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[1] We reconsider the analysis of the polar motion with a method totally different from
the wavelet analysis used in previous papers. The total polar motion is represented as the
sum of oscillating annual and Chandler terms whose amplitude and phase perturbations
are inverted with a nonlinear simulated annealing method. The phase variations found in
previous papers are confirmed with the huge phase change (�3p/2) occurring in the
1926–1942 period and another less important one (�p/3) in the 1970–1980 epoch. The
best Chandler period, Tc, is found to be 434 ± 0.5 mean solar days. The epochs of
significant phase changes found in the Chandler wobble are also those where important
geomagnetic jerks occur in the secular variation of the geomagnetic field. Turbulent
viscous friction produced by small-scale topography at the core-mantle boundary might be
responsible for the observed phase jumps.

Citation: Gibert, D., and J.-L. Le Mouël (2008), Inversion of polar motion data: Chandler wobble, phase jumps, and geomagnetic

jerks, J. Geophys. Res., 113, B10405, doi:10.1029/2008JB005700.

1. Introduction

[2] The movement of the Earth’s pole has been observed
for more than 150 years, and, at the end of the 19th century,
Chandler [1891a, 1891b] showed that this motion is the
sum of two periodic oscillations, the forced annual oscilla-
tion and the Chandler wobble with a period close to 434
mean solar days [e.g., Guinot, 1972; Lambeck, 1980; Wahr,
1988; Cazenave and Feigl, 1994]. Both the amplitude and
the phase of the Chandler wobble vary with time [e.g.,
Lambeck, 1980], and Danjon and Guinot [1954] first
reported a phase change of about 150� which occurred
around 1926 and was achieved in less than 10 years
[Guinot, 1972]. This phase jump remained poorly docu-
mented until other jumps were reported by Gibert et al.
[1998] and suggested to be in temporal coincidence with
geomagnetic jerks [Gibert et al., 1998; Bellanger et al.,
2002]. Similar phase jumps have been detected in the Free
Core Nutation time series and also found in coincidence
with geomagnetic jerks [Shirai et al., 2005].
[3] Different hypotheses have been proposed as the

excitation mechanism of the Chandler wobble (see Dehant
and de Viron [2002] for a short review), the main ones being
the atmosphere [e.g., Aoyama and Naito, 2001], the pres-
sure at the bottom of the oceans [Gross, 2000; Brzeziñski
and Nastula, 2002; Gross et al., 2003], the earthquakes
[Mansinha and Smylie, 1967; Gross, 1986], or core motions
[Wahr, 1988; Dickman, 1993]). The proposed temporal
coincidence between geomagnetic jerks and phase jumps
in the Chandler wobble constitutes an exciting challenge

and constitutes a new clue to the role of core-mantle
coupling onto the Earth’s polar motion.
[4] In the present paper, we reconsider the analysis of the

Earth’s polar motion with a new method totally different
from the wavelet analysis used in our earlier papers [Gibert
et al., 1998; Bellanger et al., 2002]. Also, the inverse
approach followed in the present study is more direct in
the sense that the detrended total polar motion is analyzed
without the complicated preprocessing stages of the wavelet
analysis. Moreover, we hope this new and simpler method
will be more easily used by independent teams in order to
perform analysis similar to the one presented here.
[5] In the remaining of the present paper, we first present

the polar motion series and describe the model used to
compute realistic synthetic series to be compared with the
data. Then, we detail the parameterization of the inverse
problem where the amplitudes of the annual and Chandler
components of the polar motion are to be retrieved together
with the phase curve of the Chandler term. Next, the
nonlinear inversion is performed with the simulated anneal-
ing method and a Bayesian assessment of the uncertainty
attached to the estimated parameters is done with the
Metropolis algorithm.

2. Modeling of the Polar Motion

2.1. Polar Motion Data

[6] The total polar motion, m(t), provided by the Interna-
tional Earth Rotation Service (IERS) (data series eopc01) is
shown in Figure 1a. Let us recall that the coordinate system
is left-handed with the X axis coinciding with the Green-
wich meridian and the Y axis corresponding to the W90
meridian. This signal is the superimposition of a smooth
secular drift d(t) and of an oscillating term o(t) resulting
from interferences between the annual prograde and retro-
grade components, ap(t) ar(t), and the prograde Chandler
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wobble c(t) [Lambeck, 1980]. In previous studies [Gibert et
al., 1998; Bellanger et al., 2002], we showed that the annual
prograde component is dominant with respect to the retro-
grade one which, however, remains significant (see the inset
in Figure 2c for an illustration of the importance of the
retrograde annual component). In the same studies, it was
also shown that the Chandler wobble is affected by a small
number of phase perturbations Df(t) whose temporal shape
may be modeled as sigmoid phase jumps with a short
duration of the order of one year. Accounting for these
observations the total polar motion may be written as,

m tð Þ ¼ o tð Þ þ d tð Þ þ n tð Þ
¼ ap tð Þ þ ar tð Þ þ c tð Þ þ d tð Þ þ n tð Þ; ð1Þ

where n(t) represents the noise presents in the data
(Figure 1c).
[7] In the present study we remove the secular drift before

inverting the data. Owing to the smooth nature of d(t), we
represent it by the least squares fitted polynomials of degree
5 shown in Figure 1a. No significant differences were
observed when using either fourth and sixth degree poly-
nomials. The noisy oscillating part, o(t) + n(t), is obtained
by subtracting the fitted polynomials from the total polar
motion and is shown in Figure 1b.
[8] We remark that IERS data at face value, and the polar

motion series shown in Figure 1a results from the merging
of series with data of different nature (for more details, see
IERS Web site http://www.iers.org). For instance, it cannot
be eliminated that some inconsistencies affect the data in the
1970–1980 period due to the merging of classical astrome-
tric and space geodetic measurements [Gross and Vondrák,
1999].

2.2. Parameterization of the Polar Motion Model

[9] The signal to be inverted is the o(t) part of the total
polar motion and, in the present study, the model of signal
used in the forward problem reads,

om tð Þ ¼Apa tð Þ exp 2ipt
Ta

þ iDfpa

� �

þ Ara tð Þ exp � 2ipt
Ta

� iDfra

� �

þ Ac tð Þ exp 2ipt
Tc

þ iDf tð Þ
� �

; ð2Þ

where the real amplitudes Apa(t), Ara(t), Ac(t), the phase
variation Df(t), and the constant phase shiftsDfpa,Dfra of
the annual components are to be determined. The period
Ta = 365.25 mean solar days (msd) and the Chandler period
Tc is assumed known and constant during a given inversion.
The Chandler period is not considered as a parameter to be
inverted since the phase variation Df(t) may incorporate a
period change dTc through the linear correcting term,

Df tð Þ ¼ � 2pt
Tc

� dTc
Tc þ dTc

: ð3Þ

Equation (3) shows that a change in the choice of the
Chandler period Tc will result in a change in the linear drift
of the phase Df (see discussion below).

[10] As can be seen in equation (2), the amplitudes are
linear parameters, while the phase variation is a nonlinear
one. In what follows, the inversion will not deal directly
with these unknown functions, but instead will be per-
formed for primary parameters from which the Apa(t), Ara(t),
Ac(t) and Df(t) functions are deduced. More explicitly, the
amplitude functions are obtained by linearly interpolating
coarsely sampled amplitude functions. In practice, this reads

Apa tð Þ ¼ LI Apa;1; t1
� �

; 
 
 
 ; Apa;k ; tk
� �

; 
 
 
 ; Apa;N ; tN
� �� �

; ð4Þ

Ara tð Þ ¼ LI Ara;1; t1
� �

; 
 
 
 ; Ara;k ; tk
� �

; 
 
 
 ; Ara;N ; tN
� �� �

; ð5Þ

Ac tð Þ ¼ LI Ac;1; t1
� �

; 
 
 
 ; Ac;k ; tk
� �

; 
 
 
 ; Ac;N ; tN
� �� �

; ð6Þ

where LI represents the linear interpolation operator, and
where the dates tk are fixed and regularly distributed with a
sampling interval of 3 months. Consequently, for ampli-
tudes, the parameters to be actually determined are the
elements of the three sets {Apa,k, k = 1, N}, {Ara,k, k = 1, N},
and {Ac,k, k = 1, N}.
[11] An identical parameterization is adopted for the

phase variation function Df(t),

Df tð Þ ¼ LI Df1; t
0
1

� �
; Df2; t

0
2

� �
; 
 
 
 ; Dfk ; t

0
k

� �
; 
 
 
 ; DfM ; t

0
M

� �� �
ð7Þ

with the important difference that the dates t0k are not fixed
but, instead, are to be determined together with the phase
variations Dfk. This parameterization makes the inversion
highly non linear but, as will be seen later, it permits us to
eventually represent the phase function with a very small
number M of parameters.
[12] To summarize, the model to be determined is the set

of parameters,

M ¼ Apa;1; 
 
 
 ;Apa;k ; 
 
 
 ;Apa;N

� �
[

Ara;1; 
 
 
 ;Ara;k ; 
 
 
 ;Ara;N

� �
[

Ac;1; 
 
 
 ;Ac;k ; 
 
 
 ;Ac;N

� �
[

Df1; 
 
 
 ;Dfk ; 
 
 
 ;DfMf g[
t01; 
 
 
 ; t0k ; 
 
 
 ; t0M

� �
[

Dfpa;Dfra

� �
; ð8Þ

from which the functions Apa(t), Ara(t), Ac(t) and Df(t) are
deduced. We determine these parameters through a two-step
procedure by, first, searching for a good model fitting with
the data, and, second, exploring the nonuniqueness of the
solution. The first step is accomplished by using a global
search method, namely simulated annealing, and the second
step uses a heat bath method based on the Metropolis
algorithm as explained in the sections 3 and 4.

3. Inversion by Simulated Annealing

3.1. Method

[13] The search for a good model, Mbest, is done with the
simulated annealing algorithm which allows us to easily
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deal with nonlinear models and sophisticated likelihood
functions. In the following, we shall only give the technical
details specifically adjusted for the present study, and the
reader is referred to Metropolis et al. [1953], Kirkpatrick et
al. [1983], Bhanot [1988], and Sambridge and Mosegaard
[2002] for general considerations concerning the Metropolis
and the simulated annealing algorithms in the framework of
nonlinear inversion.
[14] In what follows, the likelihood function used to

assess for the quality of a model M is taken Gaussian-like,

L Mð Þ ¼ exp � o tð Þ þ n tð Þ � om tð Þk k2
h i

; ð9Þ

where jj
jj2 represent the L2 norm of a vector. For the
moment, this likelihood function does not need to be either
scaled or normalized as it will serve only to quantify the
relative goodness of fit of the models.
[15] Simulated annealing consists in a sequence of

Metropolis loops while simultaneously applying a topolog-
ical transformation to the likelihood L by decreasing a
control parameter T traditionally called the temperature
[Kirkpatrick et al., 1983; Gibert and Virieux, 1991;

Mosegaard and Tarantola, 1995; Pessel and Gibert,
2003]. The transformed likelihood is given by,

LT Mð Þ ¼ L1=T Mð Þ: ð10Þ

The simulated annealing begins with T ! 1 for which L1
equals a constant and stops at either T = 1 when the
likelihood is the one given by equation (9) or at T � 0 with
L0 � d (Mbest � M) where Mbest is the searched best
fitting model (i.e., L(Mbest) > M). For each temperature T,
a Metropolis loop produces a sequence of models
distributed according to LT. In practice, this consists in
generating a sequence of models where the next model,
Mj+1, to be added in the sequence is obtained from the
preceding one, Mj, according to the random choice,

prob Mjþ1 ¼ Mtry
� �

¼ min 1;
LT Mtry

� �
LT Mj

� �
" #

; ð11Þ

where Mtry is a candidate model to be eventually included
in the sequence of models. Equation (11) indicates that a

Figure 1. Polar motion data. (a) Total polar motion series eopc01 provided by the International Earth
Rotation Service, the X and Y components correspond to the thick and thin lines, respectively. Also
shown are the order 5 polynomials representing the smooth secular drift, d(t), of the pole. (b) The
oscillating polar motion, o(t), obtained by subtracting the order 5 polynomials from the original series,
m(t), shown in Figure 1a. (c) The IERS’s estimate of the noise level for the original series. A logarithmic
scale must be used for the ordinate axis in order to account for the huge reduction of the noise during the
20th century. For comparison with the signals shown above, average values of the error are 0.025 arc sec
before 1960 and 0.012 arc sec in 1960–1970 period. The dramatic decrease of the noise level which
initiates in 1976 is due to the incorporation of space geodetic measurements into the polar motion time
series [Gross and Vondrák, 1999].
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more likely model is always accepted and that a less likely
model is sometimes accepted. When the random assignment
given by equation (11) fails, i.e., when the less likely
candidate model has been rejected, the replicating transition
Mj+1 = Mj is applied. As the Metropolis loop proceeds, a
sequence of models is generated such that more models fall
in the most likely regions of the model space. When the
temperature decreases, these regions have their likelihood
dramatically (i.e., exponentially) augmented, and if the
temperature is slowly lowered, the chain of models is gently
guided toward the regions of the model space where the
likelihood is maximum [Metropolis et al., 1953; Bhanot,
1988].
[16] The candidate model,Mtry, is obtained by perturbing

the current model Mj in order to give some memory to the
Metropolis chain. This point is particularly important since
it makes the algorithm not a simple Monte Carlo search. In
the present study, we observed that the perturbation strategy
is not a critical matter, and the method we retained consists
in randomly choosing the parameters to be perturbed in the
parameter set Mj.
[17] The perturbation applied to the amplitudes Apa,k,

Ara,k, Ac,k is randomly assigned with the following rule:

A
try
:;k ¼ A

j
:;k þ rand1 �0:02 arc sec;þ0:02 arc sec½ �; ð12Þ

where randa[x1, x2] represents the biased uniform random
generator in the [x1, x2] interval with the probability 1 � a

that the random generator returns a zero value. The phase
variation is perturbed by randomly drawing a parameter
Dfk in Mj and perturbing it with the rule,

Dftry
k ¼ Dfj

k þ rand0:5 �30�;þ30�½ �: ð13Þ

The corresponding date, t0k, is also modified according to,

t
0;try
k ¼ t

0;j
k þ rand0:5 �0:75 year;þ0:75 year½ �: ð14Þ

[18] Observe that the random generator is biased in both
equations (13) and (14), so that a drawn parameter is
actually perturbed only half of the time. We found this rule
necessary because of the very different roles played by the
various parameters. We indeed observed that the phase
parameters are more rapidly determined than the amplitude
ones. A way to deal with this situation is to reduce the
perturbation of the phase parameters which become deter-
mined first. The biased random generator provides a solu-
tion in the sense that no perturbation of both Dfk and t0k
occurs 25% of the time (equations (13) and (14)). Further-
more, the phase variations Dfk have quite a complicated
contribution to the misfit budget, i.e., in the likelihood L,
since those with dates falling at the beginning of the 20th
century concern longer portions of signal than those place
near the end of the century. When running the simulated
annealing algorithm, we observed a hierarchical determination
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Figure 2. (a) Residuals (data minus synthetics) for the X and Y components obtained for the model
fitted with Tc = 434 msd. (b) Histogram of the residuals: the wide histograms correspond to the residuals
before 1960 (SD = 0.04435), and the narrow histograms are for the residuals after 1965 (SD = 0.01426).
Thick and thin curves are for the X and Y components respectively. (c) Energy spectrum of the residuals
for the X (thick curve) and Y (thin curve) components; inset is magnification of the spectra of the X
component for residuals of models with (thick line) and without (thin line) the retrograde annual
component. The same result is observed for the Y component.
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of the parameters, with those placed at the beginning of the
century being locked more quickly than those placed later.
[19] The temperature schedule, i.e., the manner by which

the temperature T is lowered, must be carefully designed to
obtain a successful convergence toward models with a high
likelihood. In the present study, the main difficulty we
encountered was related to the hierarchical importance
among the parameters to be determined. In practice we
observed that too rapid a cooling made the Metropolis
sequences of models get trapped in local minimums located
far from the best models. A detailed analysis of this
difficulty revealed that the trapping was due to parameters
associated with dates early in the century. Indeed, changing
the value or the date of such parameters produced huge
perturbations in the more recent part of the synthetic signals,
resulting in a high misfit and, consequently, in a low
probability. Since the lower the temperature, the lower the
probability to accept a poorer model in the Metropolis
sequence, the perturbations applied to the parameters placed
early in the 20th century were always rejected, and the
Metropolis sequence was unable to escape from the local
minimum. This problem was solved by controlling the
cooling with the constant thermodynamical speed algorithm
already used by Gibert and Virieux [1991]. The main
advantage of this algorithm is to automatically reduce the
perturbations of the parameters when the convergence
accelerates.

3.2. Results

[20] The starting temperature, Tstart, of the simulated
annealing must be large enough to ensure that LTstart � 1

so that a global sampling of the model space is performed
[Kirkpatrick et al., 1983; Mosegaard and Tarantola, 1995]
In the present study, we use Tstart = 1 for which almost all
models Mtry (starting, for example, from a first model with
a constant amplitude and a null phase) are accepted in the
Metropolis sequence, and 20 trial models Mtry were tested
(and a fraction of them retained, see equation (11)) for each
Metropolis sequence. The final temperature was taken as
T = 10�5. A total of 107 models were tested during the whole
process, and several inversions were done with Tc = 431,
432, 433, 434, and 435 mean solar days. For these inver-
sions, we setM = 23 and N = 425 (see equation (8)). A large
value was chosen for N to ensure a good modeling of the
envelopes of the signals and eliminate the possibility that a
bad envelope modeling could produce phase perturbations.
On the opposite, a rather small value was chosen for M in
order to comply with the hypothesis that only a small
number of phase impulses are present in the Chandler
component. This strong hypothesis was relaxed inverting
the most recent part of the polar motion series with a large
M = 71 (see below).
[21] Figure 2a shows the residuals corresponding to the

best fitting model obtained for Tc = 434 msd. Similar results
were obtained for the other Chandler periods. The most
conspicuous feature visible in Figure 2a is the dramatic
reduction of the residuals level for t 5 1962. Histograms of
the residuals (Figure 2b) which give standard deviations of
0.04435 arc sec and 0.01426 arc sec before 1960 and after
1965, respectively. Note that the decrease of the amplitude
of the residuals in 1962 coincides with the decrease of the
noise starting in 1962 as estimated by IERS (Figure 1c).
That means that the big residuals before 1962 (Figure 2b)
was essentially noise for the largest part. Afterward, the
IERS estimation of noise keeps decreasing strongly, a
characteristics which is not reflected in our residuals. We
have to conclude that signal remains in our residuals.
[22] Figure 2c shows the energy spectrum of the residuals

of Figure 2a. This spectrum is reasonably white in its high-
frequency domain and becomes more similar to a pink noise
for periods greater than about 3 years. The inset in Figure 2c
shows a comparison of the energy spectra of the residuals
obtained for models with and without the retrograde annual
component. It can be seen that the spectrum for the model
without the retrograde annual term has a significant peak at
the period of 1 year. This peak disappears in the spectrum
corresponding to the model with the retrograde annual
component. This result favors the use of a retrograde annual
term in the fitted model (equation (2)).

4. Posterior Probability

4.1. Method

[23] The residuals obtained for the best fitting models
found with the simulated annealing can now be used to
perform a statistical Bayesian inversion. Indeed, the likeli-
hood function given by equation (9) can be completed to
obtain a normalized probability density function,

L Mð Þ ¼ b exp � o tð Þ þ n tð Þ � om tð Þk k2

2s2

" #
; ð15Þ
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Figure 3. (a) Envelopes of the Chandler component, and
(b) the prograde (top curves) and the retrograde (bottom
curves) annual components obtained by inverting the
detrended polar motion (Figure 1) Tc = 434 mean solar
days. The thick curves are the envelopes of the average
model of the models produced by Metropolis sequences,
and the thin curves represent the extremes envelopes of all
models accepted in these sequences. The horizontal dashed
line represents the zero level in order to show that the
retrograde annual amplitude remains significantly different
from zero in the recent period where the data are more
accurate.
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where b is a suitable normalizing constant and s equals
either 0.04435 arc sec or 0.01426 arc sec for t smaller or
greater than 1962, respectively.
[24] As explained before, the Metropolis algorithm

generates a sequence of models distributed according to
the likelihood functions. So, by running a Metropolis loop
for T = 1 and L given by equation (15), we obtain a set of
acceptable models from which uncertainties may be com-
puted. In practice, the computer code is the one used for the
simulated annealing except that the starting model is the last
one obtained in the simulated annealing inversion and that
the temperature is maintained equal to 1. Let us also remark
that the normalizing constant b in equation (15) has not to
be computed in practice since it cancels in the likelihood
ratio used in the Metropolis test (11).

4.2. Results

[25] Figure 3 shows the amplitudes Apa(t), Ara(t), and
Ac(t) interpolated from the model with Tc = 434 msd. The
thick lines represent the average amplitudes for a Metropolis
sequence of 106 models. The thin lines are the envelopes of
the whole set of models accepted during the sequence. As
expected, the envelopes are closer after 1962, when the
noise level is smaller. Interestingly, at that date, the enve-
lope of the retrograde annual component becomes smaller
but with its lower envelope slightly above zero. At the same
time, a clear decrease is observed in the prograde annual
component amplitude which recovers a lower level similar
to the one of the period 1900–1906.
[26] Figure 4 shows the phase variation, Df(t), interpo-

lated from the model with Tc = 434 msd. Again, a reduction
of the uncertainty domain is observed for t � 1962. Figure 5
shows the phase curves for Tc = 431, 432, 433, 434, and 435
mean solar days. All curves possess similar features but

differ by the global drift of their linear segments where no
significant phase jumps occur (e.g., the two segments
corresponding to the horizontal arrows in Figure 4). Owing
to the fact that a global linear drift may be due to a wrong
choice for the value of Tc as shown by equation (3), the right
period is the one for which these drifts are minimized.
Accordingly, one can observe that the curve corresponding
to Tc = 434 msd appears free of linear drift while those for
Tc = 433 and 435 msd display a small but significant negative
and positive drift, respectively. We conclude that the
Chandler base period may be taken as Tc = 434 ± 0.5 mean
solar days in full agreement with our previous determina-
tion based on parsimony arguments [Gibert et al., 1998].
[27] Another inversion restricted to t � 1970 was per-

formed with a model counting a large number (M = 71) of
parameters Dfk and t0k. The resulting phase curve is shown
in Figure 6; interestingly, we observe that this curve is very
similar to the one obtained with a small number of param-
eters, confirming that the angular behavior of the phase
variations is not due to modeling artifacts.

5. Discussion

[28] Let us write the Chandler wobble time series in the
form

c tð Þ ¼ Ac tð Þ exp i wct þ f tð Þð Þ½ �

¼ Ac tð Þ exp i

Z t

0

wc þ df tð Þð Þdt
� �

; ð16Þ

where wc = 2p/Tc. The origin of time is taken at the
beginning of the time series. The two above expressions are
obviously strictly equivalent, with f(t) =

R
0
t df(t)dt + f0,

and df(t) = f0(t). It is also clear that changing wc or Tc
comes down to adding a linear trend to f(t): wc ! wc + dwc,
f(t) ! f(t) � dwct. For the reasons given above, we chose
Tc = 434 (Figures 4, 5, and 6).
[29] Let us compare the phase variations shown in

Figures 4 and 6 with our previous results [Gibert et al.,
1998; Bellanger et al., 2002], i.e., the phase variation curve
obtained by integrating the ridge function of the wavelet
analysis of polar motion data [Bellanger et al., 2002].
Figure 4 shows that the latter curve is in full general
agreement with the phase variations obtained in the present
study with a totally different method; however, the view of
Figures 4, 5, and 6 reveals that the phase variations

Figure 4. Phase variation, Df(t), inverted for Tc = 434
mean solar days. The thick curve is the phase curve of the
average model of all models produced by a Metropolis
sequence, and the thin curves represent the extreme
envelopes of the models accepted during the sequence.
The dashed curve represents the phase variation obtained by
integrating the ridge function (i.e., the instantaneous
frequency curve) of the Chandler prograde component
shown in Figure 1 (top) of Bellanger et al. [2002]. The
vertical bands represent the dates of occurrence of the
geomagnetic jerks. The width of each band is tuned
according to the dating uncertainties reported byAlexandrescu
et al. [1995, 1996]. The multiple bands associated with the
1969, 1980, and 1991 jerks represent the bimodal nature of
their occurrence date histograms [Alexandrescu et al., 1996;
De Michelis and Tozzi, 2005].

Figure 5. Phase variation Df(t) evolution of the Mbest

models obtained for five reference periods Tc = 431, 432,
433, 434, and 435 mean solar days.
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recovered in the present paper appear sharper than the
smooth curve obtained by wavelet analysis, which does not
display by construction [seeGibert et al., 1998, Figure 7], the
segmented nature of the phase variations. Note that this
segmented nature of the curve of the present study
(Figure 5) is not an effect of the algorithm characteristics
since the main pattern is preserved in the high-resolution
inversion of Figure 6; it mean that the o(t) data presents
important phase variations at discrete times. The last
increasing part of the integrated curve starts in 1994, while
only in 1997 for the curves obtained in the present study.
This discrepancy is probably due to a small edge effect in
the wavelet analysis.
[30] Let us come back to the analysis of Gibert et al.

[1998] and Bellanger et al. [2002]. In this paper we located
phase jumps near the dates of geomagnetic jerks determined
from geomagnetic observatory series, and we adjusted the
amplitudes and durations of the phase jumps, supposed to
have a sigmoid shape, in such a way that the phase curves
determined from this modeling be identical to the integrated
ridge function obtained from the data by wavelet analysis.
The close similarity between the phase curve obtained in the
present paper and the one computed earlier buttresses of our
former analysis (i.e., locating phase jumps at the jerks time).
[31] Geomagnetic jerks are short-duration events which

punctuate the evolution of the fluid core motion at the core-
mantle boundary (CMB); such events have been detected in
1901, 1926, 1932, 1949, 1969, 1980 [Alexandrescu et al.,
1995, 1996], and 1991 [Macmillan, 1996; De Michelis and
Tozzi, 2005]. The time of occurrence of a jerk is not
determined with a high accuracy for two main reasons:
(1) the (weak) conductivity of the mantle smooths out the
shortest periods of the event [Mandea-Alexandrescu et al.,
1999] and (2) the time of the event can be somewhat
different in different observatories; for example, in 1969
and 1978, the Southern Hemisphere lags the northern one
by some 2 years [Alexandrescu et al., 1996]. We have
reported the times of the 20th century jerks, with their
uncertainties, on Figure 4. It seems to us again that it is not
so far-fetched to propose a correlation between the sequence
of these events and the sequence of accidents in the phase of
the Chandler wobble. We interpret the jerks as marking
changes in the flow at the top of the core responsible for the

secular variation [Gibert et al., 1998; Le Huy et al., 2000;
Bellanger et al., 2001]. Other interpretations have been
proposed, for example, that the jerks can be explained by
a core flow consisting of steady motion and torsional
oscillations [Bloxham et al., 2002].
[32] But in this paper we focus on the spectacular phase

change of �3p/2 which corresponds to a decrease of the
apparent Chandler period of 23 days (equation (3)) from
1926 to 1942 [Danjon and Guinot, 1954], and which
follows the 1926 magnetic jerk. As far as we know, this
large variation has never been convincingly explained by an
external forcing, including the atmosphere and/or the ocean,
nor by an unusual series of big earthquakes. If external or
superficial causes fail to provide the right mechanism, it is
reasonable to call for deep sources, i.e., interactions with the
core, which is a big reservoir of angular momentum. That is
why we are motivated to look for the exchanges of angular
momentum between the core and the mantle as a possible
cause for these large phase changes, to some extent inde-
pendently of the suggested coincidence of magnetic jerks
with wobble phase changes.
[33] The difficulty is that we need big enough core-

mantle torques with short time constants are needed. More
precisely, torques of the order of 1021 N.m with a duration
shorter than 430 days, frequent enough, and which do not
cancel each other, are requested. In some previous papers
[Hinderer et al., 1987, 1990; Bellanger et al., 2001] we
called for the geostrophic torque resulting from the pressure
p associated with the geostrophic flow ~u at the top of the
core, acting on the large-scale bumps of the CMB [Jault and
Le Mouël, 1989; Hide, 1969] to explain slow irregularities
in the drift of the Earth’s mean pole with time constants of a
few tens of years. But the difficulty with the excitation of
the Chandler wobble is, as said above, the need for a dense
sequence of short torques which, however, do not lead to
unacceptable velocity field ~u. This requirement practically
rules out the topographic torque [Jault and Le Mouël,
1993], taken in the sense given above. Recently, however,
it was proposed [Narteau et al., 2001] that the CMB, in
addition to the large-scale topography dynamically sus-
tained by the mantle convection, might present a small-
scale roughness, with typical length scales ranging from a
meter to hundreds of meters, due to physical-chemical

Figure 6. The thin solid line represents the phase variation, Df(t), inverted for a reference period Tc =
434 mean solar days and for a large number M = 71 of pilot points. The thick solid line represents the
phase curve inverted for a small number (M = 9 in the represented time interval) of pilot points (Figure 5).
The dashed curve represents the phase variation obtained by integrating the ridge function (i.e., the
instantaneous frequency curve) of the Chandler prograde component shown in Figure 1 (top) of
Bellanger et al. [2002]. The vertical bands represent the dates of the recognized geomagnetic jerks (see
caption of Figure 4 for details).
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interactions between the core and the mantle. A torque
between the core and the mantle then results from the
mantle topography displacing volumes of core fluid, some
kind of turbulent viscosity coupling, when there is a relative
motion ~u between the two envelopes. This torque happens
to be proportional to jj~ujj2 [Le Mouël et al., 2006]. Without
changing significantly the parameters adopted in the latter
paper, it is possible, although difficult, to meet the require-
ments stated at the beginning of this paragraph for the
observed 1926 phase change; this phase change does exist
and has not received, to our knowledge, any other convinc-
ing explanation. In this view, geomagnetic jerks mark
changes in the top core flow characteristics and, as a
consequence, in the torque exerted by the core on the
mantle and conversely. We are currently developing this
analysis, its fair to say that the subject is not free of
uncertainties.
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Le Huy, M., M. Mandea, J.-L. Le Mouël, and A. Pais (2000), Time evolu-
tion of the fluid flow at the top of the core, geomagnetic jerks, Earth
Planet. Space, 52, 163–173.
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