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Abstract22
23

Stylolites are among the most prominent deformation patterns in sedimentary rocks that 24

document localized pressure solution. Recent studies revealed that stylolite roughness is 25

characterized by two distinct scaling regimes. The main goal of the present study is to 26

decipher whether this complex scaling behavior of stylolites is caused by the composition of 27

the host rock, i.e. heterogeneities in the material, or is governed by inherent processes on 28

respective scales, namely the transition from a surface energy to an elastic energy dominated 29

regime, as theoretically predicted. For this purpose we have developed a discrete numerical 30

technique, based on a lattice spring model, to simulate the competition between stress, strain, 31

and dissolution during stylolite roughening. We varied systematically the quenched noise, 32

initially present in the material, which controls the roughening. We also changed the size, 33

amount, and dissolution rate of the heterogeneities introduced in our model and evaluated the 34

influence on the scaling exponents. Our findings demonstrate that the roughness and growth 35

exponents are independent of the exact nature of the heterogeneities. We discovered two 36

coinciding crossover phenomena in space and time that separate length and timescales for37

which the roughening process is either balanced by surface and elastic energies. Our 38

observations are coherent with analytical predictions and with investigations quantifying 39

precisely the scaling laws in the morphology of natural stylolites. The findings presented here 40

can further be used to refine volume loss estimates from the finite strain pattern of stylolites.41

42

1. Introduction43

Pressure solution in sedimentary rocks results in either intergranular or localized dissolution 44

of material (e.g. Tada & Siever, 1989). The latter is responsible for the formation of stylolites, 45

a frequent deformation pattern in sedimentary rocks (e. g. Stockdale, 1922; Dunnington 1954, 46

Heald, 1955, Park & Schot, 1968, Buxton & Sibley 1981, Rutter, 1983; Railsback, 1993).47

Stylolites are rough interfaces that frequently contain insoluble material (Fig. 1), which is 48
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considered to be the residuum of the dissolved rock (Railsback, 1993; and references cited 49

therein). Stylolite initiation is still highly debated (e.g. Tada & Siever, 1989) but several 50

mechanisms have been proposed that are in agreement with field observations: Formation (I) 51

along preexisting anisotropies (Bathurst, 1987) (II) as anticracks (Fletcher and Pollard, 1981) 52

that propagate due to stress concentrations at anticrack tips (even though this idea was 53

challenged recently by Katsman et al. 2006) and (III) by stress induced self-organization 54

(Merino, 1992, Railsback, 1998; Merino et al., 2006).55

In the present study we focus on a quantitative description and characterization of the 56

roughness of simulated stylolites and study their dynamic development independent of the 57

process leading to the initial development of the localization of dissolution along a plane. 58

Based on recent quantitative methods of stylolite roughness characterization (Renard et al., 59

2004; Schmittbuhl et al., 2004, Koehn et al., 2007, Ebner et al., submitted) we will use60

statistical tools to compare simulated and natural stylolites. In particular we study the 61

influence of initial heterogeneity concentration in the host-rock on a) stylolite roughness, b) 62

dynamic roughness growth and c) the correlation of crossover phenomena in space and time. 63

To integrate the results of our study in the context of quantitative characterization we will first 64

review some of the major findings and basic principles, used in recent studies, necessary for 65

the understanding of our approach.66

The exact classification of stylolites in the field is a difficult task because there is a wide 67

range of geometries (e.g. Park and Schott, 1968) that are often transitional even within a 68

single outcrop. Many previous studies (Park & Schot, 1968; Buxton & Sibley, 1981, 69

Guzzetta, 1984; Tada & Siver, 1989; Railsback, 1993) used classification schemes that were 70

based on visual descriptions of macroscopic features of stylolites. These classification 71

schemes are however not quantitative and hard to compare since these studies focused on a 72

variety of different aspects of stylolite formation. Recent studies, however (Drummond & 73

Sexton, 1998, Karcz & Scholz, 2003) took a more quantitative approach using fractal 74
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concepts to describe the stylolite roughness in a statistical sense. They could describe stylolite 75

roughness with a fractal scaling over several orders of magnitude, which means that their76

roughness is not dominated by a certain wavelength.77

Renard et al. (2004) and Schmittbuhl et al. (2004) went one step further and revealed that 78

bedding parallel stylolite surfaces show a self-affine scaling invariance with characteristic 79

Hurst exponents (also called roughness exponents). A self-affine rough surface is 80

characterized statistically by the fact that points along the surface separated by a distance ∆x81

from each other are typically distant in the direction transverse to the surface by ∆h=∆xα, 82

where α is the roughness exponent. It was further noticed that two distinct scaling regimes 83

exist that were characterized by two different Hurst or roughness exponents separated by a 84

crossover-length (L), around the millimeter scale for the analyzed natural stylolites. Above 85

this crossover, all investigated stylolites exhibit a Hurst exponent of about 0.5 meaning that 86

they change relatively fast from being flat features on larger scale to being rough features on 87

the smaller scale. Below the crossover-length the Hurst exponent is about 1.0, which means 88

that the slopes, or aspect ratio ∆z/∆x, stays more or less constant. Schmittbuhl et al. (2004) 89

and Renard et al. (2004) established from first principles of mechanics and chemistry a model 90

for stylolite growth under the form of a stochastic partial differential equation (called in this 91

case a generalized Langevin equation). This equation simulates the roughening of a stylolite 92

surface as a competition between stabilizing forces (that keep the surface flat), which are 93

controlled by long range elastic and local surface tension effects, and destabilizing forces (that 94

roughen the interface) that are induced by pinning effects of material heterogeneities. The 95

analytical solution of Schmittbuhl et al. (2004) reproduced the observed scaling behavior of 96

natural stylolites and demonstrated that the two scaling regimes (characterized by the two 97

different Hurst exponents) correspond to two thermodynamic regimes that are dominated by 98

either surface or elastic energies on small and large scales, respectively (Renard et al., 2004; 99

Schmittbuhl et al., 2004, Gratier et al., 2005). Based on the work of Schmittbuhl et al., (2004) 100
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it was demonstrated for the first time by Ebner et al., (submitted) that the crossover-length of 101

natural stylolites, which should be a function of the stress during stylolite growth, can be used 102

to determine stress magnitudes and burial depth in sedimentary basins. The discrete numerical 103

simulation technique of Koehn et al. (2007) enabled to study the dynamics of the roughening 104

process through time revealing that the stylolite interface width w (defined in detail below) 105

grows as a power law with time (w~tβ) with a growth exponent β of 0.5 in the surface energy 106

dominated regime and a growth exponent of 0.8 in the elastic energy dominated regime. In 107

addition the roughness growth may saturate so that the stylolites lose their memory for 108

compaction or finite strain. It is important to notice that the roughness of simulated stylolites 109

in this contribution is produced by heterogeneities in the material that pin the stylolitic 110

interface due to slower dissolution rate constants, which are in competition with the surface 111

and elastic energies which tend to flatten the surface (Koehn et al., 2007). Therefore the112

obvious question to ask is whether a variation of the quenched noise changes the scaling 113

properties of the stylolitic interface?114

Thus, in the present contribution we investigate the influence of different heterogeneities 115

(namely the percentage of pinning particles, their pinning factor (defined below), and their 116

size) on the scaling behavior, dynamic growth, and determined crossover length of simulated 117

stylolites.118

119

2. Setup numerical model120

The numerical technique that we use to simulate stylolite roughening is based on a lattice-121

spring model coupled with a dissolution routine (Koehn et al., 2004, 2006, 2007). The model 122

itself is embedded as a module in the “Elle” modeling-platform (Bons et al., 2008). 123

For computational reasons, to access large systems and analyze scaling laws over a large ratio 124

between the system size and the resolution, we will consider situations spatially invariant 125

along one of the directions tangential to the stylolite – and effectively treat systems with two 126
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spatial dimensions. The initial configuration of this 2D model, as shown in Fig. 2a, contains a 127

predefined flat interface that is considered to be filled with a confined fluid. Two blocks of128

particles are separated by a fluid pocket. Such an approximate configuration would be 129

expected for example, for a fluid pocket embedded between two lowly permeable 130

sedimentary layers. This model system represents two solids or rocks that are pressed together 131

by inward moving top and bottom boundaries, whereas the side boundaries remain fixed 132

(uniaxial strain). A quenched noise (denoted by darker particles in Fig 2a & b) is introduced 133

by a change of the dissolution rate constant of a certain fraction of the particles (= pinning 134

particles) and represents material heterogeneities initially present in the host rock of natural 135

stylolites. 136

137

2.1. Theory138

This section provides only a cursory review on the governing equations of the dissolution 139

process used in the model, for a detailed description and implementation the reader is referred 140

to Koehn et al., (2007) and Bons et al., (2008). 141

The pressure solution process is discretized in steps of dissolution of entire particles, 142

following a linear rate law (Koehn et al., 2007 and references cited therein) according to143

 














 


RT

V
kVD n

exp1 , (1)144

where D is the dissolution velocity of the interface (m s-1), k a dissolution kinetics rate 145

constant (mol m-2 s-1), V the molecular volume of the solid (m3 mol-1), R the universal gas 146

constant (8.314 J mol-1 °K-1), T the temperature (°K),   (Pa) the changes in Helmholtz free 147

energy density (which accounts for the variations in elastic and surface energies) of the solid 148

during dissolution of a solid element, and n  (Pa) the differences between the average 149

normal stress along the interface and the local normal stress at a specific location which is due 150

to the repulsion of the solids(Koehn et al., 2007).151
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Surface energies (ES) of particles are calculated from the local curvature of the interface 152

around each particle, which can be expressed as153

E s 



, (2)154

where  is the surface free energy and   is the local radius of curvature of the interface. We 155

consider a plane strain situation, i.e. an invariance along the third spatial dimension, so one 156

radius along the 2D plane investigated entirely characterizes the curvature of the interface –157

the radius of curvature along the direction of invariance is infinite, and no surface energy is 158

associated to this direction. The surface energies of individual particles are averaged over 159

their neighbors to avoid artifacts from the discreteness of the model (for details see Koehn et 160

al., 2007).161

In the lattice spring model every particle (i) is connected to its neighbors (j) via a triangular 162

linear elastic spring network. The elastic energy (Eel) of a single element is given by 163

  ,
4

1

)(

2

 
j

ji
el lxxE  (3)164

where the sum is over all neighbors (j),   is a spring constant, l is the equilibrium distance 165

between elements i and j. 166

167

2.2. Basic numerical step168

The constitutive equations stated above are implemented as follows:169

 Top and bottom walls are moved inwards simultaneously at a given time/deformation 170

step.171

 For every deformation step the rate law (Eq. 1) is used to calculate if individual 172

particles at the interface can dissolve in the given time as soon as the two solids meet.173

 When elements dissolve they are removed completely and the system can relax. 174

Relaxation is accomplished by an over-relaxation algorithm that finds the new 175
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equilibrium configuration for the lattice. Dissolution of particles can take place as long 176

as the given time for the individual deformation step is not consumed.177

 If the deformation time is used up or no particles can dissolve within the given time 178

the system is stressed again by a deformation step. 179

180

2.3. Parameters, boundary conditions, limitations181

The material parameters we use resemble those of a limestone, these values are analog to 182

those found in reference works (e.g. Clark, 1966) and in line with values used for the 183

analytical solutions of Renard et al. (2004) and Schmittbuhl et al. (2004): a molar volume of 184

0.00004 m3/mol, a Young’s Modulus of 80 GPa, a Poisson’s ratio of 0.33 (this number is 185

given by the triangular lattice configuration), a surface free energy of 0.27 J/m2, a temperature 186

of 300 K and a dissolution rate constant of 0.0001 mol/(m2-s). In addition, the displacement 187

rate of the upper and lower boundaries are fixed at a constant value corresponding to 188

velocities between 10-10 and 10-12 m s-1.189

The boundary condition can be seen as equivalent to a constant load boundary condition since 190

the dissolution process is fast enough to relax the stresses that build up during a single 191

deformation step. The sidewalls remain fixed during the model runs and there is no wrapping 192

of particles in the x-direction of the model. 193

We use three basic model setups for which we systematically vary the heterogeneities in the 194

structure. All boxes used have the same number of particles (400 particles) in the x-direction 195

but three different particles-sizes were used 0.01 mm, 0.1 mm and 1mm, which corresponds 196

to absolute box-sizes of 4, 40 and 400 mm.197

To introduce the quenched noise in the simulations a pseudorandom algorithm is used to 198

create a spatial Gaussian distribution of particles that dissolve slower (pinning particles). We 199

varied three parameters of the quenched noise in this study: (i) number of pinning particles in 200

a range from 1-20%, (ii) dissolution rate constant of pinning particles (from 0.1-0.99 201
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normalized to the dissolution rate constant of the matrix, which is 1), which determines the 202

pinning factor and (iii) the absolute size of the heterogeneities which varies with the particle 203

size in the range of 0.01-1 mm.204

205

3. Data analysis & results206

The individual model runs are grouped with respect to the particle-size of the model and are 207

termed surface, intermediate and elastic class according to the dominance of the energy 208

regime during the roughening process. The surface class has a particle size of 0.01 mm (box 209

size of 4 mm), the intermediate class a particle size of 0.1 mm (box size of 4 cm) and the 210

elastic class a particle size of 1mm (box size of 40 cm). In nature the particles may resemble 211

actual grains so that the grain size of the rock varies between the different classes. 212

Unfortunately we are restricted by the resolution of the numerical model to 400 particles in 213

the x-direction, with this resolution a single simulation may run from 10 to 15 days on 4 cores 214

of a recent workstation. Figure 3 shows the roughening of stylolites of these three classes, 215

each with identical quenched noise (5 % pinning particles with half the dissolution rate of the 216

matrix) to demonstrate the influence of the absolute box/particle size. The differences in the 217

roughness and the roughness growth can easily be seen when individual steps of different 218

classes are compared but also by following the growth of individual stylolite peaks along the 219

time axis. In the elastic class individual peaks are growing very persistently whereas in the 220

surface class the growth is often disrupted, due to dissolution of pinning particles as a result 221

of high surface energies along pronounced peaks.222

In the following sections we concentrate on the influence of the noise (amount and pinning 223

factor of the noise particles) on 1) the roughness exponents, 2) the growth exponents and 3) 224

the crossover length.225

226

3.1. Roughness exponents227
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To quantitatively characterize the roughness of an individual 1D profile of a stylolite we used 228

concepts from statistical physics (Barabasi & Stanley, 1995), which are briefly introduced in 229

the first part of this section. The methods used here are the same as those of previous studies 230

of natural stylolites (Renard et al., 2004; Schmittbuhl et al., 2004; Gratier et al., 2005; Ebner 231

et al., submitted), which facilitates comparison.232

The prerequisite for the application of these scaling methods is that the 1D signal of the 233

numerical stylolite obeys a self-affine scaling invariance, which is given by (e.g. Barabasi & 234

Stanley, 1995)235

   xfbbxf ~ , (4)236

237

where f(x) is a single valued function and the power-law exponent α is called roughness or 238

Hurst exponent and provides a quantitative measurement of the roughness of the signal. A 239

self-affine function must be rescaled differently in x and y directions to obtain a scaling 240

invariance i.e. horizontal rescaling of the form x→bx, b being a dilation factor, has to be 241

rescaled in the vertical direction by y→b-ay to obtain a scaling invariance. Different statistical 242

methods can be used to evaluate the self-affine character of a signal and to determine the 243

associated roughness exponent. We apply two independent methods in this contribution, the 244

Fourier method and the Average Wavelet Coefficient method.245

The Fourier method (e.g. Barabasi & Stanley, 1995; Schmittbuhl et al., 1995) is based on a 246

Fourier transform of the original 1D signal (Fig. 4a). For every 1D signal (every deformation 247

step) the Fourier power spectrum P(k) i.e., the square of the modulus of the Fourier transform, 248

was calculated as a function of the wave-number k. Plotting P(k) as a function of k in log-log 249

space reveals a linear trend for a self-affine function (Fig. 4b),and the slope is a function of 250

the Hurst exponent through (Renard et al., 2004; Schmittbuhl et al., 2004):251

21~)( kkP . (5)252
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The Average wavelet coefficient method (AWC) was used as a second independent method to 253

confirm the scaling results (Simonsen et al., 1998; Hansen et al., 2000). This method is again 254

based on a decomposition of the 1D signal into wavelets, whose amplitude depends on scale 255

and the position. The wavelet transform is defined after Simonsen et al. (1998) by 256

dxxf
a

bx

a
W ba )(

1
, 











 

  , (6)257

where ψ is the wavelet basis (Daubechies wavelet of order 12) which is parameterized by a 258

scale parameter a and a translation parameter b, and f is the single-valued original function. 259

Finally the wavelet coefficients are averaged over the translation parameter b for every a to 260

obtain the average wavelet coefficient W(a). If the input signal is self-affine, the wavelet 261

transform verifies that the average wavelet coefficient W(a) scales as (Simonsen et al., 1998)262

2/1~)( aaW . (7)263

Plotting the average wavelet coefficients as a function of the scale parameter a in log-log 264

space (Fig. 4c), the slope of the linear regression through the data is again a function of the 265

Hurst exponent.266

Using these two statistical methods, we first study the dynamics of the roughness exponents 267

through time during stylolite growth, and then concentrate on their stability with respect to 268

variations of the noise. The roughness exponents increase relatively quickly in the course of a 269

simulation run (Fig. 4d) and become stable after model step 3000 with only minor 270

fluctuations. The Fourier- as well as the AWC-method show consistent evolutions and similar 271

values of the roughness exponents. Averages of the plateau values reached (after step 3000) 272

for individual model runs are used as a characteristic value for the roughness exponent for a 273

specific setup. Error bars underline the standard deviation around this average (Fig. 5). 274

The surface class is characterized by consistently high values for the Hurst exponent i.e. α~ 1-275

1.1, independent of the pinning factor (i.e. the dissolution rate constant k in Eq 1; cp Fig. 5a) 276

or the amount of pinning particles (Fig. 5b).277
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The exponents only decrease when the pinning factor of particles is very low (dissolution rate 278

constant > 0.9) and the rock becomes very homogeneous. The most stable roughness 279

exponents for the surface class are reached in the range 0.1 to 0.8 for the pinning factor and 1 280

to 20 % of pinning particles.281

The elastic class reveals lower Hurst exponents (α~ 0.6 to 0.9) than the surface class. If the 282

pinning factor of particles is very strong (below the value 0.4 for the relative dissolution rate 283

constant in Fig. 5a) stress concentrations are locally too high once two pinning particles meet 284

and artifacts develop (usually anticracks that grow laterally emerge from these concentrations, 285

hence modifying the surface topography) in the numerical model within the elastic class. 286

Therefore we did not include values below 0.4 from elastic simulations in Fig. 5a. Generally 287

the roughness exponents in the elastic class show stronger fluctuations than those of the 288

surface class. They are relatively stable within a pinning factor range of 0.5 to 0.8 (Fig. 5a) 289

and 1 to 20 % of pinning particles. 290

The surface and elastic classes correspond well to the two scaling regimes found in natural 291

stylolites (Renard et al., 2004; Schmittbuhl et al., 2004) that are separated by a crossover-292

length at the millimeter scale. The roughness exponents of the surface class (α~1.1) are in 293

very good agreement with analytical predictions and experimental observations (e.g. Gratier 294

et al., 2005). The elastic class displays values for the Hurst exponent (α~ 0.6-0.9) that are 295

higher than exponents from natural examples (Renard et al., 2004; Schmittbuhl et al., 2004; 296

Ebner et al., submitted) or analytical predictions, which are generally around 0.5. These 297

analytical predictions are usually based on linear approximations, which are strictly speaking 298

valid as long as the surface morphology is not too developed. The present model does not 299

present any such limitations, and the fully developed situation can thus present a different 300

Hurst exponent from the initial one. The discrepancy with natural data may arise from the 301

large particle (or grain) size that we use in the setup for the elastic class. In nature the grain 302

size is much smaller and corresponds to the values that we use in the surface class.303
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304

3.2. Interface growth305

In addition to the dynamic development of the roughness exponents the simulations allow us 306

to study how fast the amplitude of the stylolite roughness grows through (model-) time or as a 307

function of the finite strain. First we concentrate on different growth regimes of stylolites, the 308

associated growth exponents and prefactors of scaling functions and then study the variation 309

of these factors as a function of host-rock heterogeneities. In order to quantify the amplitude 310

of the roughness we use the interface width (w) that is defined as the root-mean-square 311

fluctuation of the height of the interface for a given time-step (Barabasi & Stanley, 1995)312

      



L

i

thtih
L

tLw
1

2
,

1
, , (8)313

where w is the interface width as a function of system size L and time t, h is the height of 314

point i on the interface at time t and h the average height of the interface at time t given by315

   



L

i

tih
L

th
1

,
1

. (9)316

In our simulations, the system size L is defined as the number of elements in the x-direction, 317

which is constant for all simulations, i. e. 400 particles. Roughening processes of interfaces in 318

a wide range of fields have been demonstrated to follow a power law in time (e.g. Barabasi & 319

Stanley, 1995) defined by a growth-exponent β (given by, w(L,t)~tβ ). This initial phase of 320

interface growth is usually followed by a second regime during which the interface width 321

reaches a saturation value, wsat, which is directly related to the system-size. 322

Both, the growth and saturation regimes can be seen in Fig. 6a for an experiment of the 323

surface class with a characteristic growth exponent of β~0.5. The arrow in Figure 6a marks 324

the transition from the power law growth regime to the regime where the interface width 325

saturates and stays constant. The intermediate class simulations show a similar growth 326

exponent (around 0.5) but do not saturate in the given deformation time. The elastic class327
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(Fig. 6b) shows two successive growth regimes, the first being defined by a growth exponent 328

of β~0.5 up to a crossover interface width followed by a second regime with β~0.8 without 329

reaching the saturation regime. We suggest the following schematic growth regimes (Fig 6c) 330

for stylolites: (i) growth in the surface energy dominated regime with an exponential growth 331

defined by β~0.5 followed by (ii) growth in the elastic energy dominated regime with β~0.8332

and finally reaching (iii) a saturation regime where the interface width stays constant.333

This strict non-linearity of the interface growth in our simulations suggests that estimated 334

amounts of compaction (here used as synonymous with volume/area loss due to pressure 335

solution) from stylolite amplitude heights (e.g. Tada & Siever, 1989 and references cited 336

therein) only capture a small part of the actual compaction. To cope with this problem, Koehn 337

et al. (2007) demonstrated that the actual displacement can be expressed for the elastic or 338

surface energy dominated growth regimes as a function of the interface width and the growth 339

exponent (as long as the critical saturation time is not reached), given by340

llwA /1)/(~ (10)341

where, A is the compaction displacement, w the interface width, β the growth exponent (for a 342

certain class) and l the particle size. The slope of this function gives a prefactor for the scaling 343

relation which should remain constant until the saturation time is reached. We call the slope 344

of this relation here and in the subsequent sections compaction prefactor because it relates the 345

interface width to the total compaction (Fig. 7). As soon as the saturation time is reached the 346

relation does not hold any more and the function deviates from the linear trend (Fig. 7a). This 347

effect can be observed in Figure 7a where the arrow marks the onset of the saturation of the 348

interface width, compaction goes on but the interface width (x-axis) remains constant. 349

However, if the saturation is not attained (Fig. 7b) the actual compaction can be calculated 350

accurately from the interface width and the growth exponent using Eq. 9.351

Looking at the growth exponent as a function of the quenched noise it can be clearly 352

demonstrated that neither a variation in the pinning factor of particles (Fig. 8a) nor in the 353
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amount of pinning particles (Fig. 8b) has a significant influence. The values for the growth 354

exponent cluster around β~0.5 for the surface and intermediate classes and around β~0.8 for 355

the elastic class. The compaction prefactors display a higher variability than the growth 356

exponents but no systematic trend can be seen that relates this variation to the pinning factor357

or amount of pinning particles in the host-rock. Figures 8c & 8d show that there is no 358

significant difference between the three classes of particle sizes used with values for the 359

compaction prefactor in a range between ~12 and ~25. As a third quantity we compare the 360

maximum interface width normalized by the particle size (wmax) that develops during 361

simulations with different heterogeneities (Fig. 8e & f). The largest interface widths are 362

achieved in the elastic class with wmax~20 in contrast to wmax~10 reached in the intermediate363

and surface class. Hence the interface growth displays twice the displacement in the elastic 364

class in the given simulation time due to the larger growth exponents than those of the 365

intermediate or surface class, respectively. For the surface, intermediate and elastic classes366

the variation of the pinning factor of particles (Fig. 8e) have no considerable influence on the 367

maximum interface width. However the amount of pinning particles has a significant 368

influence on the surface and intermediate class (Fig. 8f). Both classes show an evident 369

decrease in the maximum interface width with increasing amount of pinning particles. This 370

trend cannot be observed in the elastic class (Fig. 8f).371

We also tested the influence of the initial shape of the predefined interface separating the two 372

blocks that are pressed together during an experimental run (compare Fig. 2a), which is flat in 373

all the simulation data shown in the preceding sections. To investigate the dynamic roughness 374

evolution of an already rough interface we arbitrarily choose a time/deformation step (tn) of a 375

simulation run (Fig 9a) and subtracted the topography (h) of this step from the subsequent 376

time steps similar to h(t)= h(tn+m∙∆t)-h(tn). This procedure allows to investigate the dynamic 377

evolution of a rough interface but statistically evaluating the difference of the evolving 378

roughness from time tn onwards (Fig 9b). Departing from an already rough interface does not 379
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change the scaling parameters (growth and roughness exponent) as depicted in Fig 9. Hence 380

the model setup we choose in this work (i.e. a flat initial interface) can also account for 381

complex initial topographies.382

383

3.3. Crossover length scales384

The crossover-length of the stylolite roughness that separates the surface energy regime from 385

the elastic energy dominated regime is a function of the stress during stylolite growth and can 386

be used as paleo-stress gauge. It is of fundamental importance to know if this crossover is 387

constant when the heterogeneities in the host-rock vary. In the following section we want to 388

explore how sensitive the crossover-length scale is on variations in the amount and strength of 389

pinning particles. The surface and elastic classes of our simulations reveal roughness 390

exponents that are characteristic for the two regimes where surface or elastic energy are 391

dominant. The crossover-length between the two regimes can be found in the intermediate 392

class of our simulations that reveals two different roughness exponents and hence the 393

transition between the two scaling regimes (Fig. 10). The Fourier power spectrum of the 1D 394

signal of a stylolite in the intermediate class (Fig. 10b) shows a change from a shallow to a 395

steep slope, i.e. small and large roughness exponents on large and small scales, respectively. 396

To avoid bias due to improper fitting of the crossover-length we used a nonlinear least square 397

curve fitting algorithm in logarithmic space to model our scaling function (Ebner et al., 398

submitted) 399

)()())(1)(()( xwmxaxwmxaxf SSLL  (11a)400

and401

2
)1)(tanh(

)(



Lx

xw , (11b)402

where aL,S are the exponents of the scaling function for large and small scales, mL,S the 403

corresponding intercepts with the ordinate and w(x) the weighting function. During this 404
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procedure the roughness exponents of our nonlinear model function were fixed according to 405

the roughness exponents (αS~1.1; αL~0.5) reported from natural stylolites (Renard et al., 2004; 406

Schmittbuhl et al., 2004, Ebner et al., submitted). 407

The crossover-lengths obtained for all experiments of the intermediate class are in a range of 408

L~1.33±0.09 mm, the crossover length usually develops simultaneously with the achievement 409

of the plateau values (compare Fig. 4d). Neither of the quenched noise parameters varied in 410

the experiments influences the crossover-length (Fig. 11). 411

The time evolution of the roughness presented in the previous section showed that the surface 412

energy dominated regime is characterized by a growth exponent of 0.5 whereas the elastic 413

energy dominated regime is characterized by a growth exponent of 0.8. Looking at the 414

roughness growth in the elastic class one could still see the slow surface energy dominated 415

growth in the beginning of the roughness evolution (Fig. 6). Therefore the growth exponents 416

also show a transition (that we term the crossover interface width) between growth in the 417

surface energy dominated regime and growth in the elastic energy dominated regime, similar 418

to the two roughness exponents that are characteristic for these two regimes. The crossover 419

interface width is very consistent for all experiments with w~ 1.23±0.04 mm, independent of 420

the quenched noise introduced in the system. We did not observe a crossover in the interface 421

growth of the intermediate and surface class because the interface width in these classes is 422

simply not large enough to reach the elastic growth regime. Due to the very good correlation 423

between the magnitudes of the crossover-length and the crossover interface width (Fig. 11) 424

we argue that both crossovers arise from the same process, namely the transition from a 425

surface energy to an elastic energy dominated regime.426

427

4. Discussion 428

In the following section we first discuss the influence of the quenched noise on the scaling 429

parameters in our numerical simulations, deal with the relevance of the noise and compare the430
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results to natural stylolites. Secondly, we will focus on the crossover phenomena and their 431

significance for the estimate of volume loss along a finite natural stylolite. 432

The influence of the exact nature of the heterogeneities (i.e. pinning factor, amount and size 433

of pinning particles) on the scaling exponents can be directly investigated by a close 434

examination of Figures 5, 8 and 11. Doing so, it is immediately evident that the pinning factor435

has the least influence on the roughness and growth exponents as well as on the crossover 436

scaling (L and wcross), with resulting values that are very consistent over wide ranges of the 437

parameter space. The amount of pinning particles only shows an influence on the maximum 438

interface width wmax, which decreases with increasing amount of heterogeneities (Fig. 8f). 439

This fact is in good agreement with observations made on natural stylolites that stylolite 440

amplitudes decrease with the amount of heterogeneities i.e. clay particles (e.g. Tada & Siever,441

1989, and references cited therein). The scaling exponents themselves are independent of the 442

amount of pinning particles. The biggest influence exists between the different experiment 443

classes i.e. particle sizes, which reveal different roughness and growth exponents that are on444

the other hand very consistent within an individual class. But it has been demonstrated 445

(Renard et al., 2004; Schmittbuhl et al., 2004, Koehn et al., 2007), that these differences arise446

from a transition from a surface energy dominated regime (where surface energies smoothen 447

the interface) to an elastic energy dominated regime (where elastic energies smoothen the 448

interface). The differences in the scaling exponents between the experimental classes are 449

therefore not caused by the heterogeneities themselves but by the processes that govern the 450

roughening on respective scales. We are thus convinced that the influence of the exact nature 451

of the heterogeneities plays a minor role and that roughening is dominated by an inherent 452

process that depends on the length-scale. 453

The quenched noise we introduced in the different simulations, i.e. changes in the dissolution 454

rate constant that influence the dissolution velocity of a particle (cp. Eq. 1), is a simple 455

chemical noise as pointed out by Koehn et al. (2007). We are aware that along natural 456
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stylolitic interfaces the elastic parameters, surface energies, crystallographic orientations are 457

very likely to change, in addition to chemical variations. However the effects of a change of 458

these other parameters in our model also result in a change of the dissolution velocity. We 459

therefore argue that for the developing structure it should make no difference what the exact 460

nature of the noise is, since any particle with a slower dissolution velocity will pin the surface 461

and therefore cause a roughening of the interface.462

It was demonstrated that individual natural stylolites from different outcrop localities and 463

lithologies, i.e. different host-rock compositions, reveal the same scaling behavior (e.g. 464

Renard et al., 2004; Schmittbuhl et al., 2004, Ebner et al., submitted). Consequently the 465

investigation of natural stylolites corroborates the fact that a common underlying mechanism 466

for stylolite roughening can be assumed rather than a roughening that is dominated by the 467

composition of the host rock.468

Nevertheless we do not claim that knowledge of the exact nature or distribution of the 469

material heterogeneities is unimportant. Brouste et al., (2007) have shown that a changing 470

amount of heterogeneities might cause a stylolite to become a non-stationary signal with 471

alternating wavy and flat portions along the interface. We have not investigated the effects of 472

irregularly distributed noise since the heterogeneities are distributed equally in our model 473

setup. 474

The roughness data of simulated stylolites presented in this study reveal two self-affine 475

scaling regimes that are separated by a distinct crossover-length of L~1.3 mm, which is well 476

in line with investigations of natural stylolites (Renard et al., 2004; Schmittbuhl et al., 2004, 477

Ebner et al., submitted). Additionally we have detected a crossover in the growth of the 478

interface during which the initial growth exponent of β~0.5 up to a crossover interface width 479

of w~1.23 mm is replaced by a growth regime with an exponent of β~0.8. Due to the very 480

good correlation between the magnitudes of the crossover-length and the crossover interface 481

width we argue that both crossovers arise from the same process, namely the transitions from 482
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a surface energy to an elastic energy dominated regime. The knowledge of the crossover 483

length L which can be derived from the finite pattern of a natural stylolite with the above 484

methods is thus equivalent to knowledge of the crossover interface width. This fact has 485

important consequences regarding the assessment of the amount of total compaction of 486

individual stylolites. Substituting the growth exponents and the compaction prefactors found 487

for the two growth regimes in combination with the crossover-length, which separates the two 488

growth regimes (cp. Fig. 10c), into Eq. 10 should allow an exact reconstruction of the amount 489

of total compaction from finite pattern of a natural stylolites.490

491

5. Conclusions492

In the course of this contribution we evaluated the scaling properties of simulated stylolites, 493

which facilitate a quantitative comparison with natural examples, exactly reproducing their 494

scaling. We observed only minor correlation between the exact nature of the noise introduced 495

in the model or the topography of the predefined interface and the scaling parameters 496

investigated, concluding that inherent processes i.e. the transition from a surface to an elastic 497

energy dominated regime control the roughening process.498

Nevertheless the amount of heterogeneities has a negative effect on the maximum interface 499

width (wmax) achieved during deformation revealing increasing interface width with 500

decreasing amount of quenched noise. The absolute particle/noise size influences the501

roughness and growth exponents, which in turn is caused by the transition from a surface to 502

an elastic energy dominated regime. Therefore it is important to know how large the noise or 503

pinning particles are in natural systems. The transition from surface energy as the dominant 504

stabilizing force of the interface to the dominance of elastic energies is the causation for the 505

most significant scaling transitions: (i) the roughness is characterized by two distinct spatial 506

scaling regimes on small and large length scales, respectively; (ii) the interface growth reveals 507

two growth regimes with a growth exponent of β~0.5 up to a crossover interface width that 508
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coincides with the crossover-length L followed by a growth regime with an exponent of β~0.8509

that eventually saturates due to finite size effects; (iii) the crossover interface width w510

coincides with the crossover-length L and thus allows to accurately reconstruct the 511

compaction history of finite stylolite patterns.512

Our study corroborates the evidence that the simple mechanisms summarized above support513

analytical predictions and natural observations given in previous studies, and are a convincing 514

causation for the formation of stylolite roughness. However a detailed study on the exact 515

nature and distribution of quenched noise in the host rocks of natural stylolites would shed 516

light on the origin and initiation of these complex structures.517
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Figure captions597

598

Figure 1: Plane section of a bedding parallel stylolite in a jurassic limestone from Cirque de 599

Navacelles (southern France). The rough interface is accentuated by a thin clay layer that is 600

considered to be the residuum of the dissolved rock mass.601

602

Figure 2: Simplified sketch of the setup of the numerical model (modified after Koehn et al., 603

2007).The top and bottom walls of the box are moved inwards simultaneously to stress the 604

system and initiate dissolution along the interface. a) Initial configuration of the setup 605

showing a flat interface (dashed line). b) Configuration after a certain amount of compaction. 606

The interface (dashed line) has developed a distinct roughness, note that the heterogeneities 607

(darker spheres) accumulate along the interface.608

609

Figure 3: Growth of three stylolites with similar heterogeneities but different lengths and 610

discretization resolution. Left panels show 3D plots of the stylolite growth from a flat 611

interface until the end of the experiment. Right panels show 3 individual deformation steps 612

(step 400, 2000 & 4000) corresponding to the solid lines in the 3D plot a) surface class (box 613

size=0.4 cm) b) intermediate class (box size =4 cm) c) elastic class (box size =40 cm); Notice 614

the disrupted growth of the surface class whereas the elastic class exhibits very continuous 615

growth and pronounced peaks and teeth.616

617

Figure 4: Roughness characterization of single deformation steps by means of the Hurst 618

exponent. a) 1D profile (deformation step 3000) of the surface class with 5% pinning particles 619

and a dissolution rate constant of k=0.4; b) Fourier power spectrum P(k) of the signal from 620
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Fig. 4a plotted as a function of the wavenumber k. Linear regression (solid line) is calculated 621

from the binned spectra (crosses), the slope of the regression is a function of the Hurst 622

exponent, see section 3.1.1. for detailed description. c) Wavelet spectra W(a) plotted (crosses) 623

as a function of the scaling parameter a (see average wavelet coefficient-method in section 624

3.1.1.). The slope of the linear regression (solid line) is again a function of the Hurst 625

exponent. d) Evolution of the Hurst exponent in the course of an entire experiment for the 626

Fourier and AWC methods. Stars indicate the Hurst exponent of the 1D signal shown in Fig. 627

4a for the two methods used. Notice the leveling off at a specific Hurst exponent (plateau 628

value) which is characteristic for all simulations.629

630

631

Figure 5: Composite plots showing the roughness data (Hurst exponents) for the surface and 632

elastic classes. a) Hurst exponent plotted versus dissolution rate constants k with a fixed 633

amount of pinning particles of 5% (where k=1 is the dissolution rate of the matrix). b) Hurst 634

exponent plotted versus amount of pinning particles with a dissolution rate constant of k=0.5 635

for all experiments. The error bars correspond to the standard deviation given by the 636

fluctuation around the plateau values, compare Fig 4d.637

638

Figure 6: Interface growth depicted by means of the interface width (Eq. 8). a) Log-log plot 639

of the interface width as a function of time in the surface class (5% pinning particles & 640

dissolution rate constant of 0.4). Growth exponent β=0.5 is given by the slope of the linear 641

regression (solid line). Notice the saturation point (indicated by arrow) i.e. interface width 642

remains constant during ongoing deformation. b) Log-log plot of the interface width as a 643

function of time in the elastic class (5% pinning particles & dissolution rate constant of 0.4). 644

Notice the two successive growth regimes characterized by an initial growth exponent of 645

β=0.5 up to a crossover width (indicated by arrow) followed by an exponent of β=0.8; no 646
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saturation can be observed within the given simulation time. c) Proposed composite graph of 647

the interface growth of simulated stylolites. Two successive growth regimes separated by a 648

narrow crossover width that are dominated either by surface or elastic energies are followed 649

by a saturation of the interface growth due correlation introduced by finite size effects.650

651

Figure 7: Total compaction displacement expressed as a linear function (solid line) of the 652

interface width and the compaction prefactor (compare Eq. 10). a) Surface class experiment 653

(5% pinning particles & dissolution rate constant of k=0.4) demonstrates that the relationship 654

is only valid as long as the interface is not saturated i.e. strong deviation from linear trend 655

(compare Fig 6a). b) Elastic class experiment (5% pinning particles & dissolution rate 656

constant of 0.4) reveals an accurate reproduction of the linear relationship (solid line) stated in 657

Eq. 10. No saturation was observed in the given simulation time.658

659

Figure 8: Cumulative data for the surface, intermediate and elastic classes for: a) Growth 660

exponent versus dissolution rate constant (pinning particles fixed at 5%); b) Growth exponent 661

versus amount of pinning particles (dissolution rate constant fixed at k= 0.5); c) Compaction 662

prefactor versus dissolution rate constant (pinning particles fixed at 5%); d) Compaction 663

prefactor versus amount of pinning particles (dissolution rate constant fixed at k= 0.5).664

Maximum interface width normalized by the particle size attained during experimental runs 665

for the surface, intermediate and elastic class e) with changing dissolution rate constant (with 666

5% pinning particles); f) with changing amount of pinning particles (dissolution rate constant 667

is fixed at 0.5).668

669

Figure 9: The influence of the topography of the  initial predefined interface on the dynamic 670

roughness evolution. a) Rough initial interface used as starting point to evaluate the interface 671

width evolution on top of this roughness for a surface class simulation with 5% pinning 672
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particles and a pinning factor of 0.5 (for details see text). b) Comparison of the interface 673

width evolution of an initially flat and rough (see Fig 9a) interface. Both interfaces show a 674

similar evolution with growth exponents of 0.54 and 0.51 for the flat and rough initial 675

interface respectively. Notice that both growth and the roughness exponents (not shown) are 676

independent of the initial topography of the predefined interface.677

678

Figure 10: Crossover phenomena in the roughness scaling and interface growth. a) 1D signal 679

of an experiment from the intermediate class (5% pinning particles; dissolution rate constant 680

k= 0.4); b) Fourier power spectrum (inset) of the signal and binned spectra (crosses). A681

nonlinear model function (for explanation see text) used to minimize the original data (solid 682

line) is used to accurately locate the position of the crossover length (triangle) L= 1.27 mm; c)683

Log-log plot of the interface width versus time of the elastic class (5% pinning particles & 684

dissolution rate constant k=0.4). Notice the two successive growth regimes characterized by 685

an initial growth exponent of β=0.5 up to a crossover width w=1.24 mm followed by an686

exponent of β=0.8. Notice that both crossover scales correspond to the transition from a 687

surface to an elastic energy dominated regime.688

689

Figure 11: Crossover length L and crossover interface width w plotted as a function of the 690

quenched noise. a) Crossover length (circles) calculated from the Fourier power spectrum (cp. 691

Fig. 10b) and crossover interface width (diamonds) for simulations with different dissolution 692

rate constants. b) Crossover length (circles) and crossover interface width (diamonds) for 693

simulations with different amounts of pinning particles.694

695
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