Spectral-element Analysis in Seismology
Résumé
We present a review of the application of the spectral-element method to regional and global seismology. This technique is a high-order variational method that allows one to compute accurate synthetic seismograms in three-dimensional heterogeneous Earth models with deformed geometry. We first recall the strong and weak forms of the seismic wave equation with a particular emphasis set on fluid regions. We then discuss in detail how the conditions that hold on the boundaries, including coupling boundaries, are honored. We briefly outline the spectral-element discretization procedure and present the time-marching algorithm that makes use of the diagonal structure of the mass matrix. We show examples that illustrate the capabilities of the method and its interest in the context of the computation of three-dimensional synthetic seismograms.