

Synthesis of a Se0/Calcite Composite Using Hydrothermal Carbonation of Ca(OH)2 Coupled to a Complex Selenocystine Fragmentation

G. Montes-Hernandez, L. Charlet, F. Renard, A. C. Scheinost, Maïté Bueno,

A. Fernandez Martinez

▶ To cite this version:

G. Montes-Hernandez, L. Charlet, F. Renard, A. C. Scheinost, Maïté Bueno, et al.. Synthesis of a Se0/Calcite Composite Using Hydrothermal Carbonation of Ca(OH)2 Coupled to a Complex Selenocystine Fragmentation. Crystal Growth & Design, 2008, 8 (7), pp.2497 à 2504. 10.1021/cg800141p . insu-00351971

HAL Id: insu-00351971 https://insu.hal.science/insu-00351971

Submitted on 12 Jan 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Synthesis of a Se ⁰ /calcite composite using hydrothermal
2	carbonation of Ca(OH) ₂ coupled to a complex
3	selenocystine fragmentation
4	
5	G. Montes-Hernandez ^{*a} , L. Charlet ^a , F. Renard ^c , A. C. Scheinost ^b , M. Bueno ^d , A.
6	Fernández-Martínez ^{a, e}
7	
8	^a LGIT, University of Grenoble and CNRS, BP 53 X, 38420 Grenoble Cedex 9
9	^b Institute of Radiochemistry, FZD, Dresden, Germany, and The Rossendorf Beamline at
10	ESRF, 6 rue Jules Horowitz, BP 220, 38043 Grenoble Cedex, France
11	^c LGCA, University of Grenoble and CNRS, BP 53 X, 38420 Grenoble Cedex 9, France &
12	Physics of Geological Processes, University of Oslo, Norway
13	^d ECABIE, UMR CNRS 5254, Université de Pau et des Pays de l'Adour, Hélioparc Pau-
14	Pyrénées, 2 avenue du Président Angot, 64000 Pau, France
15 16 17	^e Institut Laue-Langevin, B.P. 156, 38042 Grenoble Cedex 9
18 19	* Corresponding author: German Montes-Hernandez
20	E-mail address: german.montes-hernandez@obs.ujf-grenoble.fr
21	german_montes@hotmail.com
22	
23	
24	
25	
26	

1 Abstract

In this study, the hydrothermal carbonation of calcium hydroxide under high CO₂-Ar pressure (90 bar) and high temperature (90 °C) coupled with a complex selenocystine fragmentation was carried out by using a batch system in order to synthesize an elemental selenium (Se⁰)/calcite composite. Under O₂-poor conditions, the composite was mainly characterized by red spherical selenium nanoparticles "non crystalline elemental selenium" (<500nm) deposited on the calcite matrix. In contrast, under O₂-rich conditions, the composite was characterized by grey rods selenium microparticles "crystalline elemental selenium" (<25µm) dispersed in the calcite matrix. The carbonate matrix was constituted by nano- and micro-rhombohedral crystals ($<2\mu$ m) and micrometric agglomerates and/or aggregates ($<5\mu$ m). The results presented here demonstrate that Se⁰/calcite composite, with spherical or rod morphologies for elemental selenium can be produced, this composite could possibly has a high potential for medical (ex. dietary supplement) or industrial (ex. pigments) applications. In addition, this study may have implications in the field of biomineralization. Keywords: Elemental selenium, Calcite, Composite, Growth, Selenocystine, Nanoparticles, Hydrothermal method

1 1. Introduction

2

Selenium is well known for its photochemical and semiconductor properties and has been 3 4 successfully used in solar cells, rectifiers, photographic exposure meters and xerography [1-3]. Selenium is also a key trace element required in small quantities in humans and animals 5 for the function of a number of selenium-dependent enzymes, such as glutathione peroxidase 6 7 (GPX) and thioredoxin reductase; however this element can also be toxic in larger doses. Both the beneficial and toxic effects of selenium are based on concentration ingested and on 8 its chemical forms [4-10]. Inorganic and organic forms have been identified in the Nature. In 9 10 addition, the selenium can easily form compounds with metals and occurs in about 50 minerals. It is present in four different oxidation states in aqueous and subsurface systems, 11 namely -2, 0, +4 and +6 [11-13]. Obviously, the fate and transport of Se in contaminated sites 12 13 are very much influenced by its chemical form and speciation.

Recently, elemental selenium nanoparticles have been fabricated through various approaches, 14 15 such us laser ablation, solution-phase approach, vapour-phase growth, electrochemical synthesis, photothermally assisted solution phase, ultrasonic, hydrothermal or solvothermal 16 method and micelle-mediated synthesis [1]. Searching and designing novel methods to 17 18 synthesize elemental selenium with controlled morphology is important from the viewpoint of fundamental issues and application. For example, recently, the Se⁰ nanoparticles are attracting 19 more and more attention due to their excellent high biological activity and lower toxicity in 20 animals and man. 21

Calcium carbonate is an inorganic compound that has been widely studied due to its abundance in nature as a mineral and biomineral. Calcium carbonate particles are found in three polymorph structures, which are generally classified as rhombic calcite, needle-like aragonite and spherical vaterite. Calcite belonging to Trigonal-Hexagonal-Scalenohedral

crystallographic class is the most stable phase at room temperature under normal atmospheric 1 2 conditions, while aragonite and vaterite belong to Orthorombic-Dipyramidal class and Hexagonal-Dihexagonal Dipyramidal class, respectively. The later are metastable polymorphs 3 4 which readily transform into the stable calcite. The specific formation of one of the polymorphs of crystalline calcium carbonate particles depends mainly on the precipitation 5 conditions, such as pH, temperature and supersaturation. Supersaturation is usually 6 considered to be the main controlling factor [14]. Many experimental studies have been 7 reported about the synthetic precipitation of the various forms of calcium carbonate and the 8 conditions under which these may be produced, including the importance of initial 9 supersaturation, temperature, pressure, pH and hydrodynamics. The effect of impurities and 10 additives has also been well studied [15-29]. 11

The above short description shows that the formation of calcite $(CaCO_3)$ and elemental 12 selenium (Se⁰) are complex processes of considerable importance and numerous studies have 13 been reported in the literature. The co-existence and the simultaneous precipitation/growth of 14 15 these solid structures, however, have not been studied and/or reported to our knowledge. In this study, the hydrothermal carbonation of calcium hydroxide under high CO₂-Ar pressure 16 (90 bar) coupled with a complex selenocystine fragmentation under O₂-poor and O₂-rich 17 conditions was carried out by using a semi-batch system (sampling with time) in order to 18 synthesize an elemental selenium (Se^{0}) /calcite composite. 19

Several analytical techniques were performed in order to characterize selected solid samples
(SEM/EDS, TEM/EDS, XRD and XANES and EXAFS spectroscopy) and selected solution
samples (ICP/AES and HPLC/ICPMS).

23

24

1 **2. Materials and methods**

2

4

3 2.1. Synthesis of Se^{0} /calcite composite

(a) Under O₂-poor conditions or system with a purge step

One litre of high-purity water with electrical resistivity of 18.2 MΩ·cm, 3 g of commercial 5 portlandite Ca(OH)₂ (calcium hydroxide provided by Sigma-Aldrich) with 96% chemical 6 purity (3% CaCO₃ and 1% other impurities) and different quantities (0, 50, 100 or 200 mg) of 7 seleno-L-cystine CO₂HCH(NH₂)CH₂(Se)₂CH₂CH(NH₂)CO₂H (provided by Sigma-Aldrich) 8 9 with chemical purity (≥98.0%) were placed in a titanium reactor (Parr© autoclave with internal volume of two litres). The hydroxide and selenocystine particles were immediately 10 dispersed with mechanical agitation (400 rpm). Then, at room temperature the gas argon with 11 99.999% chemical purity (provided by Linde Gas S.A.) was injected into the reaction cell in 12 order to control the pressure at 90 bar during 30 minutes. After this time period, the 13 14 suspension was heated to 90°C with a furnace adapted to the reactor. Obviously, during heating stage the pressure increased into the system, but it was kept constant at about 90 bar 15 by using successive manual purge until the temperature was stabilized (about 90 minutes). 16 17 Then, about 20 ml of suspension were sampled in the reactor (t=0) and immediately a flash purge was carried out until atmospheric pressure was reached. Theoretically, the argon 18 adsorption in the suspension, the heating stage and the gas purge, allowed a partial removal of 19 dissolved oxygen from the suspension (O₂-poor conditions). Unfortunately, the oxygen 20 concentration was not monitored into the reaction cell. When the atmospheric pressure was 21 reached in the reactor, 14.5 g of CO₂ with 99.995% chemical purity (provided by Linde Gas 22 S.A.) were injected in the reactor and the total pressure in the system was immediately 23 adjusted to 90 bar by argon injection. Under these T and P conditions, the vapour phase 24 consists mainly of an Ar+CO₂ mixture with the CO₂ in a supercritical state (see Figure 1). 25

After this, a semi-batch system (sampling with time) was performed in order to measure the 1 2 pH (using MA235 pH/ion analyzer) and, calcium and selenium concentration (using ICP Perkin Elmer Optima 3300 DV) in filtered solutions. For this case, about 20 ml of suspension 3 were sampled in the reactor as a function of time (t=2, 6, 10, 30 and 60 minutes) during 4 composite formation. Note that the pH measurement was carried out at 25 °C after filtration, 5 cooling and degasification of the solutions. Obviously, this measurement is not representative 6 7 of in situ pH behaviour, but, it can give a reasonable quantification of the solution saturation index with respect to the solid phases at standard conditions (25 °C and 1 atmosphere). 8

At the end of the experiment, the autoclave was removed from the heating system and immersed in cold water. The reaction cell was depressurized during the water cooling period. After water cooling at 35°C (about 15 minutes) the autoclave was disassembled, and the solid product was carefully recovered and separated by centrifugation (30 minutes at 12,000 rpm), decanting the supernatant solutions. Finally, the solid product was dried directly in the centrifugation flasks for 72 h at 65°C, manually recovered and stocked in plastic flasks.

15

16

(b) Under O_2 -rich conditions or system without a purge step

For these experiments, the dispersions (water-calcium hydroxide-selenocystine) cited above were directly heated to 90°C at atmospheric pressure. When the temperature was stabilized, about 20 ml of suspension were sampled in the reactor (t=0). Then, 14.5 g of CO₂ were injected into the reactor and the total pressure in the system was immediately adjusted at 90 bar by argon injection. After the pressure setting, the sampling and composite recovery procedures were identical to the O₂-poor system described above.

Height different experiments were carried out, four under O₂-poor conditions and four under
 O₂-rich conditions. For each experiment, six suspension samples were withdrawn from the

- reactor. In addition, the experiments with 200 mg of selenocystine under O₂-poor and O₂-rich
 conditions were repeated three times in order to check their colour reproducibility.
- 3

4 *2.2. Composite characterization*

5

(a) Macroscopic observations

6 The coloration change with reaction time was registered by using a simple charge-coupled
7 device camera (RICOH, Caplio R1v, 5.0M PIXELS 4.8X WIDE ZOOM).

8 (b) Microscopic observations and microstructure characterization

9 Morphological analyses of the five selected composite samples were performed by Scanning 10 Electron Microscopy (SEM), with a HITACHI S-4800 microscope. Isolated fine particles 11 (oriented on carbon Ni grids) of the same selected composite samples were also studied using 12 a JEOL 3010 Transmission Electron Microscope (TEM) equipped with an energy dispersive 13 X-ray analyzer (EDS) to image the morphology of the particles and to identify the 14 precipitated phases.

The starting materials (Ca(OH)₂ and selenocystine) and four selected composite samples were characterized by X-ray powder diffraction using a Kristalloflex 810, SIEMENS diffractometer in Bragg-Brentano geometry. The XRD patterns were collected using Co k α_1 ($\lambda_{k\alpha_1}$ =1.7889 Å) and k α_2 ($\lambda_{k\alpha_2}$ =1.7928 Å) radiation in the range 2θ = 5 - 80° with a step size of 0.02° and a counting time of 8 seconds per step.

The selenocystine powder and three selected composite samples (water-saturated materials: pasties) were also characterized by XANES and EXAFS spectroscopy. X-ray Absorption Near-Edge (XANES) and Extended X-ray Absorption Fine-Structure (EXAFS) spectra were collected at the Rossendorf Beamline at ESRF (Grenoble, France) using a 13-element highpurity germanium detector (Canberra) together with a digital signal processing unit (XIA) for fluorescence detection. For energy calibration, a gold foil (K-edge at 11919 eV) was chosen because of its greater inertness and hence reliability in comparison to Se. With this approach, we determined an edge energy of 12656 eV for trigonal Se, instead of the tabulated value of 12658 eV for zerovalent Se. Dead time correction of the fluorescence signal, energy calibration and the averaging of single scans, as well as linear combination fits were performed with the software package SixPack. Shell fitting was done in WinXAS.

6

7

8

2.3. Physicochemical characterization of aqueous solutions

(a) Total element-concentration and pH

9 10 ml for all sampled suspensions were filtered through a 0.22µm pore-size filter and the 10 obtained aqueous solutions were immediately acidified with a nitric acid solution and stored 11 at 4°C for further measurement of [Ca] and [Se] by Inductively Coupled Plasma Atomic 12 Emission Spectrometry (ICP Perkin Elmer Optima 3300 DV). The pH was also systematically 13 measured at 25°C by using a MA235 pH/ion analyser in filtered solutions without 14 acidification.

15

16 (b) Selenium speciation

10 ml for twelve sampled suspensions corresponding to two selected experiments were 17 filtered through a 0.22µm pore-size filter and the obtained aqueous solutions were 18 immediately stored at 4°C for further measurement (after one week) of selenocvstine 19 (SeCyst), selenomethionine (SeMet), selenite (Se(IV)) and selenate (Se(VI)) by liquid 20 chromatography coupled with ICPMS detection (HPLC/ICPMS). The conditions for 21 determination of SeCyst, SeMet, Se(IV) and Se(VI) species have been previously described 22 [30]. Briefly, chromatographic separation was carried out using the Agilent 1100 series HPLC 23 pump, equipped with an autosampler and variable volume sample loop. The analytical column 24 was a Hamilton PRP-X-100, 10µm particle size, 25 cm length x 4.1 mm internal diameter. 25

The chromatographic separation of the four selenium species was obtained using a 5 mmol l^{-1} 1 2 ammonium citrate buffer at pH 5.2. Injection volume was fixed at 100 µL. Low percentage of methanol (2% v/v) was added in the mobile phase to improve sensitivity. The mobile phase 3 was delivered at 1ml min⁻¹ isocratically. The HPLC-ICPMS interface consisted simply in a 4 polyetheretherketone (PEEK) tube. Selenium selective detection was performed with an 5 Agilent 7500ce ICPMS equipped with collision reaction cell. The instrumental and 6 acquisition parameters were: rf power (1500 W); carrier gas (1 L/min); reaction cell gas (H₂ at 7 5.0 mL/min). Integration time was 0.4 s for both m/z 77 and 78. Selenium species were 8 quantified in diluted samples (1/10000) by external calibration with standard solutions of the 9 respective pure compounds. Quantification was performed with selenium isotope m/z 78. 10

11

12 **3. Results and discussion**

13

14 3.1. Characterization of Se^{0} /calcite composite produced under O_{2} -poor conditions

Macroscopically, the typical colour of calcite is white, while the typical colours of Se⁰ are 15 grey and red. In the current study, a red composite was produced under O₂-poor conditions. 16 The red coloration depended on the selenocystine dose, for example, it was noticed that the 17 red coloration of composite started to be observable when 50 mg/kgwater were used and the 18 colour intensity increased with an increase of selenocystine dose (Figure 2). This coloration 19 behaviour was reproducible at a constant calcium hydroxide dose (3 g/kg_{water} for this study). 20 The coloration of composite was stable in its mother aqueous solution even after several 21 weeks of storage at room conditions and without protection to the light. 22

23 Microscopically, the red composite was mainly characterized by spherical selenium 24 nanoparticles (< 500 nm) deposited on the calcite matrix. The carbonate matrix was

1 constituted by nano- and micro rhombohedral crystals (< 2 μ m) and micrometric 2 agglomerates and/or aggregates (< 5 μ m) (Figure 3).

Finally, the microstructure characterization of the red composite by using x-ray diffraction, 3 suggests a complete Ca(OH)₂-calcite conversion, i.e. that the metastable crystalline phases of 4 CaCO₃, such as vaterite and aragonite were not produced during the Ca(OH)₂ carbonation 5 process in our experiments. Concerning the selenocystine, this crystalline organic material 6 was not identified on the x-ray diffraction spectra for red Se⁰/calcite composite (Figure 4). 7 This suggests a complete chemical transformation or water dissolution of this starting solid 8 material in our experiments and justifies the precipitation of red nano-particles of elemental 9 selenium (observed by SEM and TEM microscopy), but, these results do not give any 10 information on the selenocystine fragmentation mechanism. Note that red elemental selenium 11 "spherical Se nanoparticles" was not identified by X-ray powder diffraction due to its poor 12 13 crystalline property or amorphous property for this selenium form.

14

15 3.2. Characterization of Se⁰/calcite composite produced under O_2 -rich conditions

For these experiments, it was demonstrated that a grey composite can be produced under O₂-16 rich conditions. For this case, the grey intensity seems to be slightly dependent on the 17 selenocystine dose from 50 to 200 mg/kgwater. The composite coloration was also stable in its 18 mother aqueous solution even after several weeks of storage at room conditions and without 19 protection to the light. Microscopic observations showed that the composite was characterized 20 by rod hexagonal selenium microparticles (<25µm) dispersed in the calcite matrix (Figure 5). 21 In addition, the X-ray diffraction measurements support these microscopic observations. It is 22 well known that the trigonal or hexagonal morphologies are the most stable crystalline phases 23 for Se⁰. Here, a small proportion contained in a given composite can be identified by X-ray 24 diffraction measurements (Figure 6). This figure also show a complete Ca(OH)₂-Calcite 25

conversion under O₂-rich conditions, revealing that the oxygenated conditions in the 1 2 suspension have not significant effect on the carbonation process efficiency. However, the available quantity of oxygen in the suspension controls the fragmentation process of the 3 4 selenocystine, leading the precipitation/growth of elemental selenium with two different morphologies and different sizes of particles. Consequently, it is demonstrated that the 5 fragmentation process of selenocystine under O₂-poor or O₂-rich conditions participates to the 6 precipitation/growth of calcite with unusual morphologies. This will be qualitatively 7 described in the following sub-section. 8

9

10 3.3. Precipitation/growth of calcite with unusual morphologies

For our experiments, the hydrothermal carbonation of calcium hydroxide described by theglobal well-known reaction,

13
$$Ca(OH)_{2(s)} + CO_{2(aq)} \rightarrow CaCO_{3(s)} + H_2O$$

14 is an exothermic process that concerns simultaneously the dissolution of Ca(OH)₂,

15
$$Ca(OH)_{2(s)} \xrightarrow{water} Ca^{2+} + 2OH^{-1}$$

16 and the dissociation of aqueous CO_2 ,

17
$$CO_{2(aq)} + H_2O \rightarrow CO_3^{2-} + 2H^+$$

18 These processes produce a fast supersaturation (S_I) of the solution with respect to calcite,

19
$$S_I = \frac{(Ca^{2+})(CO_3^{2-})}{K_{sp}} > 1$$

where (Ca^{2+}) and (CO_3^{2-}) are the activities of calcium and carbonate ions in the solution, respectively, and K_{sp} is the thermodynamic solubility product of calcite. Then, the nucleation stage (formation of nuclei or critical cluster) takes place in the system,

$$Ca^{2+} + CO_3^{2-} \rightarrow CaCO_3(nuclei)$$

1 The sampling with time of the suspensions in the reactor allowed the identification of the 2 nucleation stage, characterized by the formation of an apparent stable emulsion after about 3 two minutes of reaction time.

Finally, the crystal growth occurred spontaneously until the equilibrium calcite and the
solution was reached,

6

$CaCO_3(nuclei) \rightarrow CaCO_3(calcite)$

7 For this study, it was demonstrated that the selenocystine fragmentation during heating and carbonation process had insignificant effect on the Ca(OH)₂-calcite conversion, its effect on 8 the calcite precipitation rate was not clear because the kinetic behaviour of ex-situ pH and Ca-9 concentration of sampled solutions were very similar for all experiments. However, several 10 TEM micrographs revealed an unusual agglomeration/aggregation process of rhombohedral 11 particles, this leading the unusual morphologies for calcite "ex. star-like morphologies" (see 12 Figure 7). Recent microscopic observations show that the star-like morphologies in the solid 13 product correspond to a physical aggregation of the crystalline nano-particles of calcite. This 14 was attested by a simple physical treatment, i.e. by gently ground of composite product in a 15 mortar in presence of ethanol. After this treatment, the star-like morphologies were not 16 observed (unpublished data). For this case, the nanoparticles formation can be explained by 17 18 the classic theory on the inhibition crystal growth, i.e. the surface poisoning of calcite nuclei by adsorption/incorporation of selenite (SeO3-2) and other unidentified impurities in-situ 19 produced during selenocystine fragmentation process (see Table 1 and sub-section 3.4). In 20 addition, recent studies in our research group shows that the incorporation of selenite (SeO_3^{-2}) 21 into calcite retards the CO₂ transfer in the suspension during Ca(OH)₂ carbonation process 22 (see Fig. A in the Supporting Information). 23

On the other hand, It is well known that impurities and additives in the solution can be modify 1 2 crystal habits and could induce crystallographic twining, which has been implicitly assumed to result from sorption of impurity/additive to the growing crystal surfaces, thus altering the 3 growth kinetics. Recently, in-situ observations reveal that polyaspartate induces liquid-liquid 4 phase separation of droplets of a mineral precursor. The droplets deposit on the substrate and 5 coalesce to form a coating, which then solidifies into calcitic tablets and films. Transition bars 6 form during the amorphous to crystalline transition, leading to sectorization of calcite tablets, 7 and the defect textures and crystal morphologies are atypical of solution grown crystals [31-8 9 34].

10

11 *3.4. Selenocystine fragmentation process*

The powdered selenocystine is slightly soluble in pure water at atmospheric conditions, but a small dissolved amount increases the solution pH from 5.8 to about 8.5 due to a high proton (H⁺) affinity of the two amine groups. The liquid chromatography coupled to ICPMS detection has shown that the selenocystine molecule can be conserved during several weeks in HCl acidic solution (pH=1) and preferentially at high selenocystine concentration (1 g(Se)/L) [35].

18 This same analytical technique revealed that selenocystine was rapidly fragmented in Ca(OH)₂ alkaline solutions (pH \cong 12.5 measured at 25°C). Here, about 25% of initial atomic 19 selenium contained in the selenocystine (experiment with 200mg/kgwater) was oxidized to 20 Se(IV) under O₂-poor conditions. Conversely, about 40% of initial atomic selenium contained 21 in the selenocystine (experiment with 100mg/kgwater) was mainly oxidized to Se(IV) and a 22 slight amount oxidized to (VI) under O₂-rich conditions (see Table 1). This partial oxidation 23 of selenocystine taken place before the carbonation process; i.e. before the injection of CO₂ in 24 the reactor (t=0). This confirms the instability of selenocystine in alkaline solutions, in fact, 25

the SeCyst instability seems be controlled by the initial dose and the amount of dissolved
oxygen.

Note also in Table 1 that before the CO₂ injection in the reactor (t=0), the selonocystine was 3 slightly detected in the solution, but the kinetic data revealed a selenocystine 4 desorption/liberation process from Ca(OH)₂ particles during carbonation process ($t \neq 0$), this 5 effect being preferentially noticed under O₂-poor conditions. This suggests that a significant 6 7 proportion of the initial SeCyst was adsorbed onto the Ca(OH)₂ particles. Consequently, at higher adsorbed quantity of SeCyst, i.e. under O₂-poor conditions, the precipitation/growth of 8 spherical nanoparticles of red elemental selenium was favoured during the carbonation 9 10 process. Conversely, at lower adsorbed quantity of SeCyst, i.e. under O-rich conditions, the precipitation/growth of hexagonal microparticles of gray elemental selenium was favoured 11 during carbonation process. 12

The selenite-oxyanion produced during heating of $Ca(OH)_2$ suspension follows a complex path during carbonation process. Firstly, its solution concentration was drastically decreased by adsorption/incorporation on/in calcite matrix, leading the unusual morphologies for calcite "ex. star-like morphologies" (Figure 7). And secondly, a slight concentration increase was observed caused by a dissolution process of calcite fine particles due to a high molar excess of CO_2 in the system.

The adsorption and/or incorporation of selenite (SeO_3^{-2}) on/in the calcite were supported by XANES and EXAFS spectrometry. This powerful technique allowed also the identification and quantification of different selenium forms co-existed with calcite for three selected solid samples (labelled calcite 2, calcite 3 and calcite 5 in figures 8 and 9).

The Se K-edge XANES spectra of the three calcite samples are dominated by a white line at 12,656.5 eV, indicative of elemental Se (Figure 8.) [36-37]. Since the white line peak position of selenocystine is about 2 eV above that of elemental Se, we can discard that substantial amounts of selenocystine is present in the samples. Samples 3 and 5 have an additional strong
oscillation at 12,662 eV, which coincides with the white line of Se(IV), indicating that these
samples contain tetravalent Se in addition to elemental Se.

4 The corresponding Se K-edge EXAFS are shown in Figure 9. The Fourier transform peaks at about 2.1 Å (uncorrected for phase shift) in the spectra of elemental Se and of selenocystine 5 are due to Se-Se backscattering within the coordination sphere. This is also the strongest peak 6 in the Fourier transform spectra of the three calcite samples. Red and gray elemental Se are 7 discernable by the intensity of the 1st and 2nd shells, the ones for gray Se being much stronger 8 due to the higher structural order. The spectrum of sample 5 is very similar to that of gray Se, 9 while samples 2 and 3 are closer to red Se. The Se-O backscattering peak of the Se(IV) 10 reference, Na₂SeO₃, occurs at a smaller distance of 1.4 Å. All three sample spectra show a 11 contribution from this shell, although much lower in intensity than the pure Se(IV) 12 13 compound. We can therefore conclude that all samples contain a small amount of Se(IV) adsorbed/incorporated onto/into calcite in addition to Se(0). This is in agreement with 14 15 XANES results.

To further support this tentative phase identification and to derive quantitative information, 16 we performed linear combination fits of the k³-weighted EXAFS spectra (Table 2). In 17 confirmation of the visual interpretation of EXAFS spectra, sample calcite 5 contains a large 18 amount of gray Se, while the other two samples are dominated by red Se. Note that satisfying 19 fits were achieved only, when a reference spectrum of the aqueous selenite was added for 20 samples calcite 2 and calcite 3, and the reference spectrum of a Se(IV) solid phase was added 21 for sample calcite 5. The relative amount of Se(IV) corresponds to the relative height of the 22 Se-O Fourier peak (Figure 9). 23

The sampling with time in the reactor and the use of multi-technique approach give relevant information on the selenocystine fragmentation process for our experiments, but, with this

information is still difficult to propose a clear chemical reaction mechanism. Note for
example, that three transient selenium species were not identified and quantified by using
HPLC/ICPMS measurements (Table 1) because only four selenium references were initially
considered for this study.

5

6 4. Conclusion

7

In this study, the main purpose was to synthesize a Se^{0} /calcite composite. The synthesis was 8 successfully performed by using the hydrothermal carbonation of calcium hydroxide under 9 high CO₂-Ar pressure and high temperature coupled with a complex selenocystine 10 fragmentation process under O₂-poor and O₂-rich conditions. In conclusion, under O₂-poor 11 conditions (i.e. with purge stage), the composite was mainly characterized by spherical 12 13 selenium nanoparticles (<500nm) deposited on the calcite matrix. The carbonate matrix was constituted by nano- and micro rhombohedral crystals (<2µm) and micrometric agglomerates 14 15 and/or aggregates (<5µm). For this case, the spherical Se nanoparticles give a stable red coloration to the composite. In contrast, under O₂-rich conditions (i.e. without purge stage), 16 the composite was characterized by hexagonal selenium microparticles (<25µm) dispersed in 17 the calcite matrix. For this case, a gray coloration of composite was observed. It was also 18 observed that the gas purge in the system and the selenocystine dose (mg/kgwater) play a 19 crucial role on the selenocystine fragmentation mechanism during Ca(OH)₂ suspension 20 heating (at 90°C) and carbonation stages, this leading the precipitation/growth of elemental 21 selenium with different morphologies and particle sizes. Consequently, it was noticed that the 22 selenocystine fragmentation participates to the precipitation/growth of calcite with unusual 23 morphologies "ex. star-like morphologies". 24

1	Finally, the results presented here demonstrate that Se ⁰ /calcite composite, with spherical or
2	hexagonal morphologies for elemental selenium can be produced, this composite possibly
3	with a high potential for medical (ex. dietary supplement) or industrial (ex. pigments)
4	applications.
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

1 Acknowledgements

The authors are grateful to the National Research Agency, ANR (GeoCarbone-CARBONATATION project), France, for providing a financial support for this work. J. Ganbaja, A. Kohler, D. Tisserand and N. Geoffroy are thanked for their technical help and assistance.

References

- 2
- 3 [1] J. M. Song, J. H. Zhu, S. H. Yu, J. Phys. Chem. B. 110 (2006) 23790.
- 4 [2] Y. Ding, Q. Li, Y. Jia, L. Chen, J. Xing, Y. Qian, J. Crystal Growth 241 (2002) 489.
- 5 [3] Y. Bai, Y. Wang, Y. Zhou, W. Li, W. Zheng, Materials Letters (2007)
- 6 doi:10.1016/j.matlet.2007.11.098.
- 7 [4] E. Kapolna, M. Shah, J. A. Caruso, P. Fodor, Food Chemistry 101 (2007) 1398.
- 8 [5] A. Tarze, M. Dauplais, I. Grigoras, M. Lazard, N. T. Ha-Duong, F. Barbier, S. Blanquet,
- 9 P. Plateau, J. Biol. Chem. 282/12 (2007) 8759.
- [6] R. Caputo, S. Capone, M. Della Greca, L. Longobardo, G. Pinto, Tetrahedron Letters 48
 (2007) 1425.
- 12 [7] D. Peng, J. Zhang, Q. Liu, E. Will Taylor, J. Inorg. Biochem. 101 (2007) 1457.
- 13 [8] J. E. Spallholz, D. J. Hoffman, Aquatic Toxicology 57 (2002) 27.
- [9] M. S. Stewart, J. E. Spallholz, K. H. Neldner, B. C. Pence, Free Radic. Biol. Med 26(1999) 42.
- 16 [10] M. Ochsenkuhn-Petropoulou, F. Tsopelas, Anal. Chim. Acta 467 (2002) 167.
- 17 [11] K. H. Goh, T. T. Lim, Chemosphere 55, (2004) 849.
- 18 [12] C. Munier-Lamy, S. Deneux-Mustin, C. Mustin, D. Merlet, J. Berthelin, C. Leyval, J.
- 19 Environ. Radioactivity (2007) doi :10.1016/j.jenvrad.2007.04.001
- 20 [13] M. Simonoff, C. Sergeant, S. poulain, M. S. Pravikoff, Comptes Rendus Chimie (2007)
- 21 doi :10.1016/J.crci.2007.02.010
- 22 [14] Y. S. Han, G. Hadiko, M. Fuji, M. Takahashi, J. Crystal Growth 276 (2005) 541.
- 23 [15] L. Moore, J. D. Hopwood, R. J. Davey, J. Crystal Growth 261 (2004) 93.
- 24 [16] K. J. Westin, A. C. Rasmuson, J. Colloids Interface Sci. 282 (2005) 370.
- 25 [17] H. Tsuno, H. Kagi, T. Akagi, Bull. Chem. Soc. Jpn. 74 (2001) 479.

- [18] Y. Fujita, G. D. Redden, J. Ingram, M. M. Cortez, G. Ferris, R. W. Smith, Geochem.
 Cosmochem. A. 68 (2004) 3261.
- 3 [19] S. J. Freij, A. Godelitsas, A. Putnis, J. Crystal Growth 273 (2005) 535.
- 4 [20] L. A. Gower, D. A. Tirrell, J. Crystal Growth 191 (1998) 153.
- 5 [21] R. G. Jonasson, K. Rispler, B. Wiwchar, W. D. Gunter, Chem. Geol. 132 (1996) 215.
- [22] A. Chrissanthopoulos, N. P. Tzanetos, A. K. Andreopoulou, J. Kallitsis, E. Dalas, J.
 Crystal Growth 280 (2005) 594.
- 8 [23] M. Menadakis, G. Maroulis, P. G. Koutsoukos, Computational Materials Science 38
 9 (2007) 522.
- [24] E. Dousi, J. Kallitsis, A. Chrisssanthopoulos, A. H. Mangood, E. Dalas, J. Crystal
 Growth 253 (2003) 496.
- [25] L. Pastero, E. Costa, B. Alessandria, M. Rubbo, D. Aquilano, J. Crystal Growth 247
 (2003) 472.
- 14 [26] Y. J. Lee, R. Reeder, Geochem.Cosmochem. A. 70 (2006) 2253.
- 15 [27] M. Temmam, J. Paquette, H. Vali, Geochem. Cosmochem. A. 64 (2000) 2417.
- 16 [28] E. Dalas, A. Chalias, D. Gatos, K. Barlos, J. Colloids Interface Sci. 300 (2006) 536.
- [29] G. Montes-Hernandez, F. Renard, N. Geoffroy, L. Charlet, J. Pironon, J. Crystal Growth
 308 (2007) 228.
- 19 [30] J. Darrouzès, M. Bueno, S. Simon, F. Pannier, M. Potin-Gautier, Talanta (2007)
- 20 doi:10.1016/j.talanta.2007.11.020
- 21 [31] L. B. Gower, D. J. Odom, J. Crystal Growth 210 (2000) 719.
- 22 [32] X. Cheng, P. L. Varona, M. J. Olszta, L. B. Gower, J. Crystal Growth 307 (2007) 395.
- 23 [33] X. Cheng, L. B. Gower, Biotechnol. Prog. 22 (2006) 141.
- 24 [34] L. Dai, A. P. Douglas, L. B. Gower, J. Non-Crystalline Solids (2007) doi:
- 25 10.1016/j.jnoncrysol.2007.10.022

1	[35]	М.	Bueno,	(2007)) p	ersonal	interview
---	------	----	--------	--------	-----	---------	-----------

- 2 [36] A. C. Scheinost, L. Charlet, Environ. Sci. Technol. (2007) in press.
- 3 [37] L. Charlet, A. C. Scheinost, C. Tournassat, J. M. Greneche, A. Gehin, A. Fernandez-
- 4 Martinez, S. Coudert, D. Tisserand, J. Brendle, Geochim. Cosmochim. Acta 71 (2007) 5731.

- .

- •

- .

1 Table 1. The HPLC/ICPMS measurements of twelve solutions samples of two selected 2 hydrothermal carbonation-selonocystine fragmentation experiments. Concentrations given in

mg (Se) l^{-1}

t min	SeCyst	SeIV	SeVI	t _R 2.80 min	t _R 5.91 min	t _R 7.03 min	pH _{25°C}
Under O ₂ -poor conditions and 200 mg/kg _{water} of SeCyst dose							
0	0.86 ± 0.08	24 ± 1	nd	ni		ni	12.60
2	nd	9.1 ± 0.7	nq		ni		12.43
6	8.9 ± 0.4	0.37 ± 0.01	nq		ni		7.44
10	9.3 ± 0.1	0.95 ± 0.02	nd		ni		7.30
30	4.0 ± 0.2	1.7 ± 0.2	nq		ni		7.34
60	nd	2.5 ± 0.1	nd				7.10
Under O2-rich conditions and 100 mg/kgwater of SeCyst dose							
0	nd	17 ± 1	0.21 ± 0.02	ni	ni		12.63
2	nd	4.7 ± 0.2	0.27 ± 0.01		ni		12.58
6	0.68 ± 0.05	1.5 ± 0.1	0.22 ± 0.2				8.03
10	0.65 ± 0.05	4.0 ± 0.3	0.27 ± 0.02				7.30
30	0.15 ± 0.03	5.6 ± 0.2	0.25 ± 0.02				7.28
60	nd	5.7 ± 0.3	0.24 ± 0.02				7.15

t: reaction time concerning the experiment (t=0 "before CO₂ injection in the reactor"); SeCyst: seleno-L-cystine; 6 SeIV: selenite (SeO₃⁻²); SeVI: selenate (SeO₄⁻²); t_R: retention time in the HPLC/ICPMS measurements; pH_{25°C}: 7 pH measured at 25°C; nd: not detected; nq: not quantifiable; ni: not identifiable.

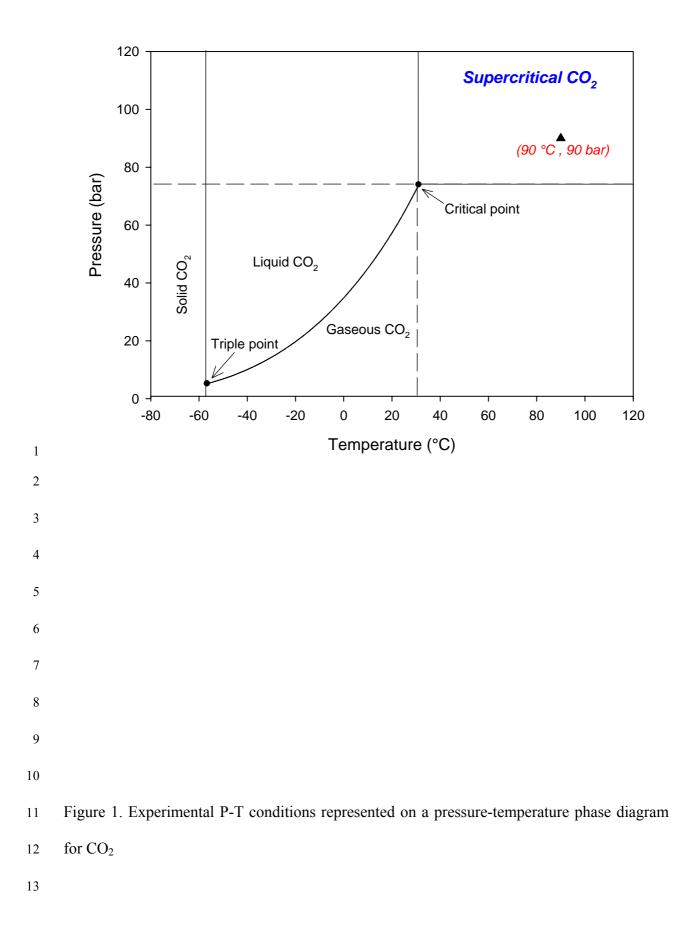
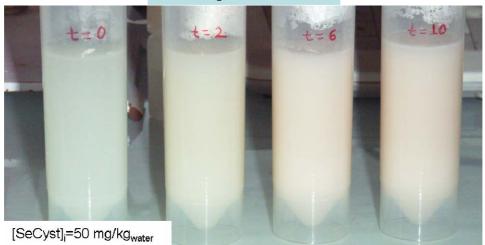
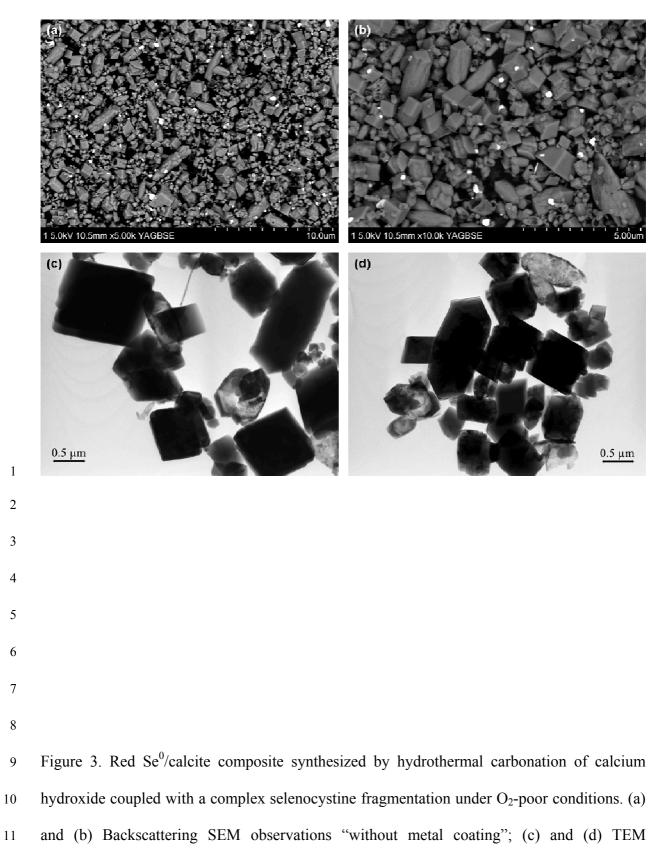

- /

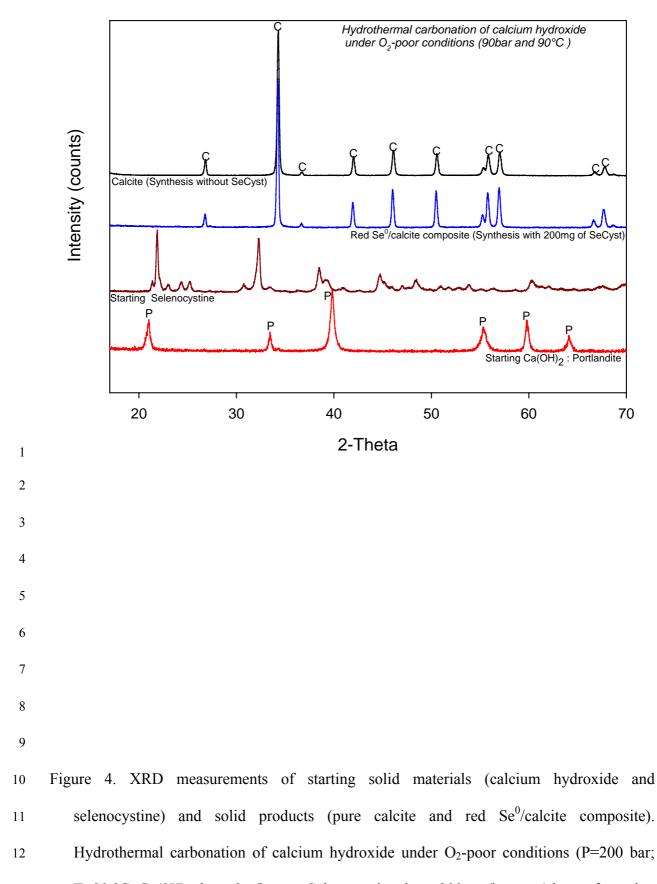
Table 2. Linear combination fit of k³-weighted EXAFS spectra


Sample	Se grey	Se red	Se(IV)	Sum
Calcite 2	0.02	0.87	0.12	1.01
Calcite 3	0.15	0.50	0.28	0.93
Calcite 5	0.74	0.07	0.23	1.04

Calcite 2: experiment under O₂-poor conditions, 100 mg/kg_{water} of selenocystine, 1 hour of reaction. Calcite 3: 3 4 experiment under O_2 -poor conditions, 100 mg/kg_{water} of selenocystine, 1 hour of reaction. Calcite 5: experiment under O_2 -rich conditions, 100 mg/kg_{water} of selenocystine, 1 hour of reaction. Calcite 5: experiment under O_2 -rich conditions, 100 mg/kg_{water} of selenocystine, 1 hour of reaction. Se(IV) correspond to Se(IV)_{aquo} and Na₂SeO₃ references in Charlet et al., 2007 [37].

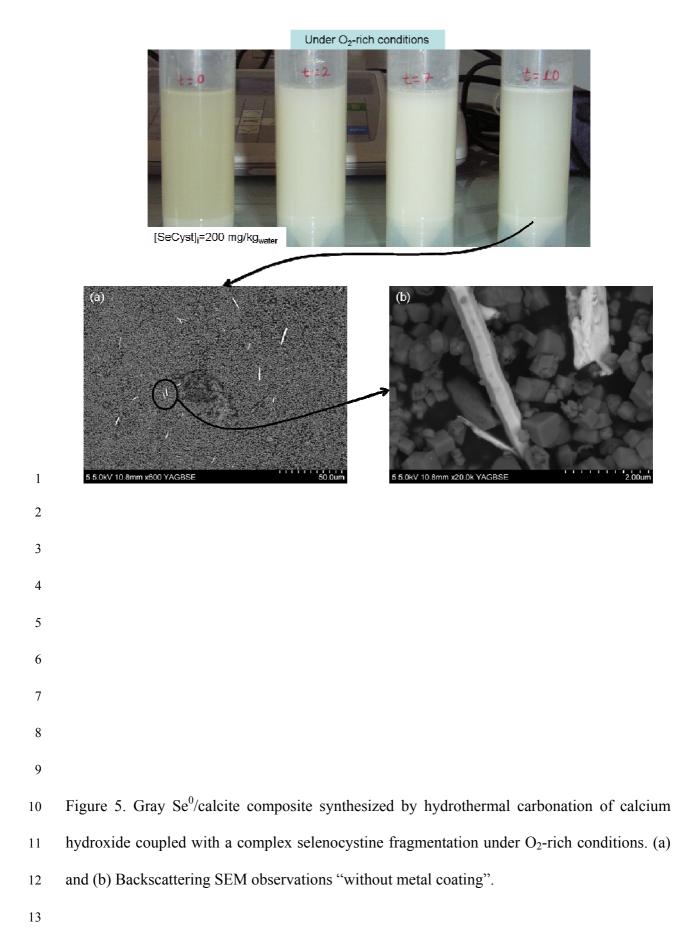
5 6	and Na ₂ SeO ₃ r
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	

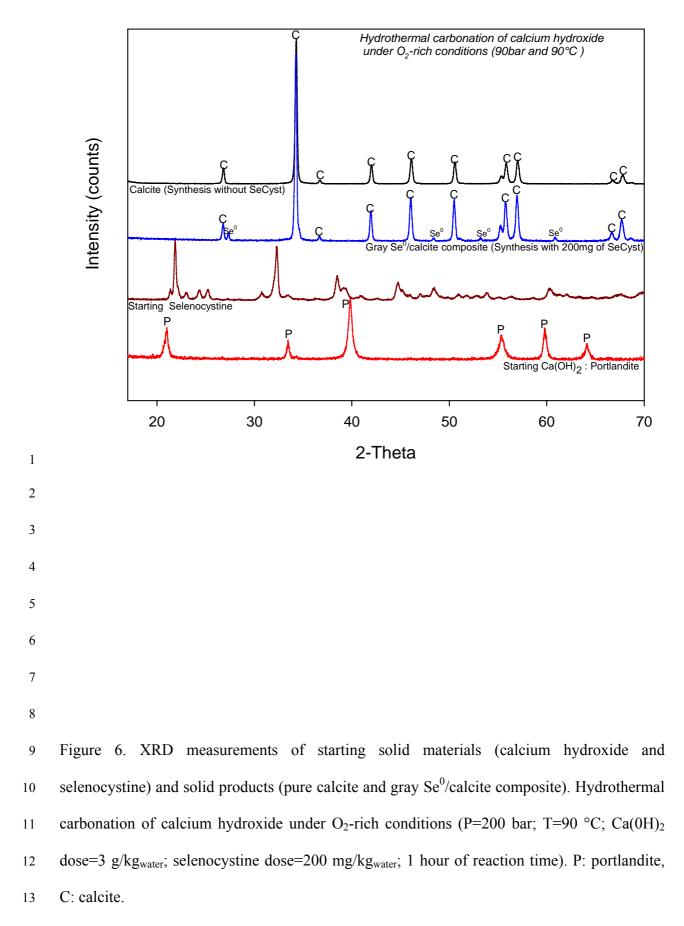

Under O₂-poor conditions

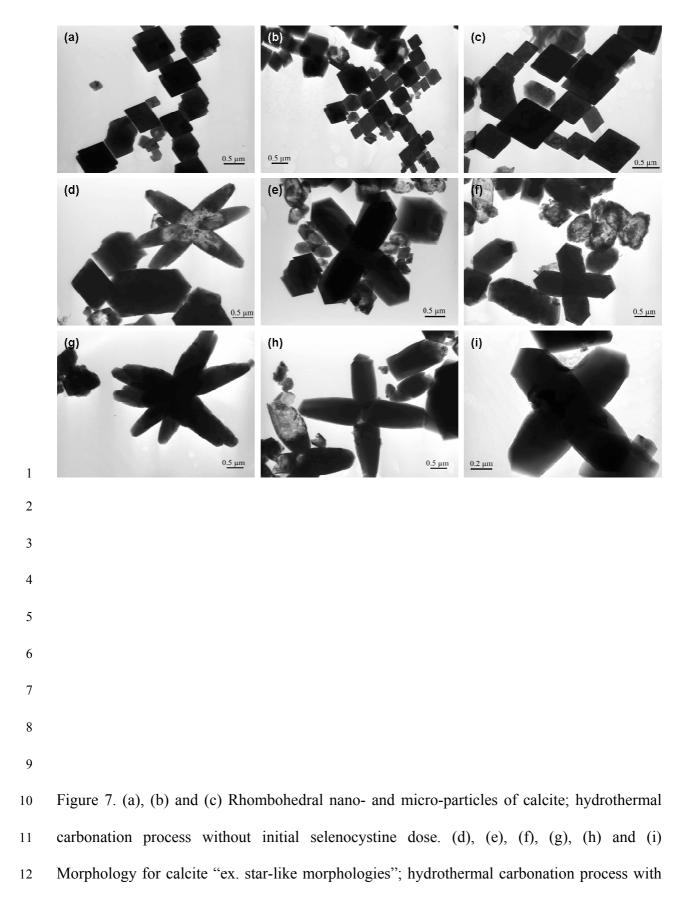


- .

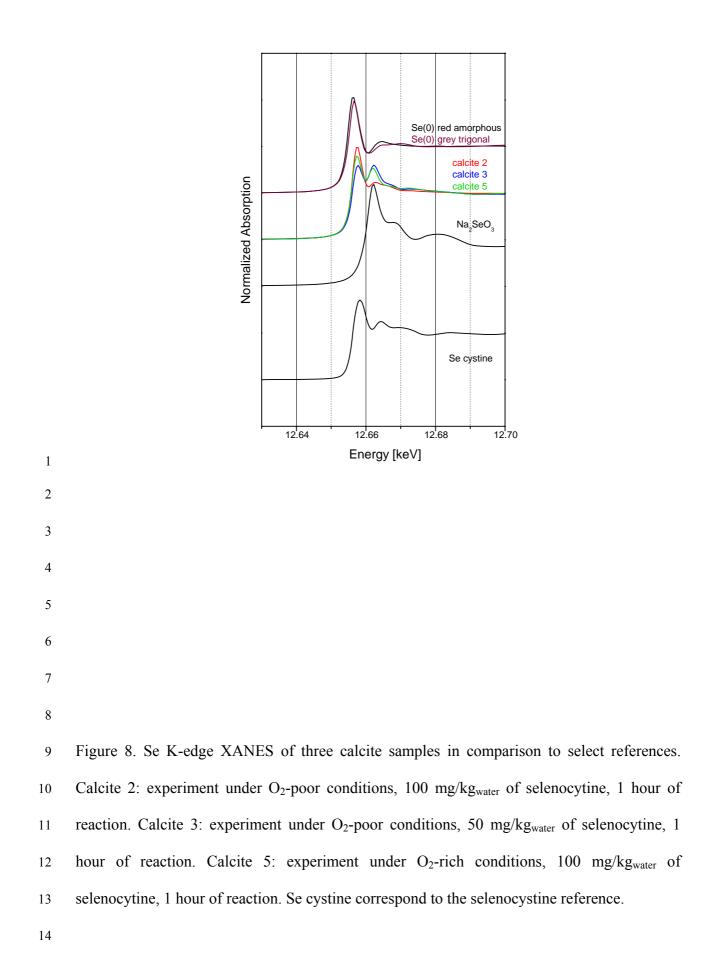
Figure 2. Coloration change of Se^0 /calcite composite at different selenocystine doses and under O₂-poor conditions. Note the Se^0 /calcite composite was manually dispersed to take these photographs.

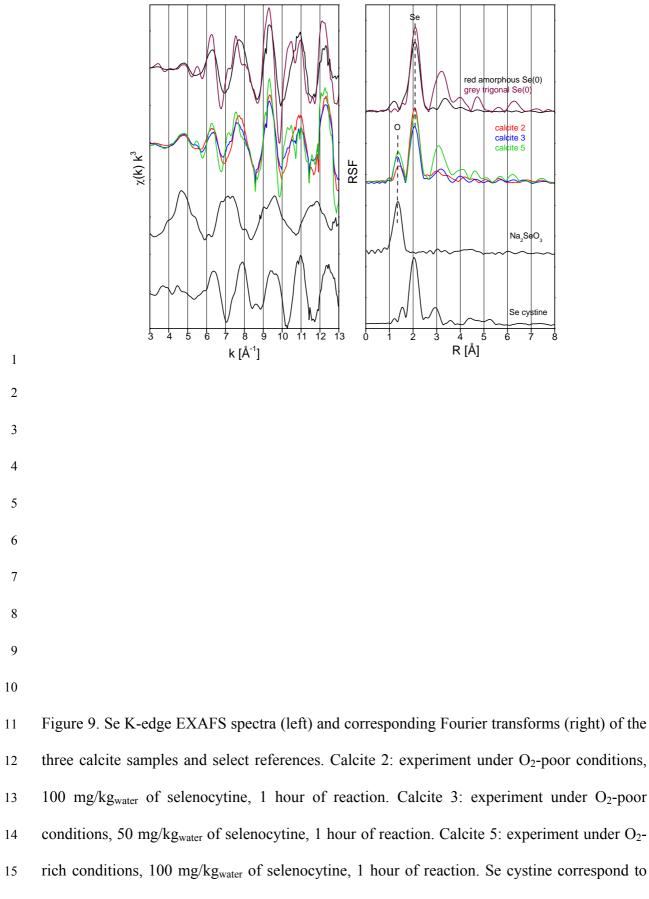



12 micrographs.


13 T=90 °C; Ca(0H)₂ dose=3 g/kg_{water}; Selenocystine dose=200 mg/kg_{water}; 1 hour of reaction

14 time). P: Portlandite, C: Calcite.





13 initial selenocystine dose (200 mg/kg_{water})

16 the selenocystine reference.