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Abstract. We derive a new shell model of magnetohydrodynamic (MHD)
turbulence in which the energy transfers are not necessarily local. Like the original
MHD equations, the model conserves the total energy, magnetic helicity, cross-
helicity and volume in phase space (Liouville’s theorem) apart from the effects
of external forcing, viscous dissipation and magnetic diffusion. The model of
hydrodynamic (HD) turbulence is derived from the MHD model setting the
magnetic field to zero. In that case the conserved quantities are the kinetic
energy and the kinetic helicity. In addition to a statistically stationary state with
a Kolmogorov spectrum, the HD model exhibits multiscaling. The anomalous
scaling exponents are found to depend on a free parameter α that measures the
non-locality degree of the model. In freely decaying turbulence, the infra-red
spectrum also depends on α. Comparison with theory suggests using α = −5/2.
In MHD turbulence, we investigate the fully developed turbulent dynamo for a
wide range of magnetic Prandtl numbers in both kinematic and dynamic cases.
Both local and non-local energy transfers are clearly identified.
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1. Introduction

Pioneering shell models of hydrodynamic (HD) turbulence were developed in the seventies
[1]–[5], aiming at reproducing the main turbulence features with a low order model of equations.
Such shell models were also called wave packet representations [6] for the Fourier space is
logarithmically divided into shells of logarithmic width λ such that each wave packet (or shell)
kn is defined by k0λ

n−1 < k � k0λ
n. These models are local in the sense that each shell interacts

with only the first neighbours like the DN model (named after Desnyansky and Novikov [4]), or
the first two neighbours like the GOY model (named after Gledzer, Ohkitani andYamada [3, 7]).
The latter has been intensively studied, one of the main issues being that its cascade dynamics are
characterized by anomalous scaling exponents as in turbulence intermittency (for a review, see
e.g. [8]–[11] and references therein). This model has been subjected to improvements leading
to the so-called Sabra model [12]–[14] or extensions using wavelet decomposition [15]. The
GOY and subsequently Sabra models have been used in different contexts like convection [16]
or rotation [17]. It has been shown [18] that the DN model is a spectral reduction of the GOY
model, showing in some sense the consistency of one model against the other.

To our knowledge only one non-local shell model of turbulence has been developed so far,
by Zimin and Hussain [19], projecting the Navier–Stokes equations onto a wavelet basis, and
reducing the number of variables from statistical assumptions. In such a non-local model each
shell may interact with any other shell. Since then, the original model has been improved by
Zimin in order to include left- or right-handed polarity of the solenoidal basis functions as in the
complex helical wave decomposition, and used by Melander and Fabijonas [20]–[22].
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The extension of shell models to magnetohydrodynamic (MHD) turbulence has been done
including either first neighbours interactions [23]–[26] or first two neighbours interactions
[27]–[31] possibly including Hall effects [32, 33]. However there are a number of situations
in MHD turbulence in which assuming the locality of energy transfers may become somewhat
spurious even if the turbulence is considered as isotropic [31]. This is true for example when
a large scale external magnetic field is imposed leading to Alfven waves [34]–[36]. This
problem has been tackled using a MHD shell model implementing non-local interactions
with the externally imposed magnetic field scale [26]. However it has been shown recently
using another method [37] that the other non-local interactions are also important and
may rule out the predicted Iroshnikov–Kraichnan k−3/2 spectrum. Non-local interactions are
also at the heart of the dynamo problem i.e. when the magnetic field is produced by the
turbulent motion instead of being externally applied. For example at large values of the
magnetic Prandtl number, the magnetic spectrum is expected to peak at scales much smaller
than the viscous scale [38]–[40] providing direct evidence of the importance of non-local
energy transfers. In the presence of helicity, two possible mechanisms may generate a large
scale magnetic field as observed in planets and stars: either a local inverse cascade [41]
or a non-local direct transfer from small to large scales as predicted by the mean-field
theory [42]. Which mechanism prevails is still not clear. Recently, the importance of non-
local interactions was shown in both HD [43] and MHD [44, 45] turbulence. For turbulent
dynamo action non-local transfers from large scale kinetic energy to small scale magnetic
energy were found [46]. For recent reviews on MHD turbulence and the dynamo problem,
see also [47, 48].

In the present paper our aim is to introduce a new shell model of turbulence which is
non-local and which can be used either in its HD or MHD form. We shall introduce the MHD
model only, the HD one being easily deduced from the former, by setting the magnetic field to
zero. Our model can be understood as a non-local version of the Sabra model. This involves
similar rules for complex conjugations and imposes a value of shell spacing equal to the golden
number. Our first attempt to derive a non-local shell model of MHD turbulence was based
on the Zimin model [19]. However we realized that this model was unable to describe the
non-local interaction between a large scale velocity and two small neighbouring scales of the
magnetic field. We believe that the one which is described here is more relevant to actual isotropic
MHD turbulence.

Finally let us point out the relevance of deriving one more shell model while computers
allow us to carry out simulations of the Navier–Stokes and induction equations. Of course
compared to the original equations such an approach suffers from intrinsic weaknesses like the
absence of structures and phase coherence effects. However we believe that shell models may
help to understand the role of essential ingredients of the original equations like conservation
laws, the degree of non-linearity, the role of local/non-local interactions, etc. They also permit
investigation of ranges of magnetic Prandtl numbers far from those achieved in today’s direct
numerical simulations. In particular, shell models allow us to consider very small values of
viscosity and diffusivity in order to have extended inertial ranges. Finally, though more complex
than the local GOY or Sabra model, our non-local shell model is still simple to understand and
requires a small amount of computing power.
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2. General concept

2.1. The model

The model is defined by the following set of equations

U̇n = ikn [Qn(U, U, a) + Qn(B, B, −a)] − νk2
nUn + Fn, (1)

Ḃn = ikn [Qn(U, B, b) + Qn(B, U, −b)] − ηk2
nBn, (2)

where

Qn(X, Y, c) =
N∑

m=1

Tm[c1
mX∗

n+mYn+m+1 + c2
mX∗

n−mYn+1 + c3
mXn−m−1Yn−1] (3)

represents the non-linear transfer rates. The parameters ν and η are respectively the kinematic
viscosity and the magnetic diffusivity, Fn is the forcing of turbulence, and kn = λn. Though the
choice of the value of λ is rather arbitrary (provided it is larger than unity), we show in section 2.2
that the golden number is the minimum shell spacing for which the number of possible interactions
is minimum. Thus in some sense it should lead to the most accurate results. In addition, it has
been shown [12, 14] that the conservation of quasimomenta within a triad is satisfied only if the
shell spacing is equal to the golden number. Therefore we take λ = (1 +

√
5)/2 in the rest of the

paper.
For N = 1 in (3), we recognize the local Sabra model. The additional non-local interactions

for N � 2 correspond to all other possible triad interactions except the ones involving two
identical scales. Expressions for the kinetic energy EU and helicity HU , magnetic energy EB and
helicity HB, and cross-helicity HC are given by

EU =
∑

n

EU(n), EU(n) = 1
2 |Un|2, HU = ∑

n HU(n), HU(n) = 1
2(−1)nkn|Un|2, (4)

EB =
∑

n

EB(n), EB(n) = 1
2 |Bn|2, HB = ∑

n HB(n), HB(n) = 1
2(−1)nk−1

n |Bn|2, (5)

HC =
∑

n

HC(n), HC(n) = 1
2(UnB

∗
n + BnU

∗
n). (6)

In the inviscid and non-resistive limit (ν = η = 0), the total energy E = EU + EB, magnetic
helicity and cross-helicity must be conserved (Ė = ḢB = ḢC = 0). This leads to the following
expression for the coefficients ai

m and bi
m:

a1
m = km + km+1, a2

m = −km+1 − (−1)m

km

, a3
m = km − (−1)m

km+1
,

(7)

b1
m = (−1)m+1, b2

m = 1, b3
m = −1.

New Journal of Physics 9 (2007) 294 (http://www.njp.org/)

http://www.njp.org/


5 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

In the case of pure HD turbulence (without magnetic field), the coefficients ai
m are derived

from the kinetic energy and helicity conservations (ĖU = ḢU = 0), leading again to the same
expression as (8). The coefficients Tm are free parameters depending on m only, that we choose to
be of the form Tm = kα

m−1/λ(λ + 1). The coefficient 1/λ(λ + 1) is chosen such that the terms for
m = 1 in Qn correspond to the local Sabra model. Thus the local Sabra model corresponds
to α = −∞.

2.2. All possible interactions

In our shell model we see from (3) that only a discrete number of triads are allowed. For example,
Qn does not contain any term involving interactions between the modes n + m and n + m + 2.
The reason why there is only a discrete number of allowed triads comes from the fact that the
shells are logarithmically spaced and that the geometrical factor λ satisfies

λ2 � λ + 1. (8)

To identify all the allowed triads in a shell model, let us consider three vectors (k1, k2, k3)

satisfying

k1 + k2 + k3 = 0. (9)

Assuming that k1 and k2 belong to shell n and p, we have

k0λ
n−1 < |k1| � k0λ

n, k0λ
p−1 < |k2| � k0λ

p. (10)

From (9), this implies

k0|λn−1 − λp−1| � |k3| � k0(λ
n + λp). (11)

Now using the inequalities (8) and (11) we can show that k3 belongs to shell q which depends
on p in the following way:

p � n − 3 ⇒ n − 1 � q � n + 1, p = n + 1 ⇒ q � n + 2,

p = n − 2 ⇒ n − 2 � q � n + 1, p = n + 2 ⇒ n � q � n + 3,

p = n − 1 ⇒ q � n + 1, p � n + 3 ⇒ p − 1 � q � p + 1,

p = n ⇒ q � n + 2. (12)

This is illustrated in figure 1 in the plane (p, q) where the grey (resp. white) squares indicate
allowed (resp. not allowed) triads (n, p, q). The demonstration of (12) is given in appendix A.
In figure 1, the terms corresponding to the original Sabra local model are denoted by ‘L’, the
additional non-local terms by ‘N’ and the terms of Zimin’s model by ‘Z’. In every case the
possible shells (p, q) are symmetric with respect to the diagonal in the (p, q) plane.

2.3. Evaluation of α

There is one free parameter left, α, which corresponds to the non-locality strength. It is not an
easy task (if possible at all) to figure out what α should be in the general case. However we tried
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Figure 1. Probability of interactions between three modes belonging to shells
n, p and q. The white squares correspond to a null probability.

to estimate it in the case of homogeneous isotropic turbulence (without magnetic field). For that,
we took two random vectors k1 from shell n, and k2 uniformly distributed in whole space, and
we calculated the probability that k3 = −(k1 + k2) and k2 belong respectively to shells p and q.
It is the simplest estimate of the probability that the three modes k1, k2 and k3 interact together.
A high (resp. low) value of this probability is given in figure 1 by the dark (resp. light) colour
of the grey squares. In this representation a white square corresponds to a null probability. The
probability spectra along the p- and q-directions are found to scale as k−7/2 for the ‘L’ and ‘N’
terms and k−5/2 for the ‘Z’ terms (which is consistent with the Zimin model [19]). In order to
have in (3) terms Tmc2

m and Tmc3
m scaling in k−7/2

m , we have to take α = −7/2. We note that this
derivation of α does not prescribe the terms Tmc1

m (and neither the diagonal terms of figure 1).
The latter are determined a posteriori from the conservation laws (not included in the probability
diagram of figure 1).

On the other hand, in section 3.2.1 we shall find that the value α = −5/2 is the most
appropriate to describe the spectral exponent of the infra-red kinetic energy spectrum. In the
rest of the paper we shall vary the value of α in order to investigate its role in the non-local
interactions.

2.4. Energy transfers

To study the non-local interactions, we introduce the transfer rate TXY(q, n) from X-energy lying
in shell q to Y -energy lying in shell n. It can operate only within triads, implying an additional
energy Z lying in all other shells p different from q and n. Denoting T(Xq|Zp|Yn) the transfer
rate from Xq to Yn and which involves Zp as a mediator, the transfer rate from Xq to Yn can then
be written as

TXY(q, n) =
∑
p�=q,n

T(Xq|Zp|Yn). (13)

From our model (3) we see that for each couple (Xq, Yn), only a discrete number of Zp can act
as mediators. The possible triads are represented schematically in figure 2. Therefore TXY(q, n)

New Journal of Physics 9 (2007) 294 (http://www.njp.org/)
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(a) (b) (c)

Figure 2. The three types of possible triad (Xq, Zp, Yn): (a) q � n − 1 and
p = n ± 1, (b) q � n + 1 and p = q ± 1, (c) q = n ± 1 and p � n − 1. Among
these cases those with repeated subscripts (q = p, p = n or q = n) are forbidden
in our model.

takes the following form

TXY(q, n) =




T(Xq|Zn+1|Yn) + T(Xq|Zn−1|Yn), for q � n − 2,

T(Xq|Zn+1|Yn) +
∑

p�n−2 T(Xq|Zp|Yn), for q = n − 1,

T(Xq|Zn+2|Yn) +
∑

p�n−1 T(Xq|Zp|Yn), for q = n + 1,

T(Xq|Zq+1|Yn) + T(Xq|Zq−1|Yn), for q � n + 2.

(14)

Now, we have to define T(Xq|Zp|Yn) for any Xq, Zp and Yn. For that, we can re-write the model
(1) and (2) in the following generic form

Ẏ n =
∑
p,q

iknMn(Xq, Zp) + · · · , (15)

where Mn(Xq, Zp) is a symmetric bilinear form (given in appendix B) representing the quadratic
terms. In (15) the dots represent the dissipation and forcing terms appropriate to Yn.

Now let us denote by S(Xq, Zp|Yn) the rate of energy within the triads (Xq, Zp, Yn) which
is transferred from the couple (Xq, Zp) to Yn. It is naturally defined by

S(Xq, Zp|Yn) = Re
{
iknY

∗
nMn(Xq, Zp)

}
. (16)

As Mn is symmetric, we have

S(Xq, Zp|Yn) = S(Zp, Xq|Yn). (17)

In addition, and with the help of (8), we can show that for any triad (Xq, Zp, Yn) the following
relation is satisfied

S(Xq, Zp|Yn) + S(Zp, Yn|Xq) + S(Yn, Xq|Zp) = 0, (18)

meaning that the energy is conserved within each triad.
Then we look for T(Xq|Zp|Yn) as a linear combination of S(Xq, Zp|Yn), S(Yn, Xq|Zp) and

S(Zp, Yn|Xq). As in real MHD turbulence, T(Xq|Zp|Yn) must satisfy the following conditions

T(Xq|Zp|Yn) = −T(Yn|Zp|Xq), (19)

S(Xq, Zp|Yn) = T(Xq|Zp|Yn) + T(Zp|Xq|Yn). (20)
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The first condition (19) means that the transfer rate from Xq to Yn and from Yn to Xq with the
same mediator Zp are of equal intensity but opposite signs. We note that this implies

TXY(q, n) = −TYX(n, q). (21)

The second condition (20) means that in any triad (Xq, Zp, Yn) the transfer rate from (Xq, Zp)

to Yn is equal to the sum of the transfer rates from Xq to Yn via Zp and from Zp to Yn via Xq.
Then combining (17), (18), (19) and (20) we end up with the following expression for T

T(Xq|Zp|Yn) = 1
3 [S(Xq, Zp|Yn) − S(Yn, Zp|Xq)]. (22)

Furthermore we can show that the following energy balances at scale n are satisfied

ĖU(n) + DU(n) − F(n) =
∑

q

[TUU(q, n) + TBU(q, n)], (23)

ĖB(n) + DB(n) =
∑

q

[TUB(q, n) + TBB(q, n)], (24)

with the kinetic and magnetic dissipation rates in shell n defined by

DU(n) = νk2
n|Un|2, DB(n) = ηk2

n|Bn|2 (25)

and

F(n) = 1
2(FnU

∗
n + F ∗

nUn). (26)

2.5. Energy fluxes

We define the energy flux �XY(n) as the rate of loss of X-energy lying in the shells j < n to the
Y -energy lying in the shell j � n. Therefore, we have

�XY(n) = −
n−1∑
j=0

∑
q

∑
p

TXY(q|p|j) (27)

= −
n−1∑
j=0

∑
q

TXY(q, j). (28)

The fluxes �UU(n) and �BU(n) coincide respectively with
∑n−1

j=0 Im{kjU
∗
j Qj(U, U, a)} and∑n−1

j=0 Im{−kjU
∗
j Qj(B, B, a)}. There is no such coincidence for �UB(n) and �BB(n).

The following flux balances are satisfied

n−1∑
j=0

(
ĖU(j) + DU(j) − F(j)

)
+ �UU(n) + �BU(n) = 0, (29)
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n−1∑
j=0

(
ĖB(j) + DB(j)

)
+ �UB(n) + �BB(n) = 0. (30)

In a statistically stationary case they imply that

�UU(n) + �BU(n) + �UB(n) + �BB(n) = −
n−1∑
j=0

(DU(j) + DB(j) + F(j)). (31)

In order to investigate the importance of non-local versus local interactions, we define
the local part of the fluxes given by (27) in which only the local energy transfer rates
TXY(n ± 2|n ± 1|n), TXY(n ± 1|n ∓ 1|n) and TXY(n ± 1|n ± 2|n) are involved. These fluxes
correspond to those of the MHD version of the original (local) Sabra model, taking N = 1
in (3). The non-local parts of the fluxes are defined as the total fluxes minus their
local parts.

2.6. HD forcing and initial conditions

2.6.1. Forced turbulence. For both HD and MHD cases a HD forcing is applied at scale nf and
nf+1 with nf = 0. It is of the form Fn = Aneiφn(t) where φn(t) ∈ [0, 2π] is constant during time
intervals tc, the constant value changing randomly from one time interval to the next. In this
way we obtain a statistically constant injection rate equal to ε = A2

ntc. We chose tc = 10−2

for it is smaller than the turn-over time at the injection scale and larger than the viscous
characteristic time.

For some arbitrary initial conditions on Un of small intensity we let the HD evolve until
it reaches some statistically stationary state. For the MHD case, some small intensity of Bn is
subsequently introduced on a few modes kn. Then we solve the full problem until a statistically
stationary MHD state is reached. We stress that we never apply any magnetic forcing. In all the
cases that we considered in the present paper the magnetic field is generated spontaneously from
the interactions with the flow, by the so-called dynamo action. This requires a sufficiently intense
flow, otherwise the magnetic field just decays. In other words we consider here flows which are
much above the dynamo instability threshold. The time of integration needed to obtain good
statistics depends on ν and η but is typically several hundreds of the turn-over time at the forcing
scale. We define the magnetic Prandtl number as the ratio Pm = ν/η.

2.6.2. Freely decaying turbulence. To study the HD freely decaying turbulence (without
forcing), we tried different initial conditions. Either we just took some initial condition on two
shells (n = 0 and n = 1) and let the system evolve dynamically; or we started from an initial
state derived from a statistically stationary solution of the forced problem. Both initial conditions
give the same qualitative results. We also studied the freely decaying MHD turbulence. In that
case the initial condition for the magnetic field is taken on two shells only. Though the flow is
freely decaying, it is sufficiently intense (at least for some time) to generate a magnetic field by
dynamo action.
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3. Results

3.1. HD intermittency

Here we consider the case of forced turbulence without magnetic field. The spectra are represented
in figure 5 for different values of α (black curves, kinematic case). With slopes in k−2/3

n (k−5/3

in three-dimensional (3D) spectral space), they are Kolmogorov-like. In addition, we know that
anomalous scaling exponents have been found in both local GOY and Sabra models [12]–[14],
[49]–[54]. It is therefore of interest to investigate how the additional non-local interactions may
change these anomalous exponents. In the inertial range the scaling exponents ζp characterize
the statistical moments 〈|un|p〉 dependence on the wavenumber kn:

〈|un|p〉 ∝ k−ζp

n . (32)

It has been shown that they deviate from the Kolmogorov’s mean field theory ζp = p/3 as
p increases which is interpreted as evidence of intermittency. The determination of the scaling
exponents is a delicate matter as its accuracy depends on the inertial range extent (i.e. on ν), on the
number of shells N and on the number of samples used for the statistics. Here we take ν = 10−8,
N = 50 and 108 time steps. In addition, different methods have been derived to reach accurate
estimates. Here we follow the method proposed by Leveque and She [54]. Due to oscillations
peculiar to shell models they suggest considering the quantity

�n = (un−1unun+1)
1/3 (33)

instead of un. Then they define the relative scaling exponents as

〈|�n|p〉 ∝ 〈|�n|3〉ζp/ζ3 . (34)

The corresponding scaling exponents calculated from our model are plotted in figure 3. For
α = −∞ our model is equivalent to the Sabra local model and we find that the anomalous
scaling exponents differ by less than 3% from the values calculated by L’vov et al [12]. For the
other values of α, we observe that increasing the non-locality leads to scaling exponents closer
to p/3.

3.2. HD and MHD energy spectra

3.2.1. Freely decaying turbulence. In this section we study the freely decaying turbulence (no
forcing) without (HD) and with (MHD) magnetic field. The results are presented in figure 4 for
ν = 10−6 and different values of α and Pm. The top row corresponds to HD turbulence and the
three rows below to MHD turbulence. The kinetic (magnetic) spectra are plotted with grey (red)
dots at different times. The time sample at which the spectra are plotted is t = 1, 2, 10, 100, 200.
The dots corresponding to t = 200 are the darkest and smallest. Finally we paid attention to take
a sufficient number of shells in such a way that the infra-red cut-off corresponds to energies
smaller than 10−10. This is true for all the plots of figure 4, even if the largest scales are not
necessarily represented. As mentioned in section 2.6 we considered different initial conditions
for the flow without finding qualitative differences. Let us then consider the initial conditions
applied to two neighbour large scale shells (here n = 0 and n = 1).
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Figure 3. Estimate of the scaling exponents for several values of α. From bottom
to top, α = −∞, −5/2, −3/2, −1, −1/2.

In the MHD case, the initial conditions for the field are chosen at the same two scales as
the flow (n = 0 and n = 1) and such that the initial cross-helicity is zero (indeed we found that
an initial cross-helicity different from zero would lead to poorly defined inertial ranges of Un

and Bn). Though the turbulent flow is freely decaying, it is sufficiently intense to amplify the
magnetic field by dynamo action. For some transient time the magnetic energy grows during
the so-called kinematic regime while the magnetic spectrum extends to all scales. After this
kinematic regime the magnetic energy saturates and a dynamical balance between the flow and
the magnetic field occurs, both being freely decaying. The MHD plots of figure 4 correspond to
this saturation regime.

We observe that changing α does not change the spectral exponent of the inertial range for
both kinetic and magnetic spectra. It compares well with the Kolmogorov scaling k−2/3

n (k−5/3 in
spectral space) which is represented by the straight line with negative slope in each plot. On the
other hand, changing α drastically changes the infra-red spectral exponents (at large scale). The
kinetic and magnetic infra-red spectral exponents are indicated by the two straight lines with
positive slopes in each plot. In table 1 they are indicated for both quantities and for the different
values of α that are considered. We note that we always find a difference of 2 units between the
magnetic and kinetic spectral exponents.

We understand these infra-red spectral exponents as the result of non-local energy transfer
in low wavenumbers kn (with n � 0) through some interaction between the two initial condition
modes k0 and k1.

From the nonlinear transfer rates (3) we find that the time derivative of the infra-red kinetic
energy is dominated by the term T−na

1
−nU

∗
0U1U

∗
n . This implies that the kinetic infra-red spectrum

scales like k−2α
n in agreement with the values given in table 1. In real 3D freely decaying HD

turbulence, the infra-red spectrum results from two leading effects, one corresponding to spectral
backscatter (or non-local eddy noise) and the other to eddy viscosity [55]. For a sharply peaked
initial energy spectrum the backscatter dominates leading to a k4 infra-red spectrum [56]. In our
model this corresponds to having a k5

n kinetic infra-red spectrum which is obtained for α = −5/2.
Besides, this is in agreement with the infra-red spectrum obtained with Zimin’s model [22].
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Figure 4. On top: freely decaying turbulence for ν = 10−6. From second to fourth
row: freely decaying MHD turbulence for three values of Pm (ν = 10−6). Each
column corresponds to a given value of α.
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Table 1. Kinetic and magnetic infra-red spectral exponents for several
values of α.

α = −∞ −2.5 −1.5 −1 −0.5

Kinetic 10 5 3 2 1
Magnetic 12 7 5 4 3

With the same argument as above we find that the time derivative of the infra-red magnetic
energy is dominated by the term T−nb

1
−nX

∗
0Y1B

∗
n implying that B2

n ∝ k−2α+2
n which again is in

agreement with the values given in table 1. The difference of 2 units in the magnetic and kinetic
spectral exponents comes from the ratio |a1

n/b
1
n| ∝ kn. Infra-red properties of MHD turbulence

have been studied in the case of applied random forces and currents [57] and therefore are not
directly applicable to our problem here (no forcing). Finally we know from [41] that injection of
magnetic helicity also leads to infra-red magnetic spectra in k6. This would correspond to again
taking α = −5/2 in our model.

The Sabra model, corresponding here to α = −∞ and no magnetic field, leads to a spectral
exponent in k10

n (k9 in 3D spectral space) which is inconsistent with the theoretical predictions
[55]. This drastic difference between the local and non-local models emphasizes the importance
of including the non-local interactions.

3.2.2. Forced turbulence. With a HD forcing at some given scales (here k0 and k1), if there is
no cut-off scale above which the system is not solved, a statistically stationary state is never
achieved. The kinetic spectrum is then made up of four ranges. From large to small scales, they
are: (i) the infra-red range with the same spectral exponent as in freely decaying turbulence, (ii) a
range between the infra-red and the forcing scale in which the spectrum is flat (k−1 in 3D spectral
space), (iii) the inertial range with a Kolmogorov spectrum and (iv) the viscous range in which
the energy is dissipated. Contrary to the ranges (iii) and (iv) which are statistically stationary,
the range (ii) extends to larger scales versus time and with a time scale which depends on α. As
we are interested in statistically stationary states in the rest of the paper, we impose a cut-off at
k0 without calculating the larger scales. We end up with the ranges (iii) and (iv) only.

In figure 5 both kinetic and magnetic energy spectra are plotted for three values of Pm and
both kinematic and saturated dynamo regimes. In each plot, the curves correspond to different
values of α. In the kinematic regime (top plots) the Lorentz forces corresponding to the term
Qn(B, B, −a) are small and can be neglected in the energy balance. Then the magnetic energy
grows exponentially at any scale. The magnetic spectra are thus normalized by the maximum
value of EB(n). In the saturated regime (bottom plots), the Lorentz forces act back onto the flow,
leading to statistically stationary kinetic and magnetic energies.

In both kinematic and dynamic regimes and for Pm � 1 (left and middle plots of figure 5),
the effect of α is not really significant. The kinetic spectra (black curves) are almost not sensitive
to non-local interactions showing that HD interactions are mostly local as predicted by the
Kolmogorov cascade. Besides the kinetic spectra always scale as k−2/3

n (k−5/3 in the spectral
space) in the inertial range. We see some non-local effects on the magnetic spectra (colour
curves) which spread towards large scales or even small scales for Pm = 10−3. However, the
scale for which the magnetic spectrum is at maximum does not change and is roughly equal to
kη ≈ kνP

3/4
m as again predicted by Kolmogorov arguments (see e.g. [31]).
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Figure 5. Spectra of kinetic (black curves) and magnetic (colour curves) energy
for three values of Pm (from left to right Pm = 10−3, 1 and 105) and several values
of α (indicated by the labels). The spectra on top (resp. bottom) correspond to the
kinematic (resp. dynamic) regime.

On the other hand, the non-local effects are much more significant for Pm > 1 (plots on the
right), mainly for the magnetic spectra at scales smaller than the viscous scales (kn � kν) and for
α > −1. In the kinematic regime the maximum of the magnetic energy spectrum occurs at scales
smaller than kνP

3/4
m when α > −1. In the dynamic regime some magnetic bottleneck appears.

To understand why this is so, let us first recall that the flow scale which produces magnetic
field in the most efficient way is the one for which the shear is the largest [31]. In the inertial
range the flow shear scales as knun ∝ k2/3

n , and it is then maximum for kn ≈ kν. Therefore the
non-local interactions relevant for the magnetic spectrum extension towards smaller scales are
mostly those involving Uν. The non-local terms involving Uν and generating magnetic energy
EB(n) with n  ν also involve Bn±1. The corresponding non-local terms in (2) are of the form
kn(Tn−νb

2
n−νU

∗
ν Bn+1 + Tn−ν−1b

3
n−ν−1U

∗
ν Bn−1) which scale as k1+α

n . Therefore we understand that
for α + 1 > 0 the non-local effect may be strong at small scales.

In the kinematic regime, the fact that the magnetic energy spectrum does not peak at scales
smaller than k−1

ν for α < −1 is in contradiction with previous results [38]–[40]. We attribute this
discrepancy to the fact that in our model isotropy is assumed at any scale whereas the scenario
described in [39, 40] relies on strong anisotropy at small scales.

3.3. MHD energy fluxes

In this section we set α = −5/2 and ν = 10−8 and consider the dynamo saturated regime for
three values of Pm = 10−3, 1 and 104. The kinetic and magnetic spectra are plotted in the top
row of figure 6. Both spectra have inertial ranges of Kolmogorov type, scaling in k−2/3

n (scaling
in k−5/3 in the spectral space). For Pm = 10−3 we identify clearly that the magnetic dissipation
scale is much smaller than the viscous dissipation scale. However the distinction between them
is not so clear for Pm = 104.
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Figure 6. Spectra, total and non-local fluxes for three values of Pm and α = −5/2.
The kinetic (magnetic) spectra correspond to black (red) dots. The fluxes �UU(n)

and �BU(n) are represented by blue and green dots. The red dots correspond to
�UU(n) + �BU(n), the black dots to �UU(n) + �BU(n) + �UB(n) + �BB(n). The
blue, red and black full lines correspond respectively to

∑n

j=0 DU(j),
∑n

j=0 DB(j)

and
∑n

j=0 (DU(j) + DB(j)).

The total and non-local part of the fluxes are plotted in middle and bottom rows of figure 6.
The non-local part of �UU(n) is found to be always much smaller than �UU(n), implying that
the energy transfers are mainly local. On the other hand, the importance of the non-local part of
�BU(n) versus the local one depends on Pm.

In figure 7 the ratio �Non-local
BU (n)/�local

BU (n) is plotted for the three values of Pm. For
Pm = 10−3 this ratio is about 20%. For Pm = 1 and for scales smaller than the viscous scale
kν ≈ 106, this ratio increases up to 50%. Finally, for Pm = 104 there is a discontinuity at kν, the
ratio being then equal to −100% at smaller scales.

3.4. MHD energy transfers

The energy transfers TXY(q, n) have been calculated for several values of Pm, α and shells n for
the dynamo saturated regime. The curves are plotted in appendix C. A digest of these curves is
plotted in figure 8 in order to discuss some typical results of these energy transfers. The columns
from left to right correspond to Pm = 10−3, 1 and 105. Each row from top to bottom corresponds
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Figure 7. Ratio �Non−local
BU (n)/�Local

BU (n) for Pm = 10−3 (dots), 1 (crosses) and
104 (triangles).

to TUU(q, n), TBU(q, n), TUB(q, n) and TBB(q, n) for one given value of n denoted by the black
dot. The curves correspond to α = −∞ (green), −5/2 (magenta), −3/2 (blue) and −1 (red).

For Pm = 10−3, the shell n (black dot) belongs to the kinetic inertial range and the magnetic
dissipation range. We find that |TUU |  |TBU |, implying that the dominant energy transfer feeding
the kinetic energy is a local direct cascade of kinetic energy. In addition we find that TBU is mainly
local and always negative. This means that energy is transferred locally from Un to Bn (which
is consistent with the curve TUB just below). In addition, we see that the curve of TBU extends
towards larger and larger scales when α goes to zero. Though it is small (up to 20%), its extent
over three decades is a clear evidence of non-local transfer from small scale kinetic to large
scale magnetic energy. We interpret this as an α-effect in the sense of mean field theory. Finally,
though much smaller than TUB, there is clear evidence of non-local direct cascade of magnetic
energy as shown by TBB.

For Pm = 1, the shell n (black dot) belongs to both kinetic and magnetic inertial ranges. We
find that |TBU | and |TUB| are the main energy transfers and that they are mainly local. In addition,
a closer look at TUB reveals additional transfer from Uq to Bn with q < n extending over one
decade, which is consistent with results obtained from 3D direct numerical simulation [46].

For Pm = 105, the shell n (black dot) is smaller than the kinetic viscous scale and belongs
to the magnetic inertial range. We find that |TUU | � |TBU | implying that the kinetic energy is
mainly transferred from magnetic energy. This transfer TBU is found to be mainly local. The
curves of TUB show clear evidence of non-local transfers. This suggests that the kinetic scales
with the largest shear are transferring energy to smaller magnetic scales. However instead of
being stocked there, this energy (or at least some part of it) is transferred back locally to kinetic
scales belonging to the kinetic viscous range as shown by the curves of TBU . This energy is then
lost by viscous dissipation. This explains why the magnetic energy does not peak at small scales
as shown in figure 5 for the dynamic regime. Finally, for Pm = 1 and Pm = 105, TBB shows
evidence of some kind of non-local inverse cascade though much smaller than TUB.

In figures 9–11 we give some qualitative illustration of the previous interpretation of
the results.
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Figure 8. From left to right column, Pm = 10−3, 1, 105. From top to bottom,
the plots correspond to TUU(q, n); TBU(q, n); TUB(q, n); TBB(q, n) for n indicated
by the black dot. Each curve corresponds to α = −∞ (green), −5/2 (magenta),
−3/2 (blue) and −1 (red).

4. Discussion

The main originality of the shell model presented in (2) and (3) is that it takes into account
all possible non-local interactions between different shells. In essence it is a non-local MHD
version of the Sabra model. There is one free parameter left that we call α (which is different
from the α-effect of the mean-field dynamo theory) which controls the strength of non-locality
of the model.

An estimation of α has been done on the basis of simple probabilistic arguments of possible
triad interactions, leading to α = −7/2. However, comparing the infra-red kinetic spectrum
obtained in freely decaying HD turbulence with theory suggests using α = −5/2. In comparison
we note that the Sabra model (corresponding here to α = −∞) leads to a much larger infra-red
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Figure 9. Illustration of the energy transfers for Pm � 1 for local (top) and non-
local (bottom) models. The thickness of the arrow gives some qualitative estimate
of the strength of the transfer.

spectral exponent (k9) than theoretical predictions. In forced HD turbulence, anomalous scaling
exponents have been calculated. They are found to depend on α and then on the strength of the
non-local interactions.

In a MHD turbulent dynamo we investigated several values of α ranging from −∞ to −0.5.
Several values of Pm have been investigated depending on whether it is lower than, equal to or
larger than 1. In order to characterize the energy transfers within any possible triad, the quantities
TXY(q, n) (transfer rate from X-energy lying in shell q to Y -energy lying in shell n) have been
derived and plotted versus q for a few values of n. Though most of them are local, several energy
transfers have been found to be partially non-local, depending on Pm.

At small Pm we find large scale magnetic energy obtained from smaller scale kinetic energy.
We understand such a non-local energy transfer as a mean-field dynamo α-effect. At large Pm

we find strong energy transfer from kinetic scales belonging to the inertial range and close
to the viscous scale towards smaller magnetic scales. This non-local transfer corresponds to
the usual kinematic picture in which the vortices of maximum shear (close to the viscous
scale) generate magnetic field of much smaller scales. In addition we find that this magnetic
energy is then transferred back locally to kinetic scales in the viscous range where it is lost by
viscous dissipation.
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Figure 10. Same as figure 9 but for Pm = 1.

Figure 11. Same as figure 9 but for Pm  1.

Appendix A. Possible triads in logarithmic shell models

For a given shell n, we first take benefit from the fact that the triads (n, p, q) and (n, q, p) are
identical and then the representation in the plane (p, q) is symmetric with respect to the diagonal.
We then limit our demonstration to half of (12).
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1. Assuming p � n − 1, we have λn + λp � λn + λn−1. Then from (8) and (11) we have
|k3| � k0λ

n+1, implying q � n + 1.

2. For p = n, we have λn + λp = 2λn. From (8) we have 2 � λ2. Therefore from (11) we have
|k3| � k0λ

n+2 and then q � n + 2.

3. From (8) we have λp+1 − λp � λp−1 . For p � n + 1 we then have λp+1 − λp � λn , implying
from (11) that |k3| � k0λ

p+1 and then q � p + 1.

4. Assuming that p � n − 3, from (11) we have |k3| � k0|λn−1 − λn−4|. Then (8) implies
λn−1 � λn−2 + λn−3 > λn−2 + λn−4. Then we have |k3| > k0λ

n−2 � λn−1 and then q � n−1.

5. For p = n − 2, from (11) we have |k3| � k0|λn−1 − λn−3|. From (8) we have λn−1 − λn−3 �
λn−2, implying |k3| � λn−2 and then q � n − 2.

Appendix B. Expressions of the energy transfers

The energy transfer (22) can be written with the help of (16) in the form

T(Xq|Zp|Yn) = 1
3Re

{
iknY

∗
nMn(Xq, Zp) − ikqX

∗
qMq(Yn, Zp)

}
. (B.1)

The symmetric bilinear form Mn(Xq, Zp) is defined as follows

Mn(Uq, Up) = Ln(Uq, Up, +a) + Ln(Up, Uq, +a), (B.2)

Mn(Bq, Bp) = Ln(Bq, Bp, −a) + Ln(Bp, Bq, −a), (B.3)

Mn(Uq, Bp) = Ln(Uq, Bp, +b) + Ln(Bp, Uq, −b), (B.4)

Mn(Bq, Up) = Ln(Bq, Up, −b) + Ln(Up, Bq, +b), (B.5)

with Ln(Xp, Yq, c) given by

Ln(Xq, Zp, c) =




Tp−qc
3
p−qXqZp for q � n − 2 and p = n − 1,

Tn−qc
2
n−qX

∗
qZp for q � n − 1 and p = n + 1,

Tq−nc
1
q−nX

∗
qZp for q � n + 1 and p = q + 1.

(B.6)

We note that Ln(Xp, Yq, c) is related to Qn(X, Y, c), defined in (3), by

Qn(X, Y, c) =
∑
p,q

Ln(Xp, Yq, c). (B.7)

Appendix C. Energy transfer results

In figures C.1, C.2 and C.3 the energy transfers are plotted for respectively Pm = 10−3, 1 and
105. In each figure the columns from left to right correspond to α = −∞, −5/2, −3/2, −1 and
−1/2. The rows from the second one to the bottom one correspond to the transfer TUU(q, n),
TBU(q, n), TUB(q, n) and TBB(q, n). The transfers are plotted versus log10 q, for three values of n
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Figure C.1. Spectra and transfer functions for Pm = 10−3 (ν = 10−7, η = 10−4)

and several values of α. From left to right column, α = −∞; −2.5, −1.5, −1
and −0.5. From top to bottom, the plots correspond to the spectra (red dots for
kinetic and black for magnetic), TUU(q, n), TBU(q, n), TUB(q, n) and TBB(q, n).
For a given α, the transfer functions are plotted versus q for three values of n

indicated by the dashed lines.
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Figure C.2. Same as figure C.1 but for Pm = 1 (ν = η = 10−7).
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Figure C.3. Same as figure C.1 but for Pm = 105 (ν = 10−6, η = 10−11).
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which are indicated by the dashed vertical lines on the spectra plots on the top row and by the
red, green or blue dots. The transfers being time-dependent we plot their time-average with error
bars corresponding to the standard deviation of the mean. This gives some estimation of the
robustness of the results. Some quantities are much more noisy than the others and therefore
less reliable. The local transfers seem to be always dominant whatever the values of Pm or α.
However there is also some evidence of non-local transfers which are discussed in section 3.4.
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