions based 

on the Gutenberg-Bullen Earth model. This procedure is the one chosen by IERS for their standards 

(McCarthy & Petit 2004). 

 

4 DATA PROCESSING  

To measure the OTL displacements, we implement a GPS processing strategy that provides precise 

sub-daily positioning without smoothing the researched signal. In order to compare our observed OTL 

position time series to predicted OTL position time series, we define an OTL reference frame 

(hereafter referred as OTL RF). The Datum’s stability is assessed by implementing two end-member 

strategies to express the final GPS position time series. In this section, we first present the common 

processing parameters used in both end-member strategies; second, the OTL reference frame; then the 

two end-member strategies; and finally the evaluation of the quality of the solutions. 

 

4.1 COMMON PART OF THE PROCESSING STRATEGIES  

We analyze the continuous GPS data of eleven of the twelve campaign sites and of three RGP 

permanent stations (Fig. 1) from March to June, 2004, using the GAMIT 10.21 software (King & 

Bock 2005). Indeed, since the FLER station, in Cotentin (Fig. 1), showed some monument stability 

problems, we removed its data in the final GPS analysis presented here. In order to decorrelate the 

tropospheric parameter estimation from the vertical positioning within the GPS processing, our 

stations are included in a regional network with baselines longer than 500 km (Tregoning et al. 1998; 

Duan et al. 1996). The reference frame stabilization of our network is achieved through the use of 16 

European stations from the IGb00 reference network (BOR1, BRUS, GLSV, GRAS, GRAZ, HOFN, 

MAS1, MATE, NICO, ONSA, TRAB, TRO1, VILL, WSRT, WTZR, ZIMM) (Altamimi et al. 2002; 

Ferland 2003). Most of the processing parameters are classically chosen: Solid Earth tides, pole tides, 

and high frequency tide corrections were applied following the IERS 2003 standards (McCarthy & 

Petit 2004), as well as IGS antenna phase center models. As the periods of the two main ocean tide 

constituents (M2 and S2) are close to 12h, short session lengths are necessary to prevent over-
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smoothing of the signal under investigation. We test different session lengths between 1 and 4h and 

find that 2h sessions are a good trade-off between motion sampling and position precision. To sample 

the short term displacements as well as possible, we process overlapping 2h sessions every hour, 

resulting in 24 position estimates per day for every station. Tropospheric delays are estimated every 

30 min in 2h sessions. The a priori values coming from the Saastamoinen model (Saastamoinen 1972) 

and the Niell (1996) hydrostatic and wet mapping functions are used. The IGS final orbits and the 

IERS USNO Bulletin B Earth Orientation Parameters (EOP) are kept fixed in the processing. A priori 

station positions were derived from ITRF2000 for the reference stations and from a first run of 

adjustment with a free network processing using 24h sessions for the Brittany sites. Both a priori 

position sets are corrected from OTL effects using the FES2004 model, as described in the previous 

section, in order to start our analysis with values as accurate as possible. The constraints we apply on 

the a priori positions of the IGS and Brittany stations depend on the implemented strategy to tie the 

GPS solution to the OTL RF defined in the following section. 

 

4.2 THE OTL REFERENCE FRAME 

Previous OTL studies using double difference based GPS softwares present relative GPS solutions (in 

a local reference frame). The station position variations are expressed relatively to one or more inland 

stations with fixed coordinates in a global reference frame (e.g., Khan & Tscherning 2001; Vey et al. 

2002). This strategy, even if straightforward, has one major drawback. Such relative position 

variations are not directly comparable to other geophysical results or to OTL models. The only 

rigorous way to make these comparisons is to express GPS results in a global reference frame, 

consistent with global OTL models. We therefore define a reference frame, consistent throughout our 

whole experiment, transforming our GPS position estimates into ITRF2000 positions corrected from 

the OTL effects deduced from FES2004. Our reference frame, the OTL RF, is therefore defined as 

ITRF2000 positions and velocities corrected from the FES2004 OTL effects. The consistency level of 

this reference realization will be directly related to the accuracy of the FES2004 OTL predictions for 

the IGS stations (as IGS stations only are used in the RF definition). From the common strategy, we 

test end-member processing strategies to tie the GPS solution to the OTL RF from a constrained 

solution (St1 strategy) and a free network solution (St2 strategy). The comparison of the final solutions 

will allow us to evaluate the stability of the GPS solutions and the quality of the OTL RF realization. 
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4.3 THE “CONSTRAINED” SOLUTION (St1 STRATEGY) 

The St1 strategy ensures the reference frame stability by applying very tight constraints (1 mm on 

every component) on the IGS sites used. The reference frame consistency throughout the whole 

experiment period (3.5 months) is therefore assessed in the GPS processing itself. Such a constraint 

level requires the correction of a priori positions with a level of confidence better than 1 mm. We then 

assume that the FES2004 model provides a prediction of OTL effects accurate at a millimeter level on 

the IGS sites. In this St1 strategy, the constraints applied on the a priori positions of the Brittany-

Cotentin sites are 5 cm on the horizontal components and 10 cm on the vertical component. 

 

4.4 THE “FREE NETWORK SOLUTION” (St2 STRATEGY) 

The St2 strategy involves a free network analysis with looser constraints on every site with respect to 

the St1 strategy. The free network solution (before the reference frame realization step) should not be 

influenced by the a priori positions. The constraints applied on these a priori positions must be loose 

enough to not bias the intermediate free network results. From a theoretical point of view, this could 

be easily achieved by choosing constraints (i.e. a priori standard deviations) one order of magnitude 

larger than the GPS phase a priori standard deviation. Therefore, we ensure that the solution is more 

weighted by the normal equations than by the constraint equations on the positions. In the GAMIT 

software, the default value for the phase a priori standard deviation is 10 mm (basically 2 mm for each 

observation, changed to 10 mm to account for the correlation between successive observations) (King 

and Bock, 2005). Constraints of 5 to 10 cm on the a priori positions should then be loose enough to 

avoid any strong influence of these positions on the free network solution. To check this assumption, 

we test several levels of constraints applied to the a priori positions of IGS and Brittany stations. With 

constraints of 1 cm/5 cm on the horizontal and vertical a priori positions respectively on the IGS sites 

(5 cm/10 cm on the Brittany sites), a clear correlation is observed between free network positions and 

the a priori constraints. This correlation is observed on every IGS station and increases for the remote 

sites located at the edge of our network. With looser constraints on a priori positions (5/10 cm for the 

IGS station and 10/20 cm for the Brittany stations), this behaviour is not reproduced anymore. We 

conclude that, in agreement with the theory, constraints of 5 to 20 cm are loose enough to estimate free 
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network positions without any strong influence of the a priori constraints. We use this level of 

constraints in the following work. 

We then realize the reference frame by minimizing the position deviations of the IGS stations included 

in the GPS processing with respect to the OTL RF. To do this, we estimate the parameters of a 

Helmert transformation between our individual coordinate sets and the OTL RF on the IGS stations, 

using the GLOBK software (Herring et al. 1990; Herring 2003). Taking into account the regional 

distribution of the network, we calculate a three parameters transformation (three translations) and not 

a transformation with more parameters (scale, rotation). In order to estimate the robustness of our 

reference frame realization, we made some tests on the final results to evaluate the influence of the 

reference station selection. We conducted these tests on a 20 day time series (480 individual 

solutions). Different sets of IGS reference stations were used. The stations we removed were chosen 

according to their residuals in the least squares reference frame definition process. The first set of 

stations (R1 hereafter) includes all the 16 IGS stations we processed along with our network stations. 

We then remove one after the other the 6 following remote stations sorted by increasing quality: 

TRAB (set R2), MAS1 (R3), NICO (R4), TRO1 and HOFN (R5), and GLSV (R6). The last set R6 

includes 10 stations only (the original 16 ones minus the 6 above stations). The root mean square 

(RMS) of the reference frame stabilization (calculated over all the stations used and their components) 

is not very good when we keep the 16 IGS station as reference frame stations (R1). In particular the 

north and east RMS at the remote stations are generally higher than 10 mm. With respect to the R1 set, 

the RMS of the reference frame stabilization improves of 9.5% (R2), 18% (R3), 22.5% (R4), 46% 

(R5), and 52% (R6). In addition to this RMS decrease, the adjustments on the 10 European IGS 

stations kept as reference frame improve greatly in R6 with respect to R1. The mean North, East, and 

Up (NEU) RMS (average on every reference station per component) improve of 38%, 32%, and 42% 

with respect to the R1 set. These tests show that the realization of the OTL RF with 2h session data is 

better when we exclude the remote stations of the stabilization process. 

 

4.5 QUALITY OF THE St1 AND St2 SOLUTIONS 

As already emphasized, precise determination of station positions with short sessions requires correct 

zenith tropospheric delay (ZTD) estimation (Khan & Scherneck 2003) along with the correct fixing of 

phase ambiguities to integer values (King et al. 2003; Vey et al. 2002). With a network that includes 
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the 16 IGS stations in addition to the 14 Brittany stations, baseline lengths range from 40 km to 

5070 km, 58% of them being shorter than 1500 km. The number of carrier phase biases fixed on 2h 

sessions in St1 and St2 strategies is respectively 60% and 64% which depends on the geometry of the 

network. We also checked the final correlation between ZTD estimations and the observed vertical 

displacements. For both strategies, the correlation is very small, less than +/- 0.06 for most of the 

stations (29 over 30 for St1 strategy, and 25 over 30 for St2 strategy). Few exceptions exist for the 

furthest stations where the correlation coefficient can reach up +/- 0.2. Nevertheless, this value is still 

low and reasonable, showing that there is no trade off between the ZTD and the vertical displacement 

estimations in our processing. No significant vertical motion being absorbed into the ZTD, we 

therefore validate the constraints applied to the vertical component. 

To evaluate the quality of the reference frame realization, we first compare the St1 and St2 results with 

the FES2004 predicted OTL displacements on the IGS stations used as references. The agreement 

between St1 results and the OTL predictions is excellent (RMS lower than 0.6 mm on each 

component), reflecting the 1 mm constraints we imposed on these stations within the GPS processing. 

We expect a lower agreement between the St2 results and the OTL predictions on the IGS stations, as 

we do not constrain the position but calculate a translation parameter transformation to express the 

GPS solution in the OTL RF. We obtain mean RMS on the 10 IGS stations (R6) of 3.2, 3.1, and 

9.7 mm on the NEU components, respectively. These values reflect a good consistency of the St2 

session to session RF realization. We then compare the Brittany site position time series resulting from 

St1 and St2 strategies. They are in good agreement with weighted root mean squares (WRMS) of 3.4, 

4.0, and 9.4 mm on the NEU components respectively, which are consistent with the formal error level 

(see section 5). These results show first that, in both strategies, the realization of the OTL RF is 

achieved successfully and second that, under the assumption that FES2004 is valid at the millimeter 

level for IGS stations, we can consider that we do not miss any oceanic signal in the position time 

series at the precision level of the observations.  
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5 GPS OBSERVED OTL DISPLACEMENTS AND COMPARISON WITH 

PREDICTED OTL DISPLACEMENTS 

We obtain 105-day time series for the 30 stations included in the processing. In this section, we focus 

on the results obtained for the 14 stations located in the studied area (Fig. 1). We present first the 3D 

position estimates with an accuracy assessment, and then a spectral and a harmonic analysis. At both 

stages, we compare the estimations with the predictions. 

 

5.1 POSITION TIME SERIES ANALYSIS 

At Cherbourg (CHER, Fig. 1), two inclinometers, an absolute gravimeter and a relative one were 

installed close to the GPS station. In addition, the GPS results obtained at Cherbourg are 

representative for the whole network. We therefore present, as an example, the results at this station. 

Figure 2 shows the observed 3D position time series at CHER without any a posteriori filtering or a 

posteriori outlier cleaning. The formal errors on the NEU position estimates are 6, 3 and 10 mm for the 

St1 solution, and 3, 3 and 10 mm for the St2 solution. These values are mean values but show a great 

consistency over the 14 stations. When processing 2h sessions, we obtained solutions with 3D formal 

errors at the millimeter to centimeter level, close to the level of precision of classical 24h session 

solutions. These formal errors are always smaller than the amplitude of the signal even on the 

horizontal components which allow us to be confident in the horizontal results. The position time 

series we obtain from the two strategies clearly show surface displacements caused by the oceanic 

loading not only on the vertical component – as already extensively shown in previous studies (e.g. 

Dragert et al. 2000; Khan & Tscherning 2001; Allinson et al. 2004; King et al. 2005) – but also on the 

horizontal components (Khan & Scherneck 2003) at all the regional stations with peak-to-peak 

amplitudes that range from 8 to 40 mm depending on the station. 

To investigate the consistency of the two observed solutions, we perform a residual analysis at all the 

stations on each component based on the mean differences and the weighted standard deviations of the 

differences (WSDD) between the two solutions. The mean differences range from -0.18 to 0.16 mm on 

the vertical component (respectively from -0.28 to 0.03 mm on the N component, from -0.04 to 0.05 

mm on the E component) between the two solutions, demonstrating that no significant bias is observed 

between our two strategy results. The NEU WSDD (Table 1) show values consistent with the errors 
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previously estimated (e.g., WSDD of 3.3, 4.1, and 8.3 mm at CHER on NEU component respectively). 

This result ensures consistent independent GPS solutions at the millimeter level.  

We perform the same analysis between the observed displacements and the predicted displacements 

and find roughly the same level of agreement between the different time series (Table 1). The St1 and 

St2 observed displacements are closer together than with the prediction, except on the east component 

(see St2/model WSDD with respect to St1/St2 WSDD in Table 1). The lower agreement of the 

observed solutions on the east component could reflect a better position estimation on the north 

component than on the east component. This is classically the case in standard GPS processing 

(Melbourne 1985; Blewitt 1989) but amplified in our study because of the short session length. 

Though non significant regarding the precision of the observations, we note a small systematic bias 

between the observed and predicted displacements. Whatever station considered, the predicted signal 

amplitudes are systematically smaller than the observed ones with a difference of 2 to 7 mm on each 

component (Fig. 2). 

The comparisons between the observed OTL signals and between the observed and predicted OTL 

signals show an overall good agreement at the positioning level of precision of 3 to 6 mm on the 

horizontal component and about 1 cm on the vertical component. This result allows us to validate the 

FES2004 OT model, at least in west of France, for applications such as meteorological applications 

that require to know OTL effects with an accuracy better than 3 cm to estimate realistic GPS-derived 

precipitable water vapor (Vey et al. 2002). However, we suggest that the predicted displacements 

derived from the FES2004 OT model are slightly underestimated on the three components. In the next 

step, we perform a spectral and harmonic analysis thanks to which we deeply examine the discrepancy 

between observed and predicted OTL displacements. 

 

5.2 SPECTRAL AND HARMONIC ANALYSIS 

We first perform a spectral analysis on the St1 and St2 strategy time series to assess the noise level of 

our harmonic analysis. Figures 3 and 6 represent the amplitude spectrum. We find that the noise level 

is about the same at different stations as shown for the vertical component at CHER (Fig. 3), MALO, 

DUCE, and COUT (Fig. 6). The standard deviation (i.e. noise at the tide-free frequencies excluding 

frequencies from S2 to N2 frequencies) ranges from 0.2 to 0.6 mm on the NEU components for CHER 

for both observed solutions (Fig. 3). 
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We then perform a harmonic analysis on the St1 and St2 strategy time series as well as on the 

predicted time series using the T_TIDE package (Pawlowicz et al. 2002), already used in other ocean 

tide loading studies (e.g., King et al. 2005). The observed times series at RENN, TREV and SURZ 

show gaps of long duration (16, 34, and 48 days respectively). Although one third and one half of the 

data are missing at TREV and SURZ, we still decide to perform the harmonic analysis of these time 

series because there are the only stations on the south coast of Brittany. The results at these stations 

should therefore be regarded with caution. As already noticed by Khan & Tscherning (2001), we are 

not able to separate constituents that have very close periods like K2 (11.97h) and S2 (12.00h), or P1 

(24.07h) and K1 (23.93h) with 105 day time series. These authors suggest that the separation of these 

waves requires at least 6 months of continuous data, i.e. twice the number of data we get. We then 

extract only 3 semi-diurnal (M2, S2, N2) and 3 diurnal (K1, O1, Q1) tidal constituents from both the 

observations and the prediction. The results are shown in Tables 2 and 3 in terms of amplitude and 

phase consistencies for each station. The amplitudes and phases on the NEU components, for the 

BRST and CHER GPS stations are shown on Figure 4. We choose BRST because it is localized where 

the loading amplitude of M2 is the highest, and CHER for its representativeness of the whole network. 

The confidence intervals are calculated using a bootstrap analysis, based on a coloured-noise model 

(Efron & Tibshirani 1993). Among the 6 tidal constituents, the loading amplitude of M2 at all the 

regional stations is the highest but all the 6 considered tidal constituents can be well extracted (Table 

2, Fig. 4). On the 6 tidal components, the 95% confidence level ranges from 1 to 2 mm on the vertical 

component and is below 1 mm on the horizontal components which is fully consistent with the noise 

level extracted from the amplitude spectrum. Figure 5 shows, for each station, the 3D misfit between 

the different solutions, two by two, as the root mean square of the sum of the squares of the complex 

differences for the 3 components and the 6 constituents (King et al. 2005; Thomas et al. 2007). The 3D 

misfit, over the 6 constituents, should reflect the agreement between the two observed position time 

series and between the observed and predicted position time series (section 5.1). It is slightly lower 

than the discrepancy shown between the position time series. The analysis of the 6 main constituents 

may not be enough to assess the quality of the OTL predictions. 

The consistency of the M2 amplitude is very good between the two observed solutions and the 

prediction (Tables 2 & 3, Fig. 5). For the M2 constituent alone, the 3D misfit shows an agreement 

better than 1 mm on the NEU components between the two observed solutions for all the stations 



 15

except TREV and SURZ that suffer of a limited number of data. Indeed, the amplitude differences are 

less than 0.5 mm on the N and E components, and less than 1 mm on the vertical component (Table 2), 

and the phase differences are negligible regarding the phase precision (1 to 5° on the NEU components 

at 95% confidence level, Table 3). Despite the 3D misfit being higher between each observed solution 

and the predictions, it is still better than 3 mm (Fig. 5). On the U component, we observe a systematic 

positive phase lag of 3 to 9° between observations and prediction (except BAYE). On the horizontal 

components, this phase lag ranges from -3 to -10°, close to the significancy limit. We conclude that the 

agreement of the model with our observations on the M2 constituent is very good in amplitude, 

whatever the component considered, with a small phase lag. 

For the other diurnal and semi-diurnal constituents with smaller amplitudes, the agreement between 

the observations together and with the prediction is of the same level as for M2, except for the K1 

constituent (Fig. 5). The amplitude differences between the predicted and observed solutions are 

below 0.5 mm on the N and E components, and below 1mm on the vertical (with the exception of the 

K1 and S2 terms, Table 2). Except for some specific constituents (K1 vertical component and Q1), the 

phase agreement between observation and prediction is good with discrepancies below 15°. The phase 

standard deviation for each tidal constituent and component are also usually small, similar to the ones 

found for M2 in Khan & Scherneck (2003), and smaller than the ones found by King et al. (2005). 

Looking carefully at the results, we find a less good agreement between the observed and predicted K1 

constituent and between the two S2 estimations in comparison with the agreements on the other 

constituents. Some incoherent signals found in GPS observations at near solar and sidereal frequencies 

could be attributed to orbit perturbations or multipath, as already emphasized in several studies 

(Rothacher et al. 2001 ; Scherneck et al. 2000). This could explain the strong disagreement between 

the observed and predicted K1 amplitude and phase, mostly on the vertical component (Table 3 and 

Fig. 4). The S2 constituent estimation (on the vertical component) can also be affected by satellite 

orbit errors propagating on the K2 constituent, the S2 and K2 constituents being difficult to separate. 

However, because it is a disagreement between the two S2 estimations (and not with predicted S2), we 

suspect that it is partly due to a mis-estimation of the zenithal tropospheric delay (ZTD). Indeed, at all 

the stations, we find a signal whose amplitude ranges from 1 to 2.2 mm in the St2 ZTD time series at 

the S2 constituent period. We do not find any equivalent signal in the St1 ZTD time series. Moreover, 
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the S2 constituent estimation from the St1 solution agrees better with the prediction than the S2 

constituent estimation from the St2 solution. 

In this study, the precision on the phase estimate is about the order of the phase difference found for 

each tidal constituent and component. The levels of agreement in phase as well as in amplitude are 

consistent with the 3 to 10 mm precision we obtained in the 3D time series. The quality of the model 

predictions cannot be investigated beyond this limit. 

 

5.3 DETECTING SHALLOW-WATER LOADING CONSTITUENTS. 

One of the reasons why we study ocean loading in Brittany-Cotentin is that the shallow-water tides are 

supposed to be very energetic in this area, in particular in the Bay of Mont St Michel and surroundings 

(location of MALO, DUCE, and COUT stations). For example, the amplitude of the M4 tide exceeds 

30 cm (Lyard et al. 2006; Andersen et al. 2006) and the amplitudes of MS4 and M6 tides exceed 15 

cm (Andersen 1999). According to the M4 tide that is included in the FES2004 model (Lyard et al. 

2006), the predicted amplitude of the M4 load can reach 1 mm in the Mont St Michel area. We now 

specifically look if the GPS tool is capable to detect this short period tidal constituent in 105-day GPS 

time series. 

We perform a spectral and harmonic analysis on the vertical position time series at MALO, DUCE, 

and COUT (Fig. 6 and Table 4). We can extract the M4 loading constituent from the St1 and St2 

observations at MALO with a signal-to-noise ratio of 1.4 and 1.3 respectively. The estimated 

amplitudes are 1.30 +/- 1.12 mm and 0.85 +/- 0.76 mm (95% confidence) with estimated phases of 

165.2 +/- 57.5° and 151.4 +/- 59.5° (95% confidence) from the St1 and St2 solutions respectively. The 

noise level on the vertical component at MALO is 0.53 mm and 0.46 mm from the St1 and St2 

solutions respectively, consistent with the values we obtain for the 95% confidence level on the M4 

loading constituent estimation. St1 and St2 M4 loading constituent estimations are consistent. They 

are also consistent with the predicted loading constituent derived from FES2004 (Table 4). Finally, 

their amplitude is almost as large as the Q1 loading amplitude (Tables 2 and 4). The M4 loading 

constituent estimation at DUCE and COUT, also located in the bay of Mont St Michel, is not as well 

determined as the estimation of M4 loading constituent at MALO. It is significant only at the 68% 

confidence level (Table 4). However, the estimated amplitude is in good agreement with the predicted 

one at these locations (Table 4). We then suggest that this short period signal, despite its small 
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amplitude, can be measured on continental shelves such as the Brittany-Cotentin shelf where high 

wave interactions occur. 

We can also extract two other shallow-water loading constituents (S4 and SK3) on most of the vertical 

time series with signal-to-noise ratio higher than 1. Because these shallow-water loading constituents 

are combinations of S2 and K1 loading constituents and mostly because we found them at most of the 

sites, we suspect that these signals can be due to artefacts of the GPS processing. They might be 

attributed to multipaths that could affect the GPS signal at all the integer fraction of the K1 period 

(e.g., Ragheb et al. 2007) and to periodic orbital error at integer fraction of the orbital period (Khan & 

Scherneck 2003). Finally, shallow-water loading constituents like M3 or M6 are close to be detected 

but still suffer from a high noise at high frequency to be accurately extracted. Nevertheless, if the GPS 

tool were able to extract all the shallow-water loading constituents, their sum would exceed the 

amplitude of some diurnal constituents in this region (e.g., O1, Q1). In that case, the shallow-water 

cumulative amplitude could partly fill the amplitude deficit between the observed and predicted 

loading signal (section 5.1). These short period constituents would then be important to account for in 

hydro-dynamically complex region as the Brittany-Cotentin in order to improve the accuracy of the 

OTL signal. We hope to be able to confirm this hypothesis with the analysis of the gravimetry data at 

CHER since shallow-water loading signals have already been detected with superconducting 

gravimeters in Europe (Boy et al. 2004) and in Japan (Khan & Høyer 2004). 

 

6 CONCLUSION 

We show that GPS is able to measure the sub-daily OTL displacements not only on the vertical 

component but also on the horizontal components with 10 mm precision on the vertical positioning 

and 3 to 6 mm precision on the horizontal positioning. We can extract the M2 and N2 semi-diurnal 

and O1 and Q1 diurnal constituents with a precision better than 1 mm at a 95% level confidence on the 

NEU components, consistent with the noise level derived from the amplitude spectrum (0.2 to 0.6 mm 

on the NEU components). The estimation of the K1 and S2 constituents is more delicate because it 

potentially suffers of problems related to satellite orbit errors or troposphere. Finally, we are able to 

extract the M4 load signal at 95% confidence level from the 105 day observed time series in the area 

of Mont St Michel, at MALO, where the M4 predicted loading amplitude can reach 1 mm. This result 
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is encouraging for the detection of shallow-water loading constituents with amplitudes higher than 0.5 

mm. 

We validate the prediction derived from the new FES2004 OT model (Lyard et al. 2006) in this 

Brittany-Cotentin complex region. We conclude from our analysis that the OTL model is valid at the 

precision level of the GPS measurements in this area. However, we suggest, from the systematic 

difference between the observed and predicted displacements, that the latter are slightly under-

estimated on the three components. We exclude a strong mismodelling of the M2 constituent (main 

tidal constituent in the area), the NEU amplitude predictions of M2 being consistent with the 

observations (3D misfit of 2-3 mm, Fig. 5). We propose that the discrepancy could be due to a weak 

GPS estimation of some ocean tide constituents, like K1, and a lack of modelling (or mismodelling) of 

the shallow-water tides in OTL models. However, based on the estimation of the M2, S2, N2, and K1 

constituents derived from the GPS data of the 8 stations located on the north coast of Brittany, 

Melachroinos et al. (2007) show that, among six global and one regional OTL models, FES2004 OTL 

predictions, along with the regional model predictions, best fit the observations in this complex region. 

Finally, owing to the expression of the time series in a global reference frame and to the fruitful 

attempt to extract some shallow-water loading constituents, this analysis raises again the question of 

the integration of some GPS measurements as additional data in OT models where altimetric or tide 

gauge data are lacking or as additional data in OTL models used to correct GPS processing dedicated 

to atmospheric, meteorological, or Earth deformation studies. 
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Figure legends 
 
Figure 1: Amplitude of the M2 tidal load on the vertical component in the Brittany-Cotentin region 

derived from FES2004 ocean tide model of Lyard et al. (2006). Values are in mm. The GPS 

stations used in this work are displayed with their name. BRST, RENN, and MANS (black 

symbol) belong to the French Permanent Network (RGP). The other stations (white symbol) are 

campaign stations deployed during the 2004 French Ocean Tide Loading campaign. 

Figure 2: St1, St2, and predicted position time series (in mm) for the north, east, and up components at 

Cherbourg (CHER, Fig. 1) over 20 days extracted from the complete 105-day position time series 

(for clarity purposes). The St1 and St2 observed position time series (black) are represented along 

with the predicted position time series derived from FES2004 OT model (grey), on the top and 

bottom of each subplot respectively. The abbreviations used are: St1 for St1 observed solution, St2 

for St2 observed solution, mod for model, and wsdd for Weighted Standard Deviation of the 

Difference. 

Figure 3: Amplitude spectra (in mm) at Cherbourg (CHER) on the north, east, and up components 

based on the St1 (grey, on the left), St2 (grey, on the right), and predicted (FES2004, black) time 

series. The abbreviation std. dev. is for standard deviation (in mm). 

Figure 4: Phasor diagrams (in mm) at Cherbourg (CHER, black) and Brest (BRST, grey) on the north 

(top), east (middle), and up (bottom) components for the semi-diurnal (M2, S2, N2) and diurnal 

(K1, O1, Q1) constituents of the ocean tide loading displacement signal. The GPS estimates from 

St1 and St2 are represented by square and circle, respectively, along with their amplitude error 

ellipse at 95% confidence level. The predicted estimates from FES2004 are represented by the 

cross. Scales of the phasor diagrams are optimized for each constituent. They are equal on the 

north and east components but different with the vertical component. 

Figure 5: Misfits (in mm) between solutions two by two based on the 3D estimations of M2 

constituent (black), and on the 3D estimations of all the 6 considered constituents (grey) at each 

station. Misfits between St1 and St2 estimations are displayed on the top, between St1 estimations 

and predictions on the middle, and between St2 estimations and predictions on the bottom. 

Abbreviations are explained in Fig. 2. 
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Figure 6: Amplitude spectra (in mm) at MALO (top), DUCE (middle), and COUT (bottom) on the 

vertical component based on the St1 (grey, on the left), St2 (grey, on the right), and predicted 

(FES2004, black) time series. The abbreviation std. dev. is for standard deviation (in mm). 
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Tables 
 

Table 1: Weighted standard deviation of the differences between the St1 and St2 observed solutions (St1, St2) and the predicted solution (Mod) at each of the 14 stations of 
our network (in mm) on the north, east, and up components (N, E, U). 

 St1/St2 St1/Mod St2/Mod 
 N E U N E U N E U 
BAYE 3.2 4.4 8.8 5.0 4.5 11.2 3.3 3.3 9.1 
BRST 4.0 4.7 11.2 6.0 4.6 14.6 4.0 3.7 12.1 
CHER 3.3 4.1 8.3 5.3 4.2 11.9 3.5 3.2 9.6 
COUT 3.0 3.7 8.2 4.8 3.8 11.6 3.5 3.4 9.3 
DIBE 3.2 3.9 9.6 5.3 3.7 13.0 3.9 3.5 11.4 
DUCE 3.0 3.6 8.2 4.8 3.8 11.1 3.5 3.3 9.4 
LAMB 3.1 4.2 8.8 5.0 4.3 12.4 3.7 3.8 11.0 
MALO 3.2 3.8 8.6 5.2 4.0 12.2 3.8 3.6 10.6 
MANS 3.7 4.1 10.3 5.6 4.2 13.4 3.8 3.4 10.8 
PAIM 3.3 4.0 9.2 5.7 4.1 13.6 3.8 3.5 10.6 
RENN 3.6 3.9 9.6 5.6 4.1 13.1 3.9 3.4 10.0 
SURZ 3.3 4.0 9.5 4.4 3.7 12.0 3.3 3.4 10.2 
TREV 3.9 4.4 11.7 5.5 4.0 16.7 3.6 3.8 12.1 
YGEA 3.3 4.0 9.5 4.7 4.1 11.9 3.5 3.6 9.9 
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Table 2: Amplitudes (in mm) of the 6 main tidal components (semi diurnal and diurnal) for the north, east, and up components on the 14 stations of our 
network as estimated from the St1 and St2 analysis and predicted from the FES2004 model. The sigmas (italic values) are at 95% level confidence. 
Site k M2 S2 N2 K1 O1 Q1 
   St1 St2 Mod St1 St2 Mod St1 St2 Mod St1 St2 Mod St1 St2 Mod St1 St2 Mod 
BRST U 41.8 41.2 39.4 14.2 12.6 14.1 7.9 8.5 8.1 0.4 1.3 1.3 3.2 3.6 3.5 0.8 1.0 1.0 
   1.9 1.1  1.6 1.0 1.8 1.1 1.9 1.5 2.5 1.3 1.8 1.3  
  N 7.8 7.7 6.9 3.8 3.9 2.8 1.3 1.4 1.5 3.1 3.3 3.5 2.9 3.0 2.9 0.9 0.9 0.6 
   0.7 0.5  0.6 0.5 0.6 0.5 0.7 0.5 0.6 0.5 0.7 0.5  
  E 7.8 7.7 8.3 2.8 3.6 2.8 2.2 2.0 1.9 3.9 3.9 2.8 2.2 1.7 1.8 0.6 0.3 0.4 
   1.1 0.6  0.9 0.6 0.9 0.6 1.1 0.7 1.0 0.6 0.9 0.6  
TREV U 35.2 36.1 36.6 16.6 14.5 13.1 8.0 8.1 7.6 4.7 1.3 1.3 1.8 3.1 3.4 1.3 1.6 1.0 
   1.2 0.6  1.2 0.7 1.2 0.6 0.7 0.7 0.8 0.7 0.8 0.7  
  N 8.1 7.8 7.2 3.0 3.6 2.8 1.4 1.6 1.5 3.7 3.2 3.5 2.8 2.9 2.9 0.8 0.9 0.6 
   0.3 0.3  0.4 0.3 0.3 0.3 0.3 0.2 0.3 0.2 0.3 0.2  
  E 7.8 8.1 8.1 2.9 3.3 2.7 1.7 2.0 1.8 3.4 4.4 2.8 2.0 1.5 1.8 0.2 0.3 0.4 
   0.4 0.3  0.4 0.3 0.4 0.3 0.4 0.2 0.5 0.2 0.3 0.2  
DIBE U 39.2 40.0 39.4 17.1 15.7 14.2 8.1 8.3 8.0 3.2 2.4 1.2 2.6 3.9 3.4 1.2 1.2 1.0 
   1.7 1.4  1.7 1.4 1.7 1.3 1.3 1.2 1.3 1.2 1.2 1.2  
  N 8.4 8.3 7.2 3.4 3.8 3.1 1.4 1.4 1.5 3.5 3.8 3.6 2.4 2.5 2.9 0.6 0.7 0.6 
   0.5 0.6  0.5 0.6 0.6 0.7 0.5 0.4 0.5 0.4 0.5 0.4  
  E 8.5 8.6 8.7 2.9 4.0 3.0 2.1 2.1 2.0 3.8 4.6 2.8 1.9 1.6 1.8 0.4 0.1 0.4 
   0.9 0.7  0.8 0.7 0.9 0.7 0.6 0.4 0.6 0.5 0.5 0.3  
YGEA U 27.8 28.0 27.9 10.7 9.0 9.7 5.4 5.8 5.7 2.0 2.0 0.9 3.1 3.6 3.0 1.4 1.3 0.9 
   1.2 1.1  1.1 1.0 1.0 0.9 1.3 1.1 1.3 1.1 1.3 1.0  
  N 7.5 7.7 7.0 3.0 3.3 2.9 1.5 1.6 1.5 3.8 3.7 3.6 2.2 2.4 2.9 0.8 0.8 0.6 
   0.5 0.5  0.5 0.5 0.5 0.5 0.7 0.6 0.6 0.5 0.6 0.5  
  E 8.0 7.8 8.4 3.3 3.9 2.8 1.7 1.8 1.9 3.5 4.4 2.8 1.9 1.7 1.8 0.3 0.5 0.4 
   0.7 0.5  0.7 0.5 0.7 0.5 0.8 0.5 1.0 0.6 0.8 0.5  
PAIM U 35.2 35.4 34.6 15.1 14.6 12.2 6.9 7.3 6.9 2.0 2.6 1.0 2.7 3.9 3.2 1.2 1.2 0.9 
   1.7 1.1  1.9 1.2 1.7 1.1 1.1 1.2 1.2 1.1 1.1 1.0  
  N 8.1 8.2 7.4 3.1 3.4 3.1 1.6 1.6 1.5 4.0 3.8 3.6 2.5 2.7 2.9 0.5 0.6 0.6 
   0.7 0.5  0.7 0.5 0.7 0.6 0.5 0.4 0.4 0.4 0.4 0.4  
  E 8.5 8.0 8.4 3.3 3.8 2.9 1.9 2.1 1.9 3.1 4.5 2.7 2.0 1.8 1.8 0.8 0.4 0.3 
   0.6 0.5  0.5 0.5 0.6 0.6 0.7 0.4 0.7 0.4 0.7 0.4  
SURZ U 25.8 27.2 28.8 10.1 8.5 10.2 6.5 7.4 6.0 1.4 0.1 1.0 2.9 4.2 3.1 0.8 0.6 0.9 
   0.3 0.6  0.3 0.6 0.3 0.6 0.7 0.3 0.7 0.5 0.6 0.5  
  N 7.3 7.1 6.7 2.8 2.9 2.5 1.7 1.8 1.4 3.8 3.6 3.5 2.4 2.8 2.9 0.6 0.6 0.6 
   0.1 0.1  0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1  
  E 7.8 8.1 8.8 3.1 3.6 2.8 2.1 1.9 2.0 4.1 4.8 2.8 1.7 1.7 1.8 1.0 0.8 0.4 
   0.3 0.2  0.3 0.2 0.3 0.2 0.3 0.1 0.3 0.1 0.2 0.1  
LAMB U 26.8 27.2 26.4 8.6 8.1 9.0 5.6 6.0 5.3 2.8 2.4 0.8 2.1 3.1 2.9 1.3 1.4 0.8 
   1.0 0.9  1.0 0.9 1.2 1.0 1.3 1.1 1.0 0.9 1.2 1.0  
  N 8.2 8.3 7.6 3.0 3.3 3.2 1.9 1.8 1.6 3.8 3.8 3.6 2.5 2.7 2.9 0.9 0.8 0.6 
   0.5 0.5  0.5 0.5 0.5 0.6 0.5 0.4 0.6 0.4 0.5 0.4  
  E 7.9 7.9 8.7 2.3 3.4 2.8 1.6 1.7 1.9 3.1 4.0 2.8 1.8 1.9 1.8 0.5 0.6 0.4 
   0.6 0.6  0.5 0.5 0.5 0.5 0.6 0.5 0.7 0.5 0.6 0.4  
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Table 2 (continued) 
Site k M2 S2 N2 K1 O1 Q1 
   St1 St2 Mod St1 St2 Mod St1 St2 Mod St1 St2 Mod St1 St2 Mod St1 St2 Mod 
MALO U 27.3 28.1 28.4 9.2 8.5 9.6 5.9 6.4 5.5 3.5 2.1 0.8 2.3 3.1 2.9 1.4 1.4 0.9 
   1.2 0.9  1.1 0.8 1.2 0.9 1.0 1.1 1.2 1.3 1.3 1.3  
  N 8.8 8.9 7.9 3.5 3.9 3.3 1.6 1.6 1.6 3.1 3.3 3.6 2.1 2.5 2.9 0.8 0.7 0.6 
   0.6 0.5  0.5 0.4 0.5 0.4 0.6 0.5 0.6 0.5 0.6 0.5  
  E 8.6 8.8 9.3 2.9 3.7 2.9 1.9 1.9 2.0 3.6 4.4 2.8 2.3 1.9 1.8 0.8 0.6 0.4 
   0.8 0.5  0.8 0.5 0.8 0.5 0.9 0.6 0.7 0.5 0.7 0.5  
RENN U 19.0 18.6 19.6 7.7 6.8 6.7 4.0 4.2 4.1 1.0 0.4 0.6 1.5 2.4 2.6 0.9 1.1 0.7 
   1.4 1.1  1.4 1.3 1.5 1.2 1.2 0.7 1.4 0.9 1.1 0.9  
  N 6.1 6.4 6.0 2.5 3.0 2.2 1.5 1.4 1.3 2.7 3.0 3.6 2.6 2.8 2.9 0.5 0.5 0.6 
   0.6 0.4  0.6 0.4 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5  
  E 7.1 7.3 8.2 2.4 2.6 2.5 1.4 1.8 1.8 3.2 3.8 2.7 2.1 2.1 1.8 0.2 0.4 0.4 
   0.8 0.5  0.8 0.5 0.8 0.6 0.8 0.5 0.7 0.6 0.6 0.4  
CHER U 18.6 18.6 17.8 7.2 7.2 6.2 2.9 3.7 3.6 2.8 1.5 0.7 1.7 2.7 2.8 1.3 1.3 0.9 
   1.3 0.9  1.5 1.0 1.7 1.0 1.3 1.0 1.4 1.1 1.1 1.2  
  N 6.2 6.1 5.8 2.1 1.8 1.7 1.5 1.4 1.3 3.2 3.4 3.5 2.3 2.6 2.9 1.0 0.9 0.6 
   0.5 0.4  0.5 0.4 0.4 0.4 0.6 0.5 0.6 0.5 0.6 0.5  
  E 10.8 10.7 11.0 3.9 3.8 3.5 2.0 2.3 2.2 2.9 4.2 2.7 2.5 2.1 1.8 1.5 0.8 0.4 
   0.8 0.5  0.7 0.5 0.8 0.5 0.8 0.4 0.9 0.5 0.9 0.5  
COUT U 19.3 19.5 19.1 8.8 7.9 6.3 3.8 4.0 3.8 3.8 2.9 0.6 1.9 2.8 2.7 1.2 1.2 0.8 
   1.6 1.2  1.5 1.1 1.6 1.3 1.2 1.2 1.4 1.2 1.3 1.2  
  N 5.8 6.0 5.7 1.9 1.9 1.8 1.3 1.2 1.2 3.3 3.5 3.6 2.3 2.6 2.9 0.6 0.7 0.6 
   0.5 0.5  0.5 0.5 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4  
  E 10.0 10.1 10.7 2.4 3.3 3.4 2.4 2.4 2.2 3.8 4.3 2.8 2.2 2.0 1.8 0.7 0.5 0.4 
   0.6 0.6  0.6 0.5 0.6 0.5 0.7 0.5 0.6 0.4 0.6 0.4  
DUCE U 16.9 17.2 17.7 6.8 6.4 5.8 3.6 3.8 3.6 1.8 1.0 0.5 2.5 2.6 2.6 1.6 1.3 0.7 
   1.3 1.0  1.3 1.0 1.2 0.9 1.2 1.0 1.1 0.9 1.2 0.9  
  N 6.1 6.3 5.9 2.4 2.6 2.1 1.3 1.2 1.3 3.4 3.5 3.6 2.3 2.7 2.9 0.7 0.7 0.6 
   0.5 0.4  0.5 0.4 0.5 0.4 0.7 0.5 0.6 0.5 0.7 0.4  
  E 8.5 8.3 9.1 2.1 2.9 2.7 1.7 1.9 1.9 3.3 4.4 2.7 2.3 2.0 1.8 0.9 0.7 0.4 
   0.6 0.6  0.6 0.5 0.6 0.6 0.7 0.4 0.6 0.4 0.6 0.3  
BAYE U 8.6 8.4 8.2 4.0 3.0 2.4 1.4 1.8 1.8 1.0 0.8 0.4 1.9 2.7 2.5 0.6 0.8 0.7 
   1.4 0.8  1.2 0.8 1.2 0.8 1.3 0.9 1.2 0.8 1.0 0.8  
  N 7.1 7.2 6.9 2.3 2.2 2.1 1.6 1.5 1.4 3.4 3.5 3.6 2.2 2.6 2.9 1.0 0.8 0.6 
   0.5 0.4  0.5 0.4 0.5 0.3 0.5 0.3 0.5 0.3 0.5 0.3  
  E 7.6 7.9 8.7 2.4 2.8 2.6 1.9 1.9 1.8 4.3 4.3 2.7 1.9 1.8 1.8 1.0 0.5 0.4 
   0.9 0.5  0.9 0.5 0.7 0.4 1.0 0.5 1.0 0.5 0.8 0.5  
MANS U 12.1 11.8 12.5 5.8 4.1 4.4 3.0 3.1 2.7 3.6 3.4 0.7 1.9 2.2 2.3 0.3 0.7 0.6 
   1.3 0.9  1.3 0.9 1.3 0.9 1.4 0.9 1.4 0.9 1.0 0.7  
  N 4.1 4.3 4.1 1.5 1.7 1.2 0.8 0.9 0.9 3.3 3.4 3.6 2.3 2.7 2.9 0.5 0.6 0.6 
   0.7 0.4  0.7 0.4 0.7 0.4 0.7 0.5 0.7 0.5 0.6 0.4  
  E 5.1 5.3 6.1 2.4 2.4 1.7 1.7 1.5 1.3 2.7 3.4 2.6 2.2 1.8 1.7 0.5 0.6 0.3 

  1.2 0.7  1.1 0.6 1.2 0.7 1.0 0.7 1.1 0.7 0.9 0.7  
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Table 3: Phases (in degree) of the 6 main tidal components (semi diurnal and diurnal) for the north, east, and up components on the 14 stations of our network 
as estimated from the St1 and St2 analysis and predicted from the FES2004 model. The sigmas (italic values) are at 95% level confidence. 
Site k M2 S2 N2 K1 O1 Q1
   St1 St2 Mod St1 St2 Mod St1 St2 Mod St1 St2 Mod St1 St2 Mod St1 St2 Mod 
BRST U 106.5 105.8 103.4 334.1 343.8 327.7 305.7 305.4 307.9 69.3 342.4 299.6 247.8 243.9 249.3 88.5 94.4 84.0 
   2.2 1.3  8.2 5.5 12.3 6.8 201.9 58.4 48.7 25.4 138.1 74.6  
  N 22.1 25.7 31.4 249.6 245.2 245.3 250.6 249.2 244.0 139.1 133.3 138.6 170.2 172.5 174.9 21.8 31.4 21.3 
   5.3 4.5  10.4 8.1 24.0 18.9 12.3 8.7 13.3 9.1 49.9 35.8  
  E 86.6 84.1 88.9 291.3 289.3 305.3 285.1 292.3 293.6 272.3 294.8 297.2 310.1 307.1 307.9 165.9 126.0 137.7 
   8.1 4.8  20.6 9.2 24.7 16.3 17.1 10.1 31.0 23.8 104.9 106.5  
TREV U 101.0 98.9 95.7 330.6 335.2 317.6 298.9 300.8 300.3 56.7 353.0 291.0 255.3 250.4 247.8 113.8 106.3 82.2 
   2.1 1.0  4.0 2.2 8.7 4.2 11.1 25.6 24.6 11.9 39.4 26.9  
  N 31.9 35.6 41.3 258.4 255.6 255.8 233.5 242.1 253.2 158.4 143.9 138.4 179.2 180.9 176.2 7.2 31.7 23.0 
   2.3 2.2  6.2 4.5 14.1 11.3 4.9 4.2 5.9 4.3 21.2 13.1  
  E 86.9 83.5 90.5 307.5 300.4 307.2 283.4 287.8 295.1 294.7 295.3 297.3 302.9 300.4 307.2 268.8 152.4 136.2 
   2.6 2.0  7.0 4.9 13.5 8.8 8.2 2.4 11.2 7.1 153.4 37.2  
DIBE U 118.4 117.3 113.4 352.1 359.6 341.6 321.3 318.1 318.4 39.7 329.4 303.4 256.2 254.4 250.1 124.4 113.3 87.1 
   2.4 1.9  5.4 4.2 11.3 8.1 20.1 30.6 27.8 18.3 61.9 56.0  
  N 8.3 9.7 18.3 240.5 232.2 235.6 226.7 227.1 232.0 133.1 125.9 138.2 173.5 170.5 172.8 10.5 27.2 18.3 
   3.9 4.3  11.2 11.2 21.9 25.6 8.3 5.9 11.0 8.1 48.4 30.5  
  E 92.5 89.8 91.0 296.4 299.3 309.4 284.4 287.0 295.7 285.9 293.5 297.6 298.4 297.7 308.5 86.3 104.5 138.0 
   4.7 3.9  13.9 8.3 18.2 15.0 8.7 5.2 18.4 15.2 80.5 176.5  
YGEA U 111.1 110.5 106.2 336.0 342.4 331.3 310.1 310.2 310.8 89.5 26.7 285.8 244.1 242.1 248.3 91.6 99.0 86.7 
   2.4 2.2  5.3 6.0 10.7 9.5 37.6 32.7 25.3 19.2 63.0 50.5  
  N 23.9 25.3 31.4 244.9 242.7 248.1 237.1 238.2 244.4 134.8 131.2 137.8 179.9 176.5 173.8 5.4 18.4 20.1 
   4.4 4.2  10.5 9.2 18.9 17.2 8.6 6.8 17.0 11.3 56.9 40.9  
  E 90.0 88.9 94.1 309.6 302.1 313.2 292.7 293.4 298.6 290.7 293.4 298.0 307.2 307.1 308.0 116.6 147.7 138.0 
   5.2 3.9  12.0 8.2 23.1 15.9 15.1 6.8 27.1 18.2 119.5 61.9  
PAIM U 126.9 126.5 122.7 359.2 3.9 353.8 329.8 328.2 328.0 324.4 311.2 302.9 249.1 248.3 251.3 93.0 89.2 90.2 
   2.7 1.8  6.9 4.8 17.9 11.0 39.2 25.2 25.2 15.9 57.7 46.9  
  N 12.1 15.1 23.5 248.1 236.9 241.7 234.7 233.3 236.8 135.6 134.0 137.8 171.0 170.8 172.3 14.2 25.2 17.6 
   4.8 3.8  13.5 9.1 26.9 17.9 6.7 5.3 10.7 8.7 52.5 35.8  
  E 88.4 86.5 89.1 301.7 300.9 307.7 287.1 286.0 294.4 296.7 300.0 298.0 311.9 306.8 309.2 114.1 153.6 139.6 
   3.8 3.7  9.1 7.1 18.1 14.6 12.6 6.3 19.9 13.4 51.4 54.9  
SURZ U 100.8 99.6 95.8 328.0 339.4 318.0 307.3 306.3 301.0 37.7 49.6 278.1 245.5 241.9 247.1 70.6 48.0 84.1 
   0.7 1.1  1.7 3.5 2.7 4.4 29.7 228.3 14.2 7.2 59.8 54.6  
  N 41.9 42.3 47.5 283.9 271.2 263.1 255.9 263.3 259.6 142.3 132.3 137.6 176.5 173.7 175.6 352.9 44.1 22.7 
   1.1 1.1  3.0 2.7 4.7 4.2 2.1 1.9 3.1 2.4 14.5 12.0  
  E 83.7 90.0 94.3 312.4 306.1 313.0 272.3 278.1 298.7 297.4 300.1 298.2 337.3 309.8 306.4 129.7 162.7 134.6 
   2.2 1.4  5.3 3.3 7.1 5.6 3.3 1.4 9.2 4.6 15.2 9.1  
LAMB U 124.1 123.0 116.3 357.8 2.7 345.1 321.5 320.4 320.9 40.4 36.2 287.4 248.3 243.9 249.3 105.5 102.7 89.4 
   2.3 2.0  7.2 6.7 11.3 9.3 26.3 26.9 31.3 19.2 52.6 43.6  
  N 19.7 19.6 25.5 246.1 238.7 245.6 241.1 238.5 239.2 144.2 136.2 137.6 180.8 174.2 172.5 9.4 13.9 17.6 
   3.8 3.4  10.4 8.6 15.8 15.7 8.3 5.5 12.9 7.8 35.1 26.3  
  E 101.5 98.6 101.3 314.0 312.6 324.2 314.2 302.2 305.3 288.5 293.4 298.8 318.4 307.5 308.3 141.9 155.7 137.0 
   4.2 3.6  13.3 7.6 20.1 17.5 11.2 6.2 19.3 13.2 77.9 39.9  
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Table 3 continued 
Site k M2 S2 N2 K1 O1 Q1
   St1 St2 Mod St1 St2 Mod St1 St2 Mod St1 St2 Mod St1 St2 Mod St1 St2 Mod 
MALO U 136.2 134.7 129.8 15.8 22.7 3.8 332.4 333.1 335.3 28.5 20.4 293.8 232.3 239.7 251.0 112.2 105.3 92.1 
   2.7 1.9  7.4 5.4 12.6 8.0 19.4 32.3 28.0 22.7 46.3 52.0  
  N 21.4 20.8 26.5 247.2 238.3 248.2 238.2 236.4 240.3 138.4 130.0 137.4 176.1 170.5 171.8 352.6 10.2 16.7 
   4.2 3.2  9.8 7.2 20.5 15.9 11.5 8.8 16.9 11.6 43.7 43.1  
  E 109.0 109.2 110.7 322.2 319.6 338.6 313.7 321.2 314.4 287.9 292.1 299.6 316.8 310.3 308.3 125.3 125.4 136.4 
   5.1 3.3  17.0 8.8 23.9 15.0 13.1 7.3 19.8 15.7 60.1 58.2  
RENN U 110.7 110.8 104.3 341.6 356.8 327.7 309.9 309.2 308.6 80.5 263.0 261.3 234.9 239.7 247.0 111.0 103.8 88.5 
   4.3 3.7  11.7 11.0 21.3 16.9 90.7 118.9 55.3 21.7 84.5 43.2  
  N 34.2 34.9 40.6 275.5 258.7 256.7 260.2 252.1 253.5 146.7 132.7 137.1 180.3 175.5 173.3 309.9 3.7 19.8 
   6.2 4.3  13.1 8.8 22.8 18.0 13.1 9.7 13.8 10.5 81.6 64.4  
  E 103.5 100.7 105.1 291.9 299.2 329.1 309.4 310.3 308.7 275.2 285.6 299.2 313.7 305.9 308.3 99.1 103.5 137.3 
   6.4 4.1  19.1 11.7 35.7 16.7 14.2 7.8 23.2 14.2 160.9 75.8  
CHER U 153.1 151.6 143.8 25.0 34.6 18.4 356.8 347.6 348.3 34.3 63.3 312.8 263.0 252.9 254.2 78.0 91.2 100.1 
   4.6 3.1  11.9 8.2 31.7 16.5 25.3 46.7 42.1 23.5 59.5 53.8  
  N 70.5 70.6 78.4 321.2 309.9 298.2 286.0 282.5 286.0 130.5 123.9 136.2 170.1 167.3 173.7 356.3 11.1 20.4 
   4.5 4.0  11.1 13.5 17.5 18.2 9.8 7.5 14.5 10.3 35.1 34.1  
  E 122.0 121.4 121.6 348.9 339.0 356.0 317.1 327.3 325.8 282.1 296.8 300.6 324.9 312.9 309.4 131.2 145.2 137.3 
   4.1 2.8  12.4 8.0 18.8 11.1 16.6 6.2 19.1 12.3 32.5 31.0  
COUT U 138.9 137.6 130.3 13.9 22.1 2.8 336.6 332.5 334.8 47.0 29.1 286.3 232.1 241.0 251.0 95.0 100.1 95.4 
   4.4 3.3  9.8 8.8 21.5 15.8 17.7 21.9 35.7 21.4 74.0 65.5  
  N 60.8 59.9 65.0 283.9 270.5 281.3 277.2 273.7 274.1 136.1 132.4 136.6 174.4 170.6 173.2 11.2 16.6 19.4 
   5.2 4.3  16.4 13.9 25.4 23.6 9.4 6.8 14.3 9.1 47.1 33.5  
  E 128.4 125.7 126.0 357.4 343.6 1.9 333.6 332.4 329.9 280.7 289.6 300.9 312.1 305.0 308.5 136.1 149.3 136.5 
   3.2 3.0  15.1 10.3 13.7 12.9 7.6 5.0 14.0 10.6 49.7 52.2  
DUCE U 125.1 123.8 116.7 4.7 15.3 344.5 326.9 320.3 320.8 36.4 16.5 264.6 237.4 240.9 248.6 75.1 90.5 92.4 
   4.3 3.1  11.4 8.9 21.4 14.3 39.9 69.4 27.1 23.4 47.7 47.6  
  N 41.7 42.2 47.2 261.3 254.6 263.9 265.5 259.8 259.3 141.1 132.8 136.7 174.8 170.9 172.7 349.2 14.0 18.5 
   5.1 4.1  11.8 9.9 24.6 20.4 11.9 8.2 16.0 10.4 56.6 43.1  
  E 118.9 117.2 119.2 332.1 324.7 351.8 319.8 321.2 322.5 283.6 292.1 300.4 313.3 307.2 308.9 136.2 151.3 137.2 
   4.3 3.6  19.0 11.8 23.3 18.0 11.8 5.8 17.2 12.8 41.2 38.7  
BAYE U 148.5 148.4 134.1 13.8 35.8 358.6 355.3 344.1 334.0 261.5 56.1 278.5 226.3 236.9 251.6 44.3 74.7 100.2 
   8.4 6.5  18.4 14.7 57.3 26.8 73.9 70.0 33.9 18.8 123.7 69.4  
  N 74.0 72.1 76.8 304.1 296.3 300.4 289.3 284.4 284.5 121.5 124.2 136.5 171.6 167.7 172.6 15.8 17.2 18.1 
   3.8 2.7  12.4 9.7 17.3 14.2 7.7 4.9 12.7 6.9 29.0 23.8  
  E 122.0 120.2 122.6 348.1 333.5 357.6 307.9 320.0 326.2 274.2 292.9 301.1 309.2 308.4 310.4 154.1 161.9 139.5 
   6.3 3.5  20.6 9.9 25.4 16.1 13.0 6.8 33.0 18.6 53.4 54.8  
MANS U 96.5 100.5 94.4 325.3 357.0 313.6 309.1 296.9 299.1 159.3 172.9 222.9 253.2 254.1 245.3 20.0 87.1 90.6 
   6.3 4.4  13.1 13.2 27.6 18.0 22.1 15.2 39.1 22.0 190.4 87.9  
  N 57.5 54.6 57.9 299.1 276.2 271.5 253.6 258.4 270.1 148.9 138.0 135.8 161.1 165.2 173.0 26.6 30.0 20.3 
   10.9 6.0  29.3 14.9 47.5 23.7 12.6 8.7 17.6 10.6 75.5 46.1  
  E 98.2 99.2 107.0 290.7 286.8 331.4 302.0 309.6 310.1 274.2 291.5 300.1 293.3 298.2 310.9 216.4 196.0 141.2 
   13.2 7.7  27.7 17.2 42.0 27.5 21.3 10.9 26.2 20.6 112.1 68.0  
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Table 4: Amplitudes and phases of the M4, S4, and SK3 shallow-water loading constituents for the up component, at MALO, DUCE, and COUT 
located in the Mont St Michel area, as observed from the St1 and St2 analysis, and amplitude and phase of the M4 non linear term for the up 
component as predicted from FES2004 (Mod). The sigmas (italic values) are at 95% level confidence. 
 

M4 S4 SK3 
St1 St2 Mod St1 St2 St1 St2 Site k 

A (mm) Φ (deg) A (mm) Φ (deg) A (mm) Φ (deg) A (mm) Φ (deg) A (mm) Φ (deg) A (mm) Φ (deg) A (mm) Φ (deg) 
1.30 165.2 0.85 151.4 0.58 151.9 1.65 296 1.61 331 2.02 23 2.26 351 

MALO U 
(1.12) (57.5) (0.76) (59.5)   (1.13) (44) (0.93) (33) (1.14) (31) (0.73) (24) 
0.25 123.2 0.49 136.6 0.31 162.4 0.71 300 1.74 341 2.75 17 2.82 350 

DUCE U 
(0.60) (169.1) (0.69) (79.3)   (0.86) (75) (0.83) (26) (1.08) (21) (0.89) (15) 
0.82 189.8 0.60 180.3 0.62 161.3 0.93 346 1.41 353 1.03 32 1.65 355 

COUT U 
(1.03) (77.1) (0.85) (98.2)     (1.21) (77) (0.91) (45) (0.86) (54) (0.73) (24) 
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