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[1] We examine the dependence on main shock magnitude m of the p and c parameters
appearing in Omori-Utsu formula l(t, m) = c � (t + c)�p relating the rate of aftershocks
l at time t after a main shock. Observations point out to a significant increase of p with m,
along with a scaling relationship of the form c � 10am. Here we show that these
observations can be explained within the framework of the rate-and-state friction model
when accounting for realistic levels of coseismic stress heterogeneity on the main fault.
We constrain the model parameters in order to recover the trends observed in previous and
new analyses of aftershock sequences. The expected ratio of the coseismic stress drop
standard deviation to its mean is found to be of the order of a few units for large (m = 7)
earthquakes, resulting in a very rough stress field at the small scale, while it is much
smoother at small magnitudes (ratio ’ 0.1 at m = 2). Finally, the influence of afterslip on
parameters p and c is studied to highlight the fact that it can significantly perturb the
p(m) and c(m) relations obtained with the initial afterslip-free model.

Citation: Hainzl, S., and D. Marsan (2008), Dependence of the Omori-Utsu law parameters on main shock magnitude: Observations

and modeling, J. Geophys. Res., 113, B10309, doi:10.1029/2007JB005492.

1. Introduction

[2] Almost all larger earthquakes are found to trigger
aftershocks with a temporal decaying probability. In partic-
ular, the occurrence rate of aftershocks l can be well
described by the modified Omori-Utsu law

l t;mð Þ ¼ c t þ cð Þ�p ð1Þ

where t indicates the elapsed time since the main shock (see
Utsu et al. [1995] for a review). The c value is a constant
typically much less than 1 day, and in most cases is related
to changes in detection level of the operating seismic
network. Recent attempts at finding a c value of physical
rather than instrumental origin have proposed that it could
be of the order of one to several minutes [Kagan and
Houston, 2005; Peng et al., 2006, 2007; Enescu et al.,
2007], although there is no clear consensus on how the
Omori-Utsu law actually breaks down below this cutoff.
The p value is in the range 0.8–1.2 in most cases [Utsu et
al., 1995]. While alternative models for describing the
aftershock decaying rate have been proposed [Kisslinger,
1993; Gross and Kisslinger, 1994; Narteau et al., 2002], the
Omori-Utsu law generally provides a very good fit to the
data and is an ubiquitous feature in seismicity dynamics.
[3] We here analyze how parameters p and c change with

the magnitude m of the main shock. A wealth of recent

studies have addressed the dependence of c (mostly) with
m, generally showing that c � 10am. The value of param-
eter a is however variable from one study to the other,
mainly because of different assumptions regarding to the
definition of what main shocks and aftershocks are. Also, a
significant increase of p with m, which was not recognized
before, has been recently observed by Ouillon and Sornette
[2005], which they explain by a multifractal model of stress
interactions [Sornette and Ouillon, 2005].
[4] The goal of this paper is to show that these observa-

tions are consistent with a model based on rate-and-state
friction [Dieterich, 1994], with a spatially heterogeneous
coseismic stress change at the length scale of earthquake
nucleation. In section 2, we recall results of past analyses on
the magnitude dependence of c and p, and test these results
by new such analyses, probing different ways of selecting
main shocks and aftershocks. In section 3, we detail our
model, and explore its parameter space so to provide
constraints on what values of these parameters can repro-
duce the observations. Finally, in section 4, we study how
the addition of afterslip can influence the p and c values,
still exploiting the rate-and-state model with coseismic
stress heterogeneity.

2. Observations

[5] There is good evidence that the productivity c grows
exponentially with m, i.e., following a c � 10am relation.
However, the exact value of a varies substantially between
studies: Helmstetter [2003] obtained that 0.7 < a < 0.9 for
southern California, while Felzer et al. [2004] and
Helmstetter et al. [2005] found a = 1 and a = 1.05 ± 0.05,
respectively, for the same region. Using space-time ETAS
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models and inverting for the model parameters, Zhuang
et al. [2004] found that a ’ 0.6 for Japan (1926–1999
m 	 4.2 earthquakes), Zhuang et al. [2005] found a = 0.7 ±
0.05 for Taiwan (1987–2000 m 	 5.3 earthquakes), while
Console et al. [2003] obtained a = 0.42 for Italy (1987–
2000 m 	 2 earthquakes).
[6] Variations in the estimate of a can be due to differ-

ences in the seismogenic properties of the regions analyzed,
but also to the different procedures used to select which
earthquakes are main shocks and which others are after-
shocks. This selection is generally performed using space-
time windows that define the ‘‘aftershock domain’’ of a
main shock [cf. Molchan and Dmitrieva, 1992]. Such
methods rely on sets of parameters, that are largely arbitrary.
The alternative approach of fitting ETAS model parameters
to the data is computationally much more involved, and
remains clearly model-dependent. Recently, a new probabi-
listic method (model-independent stochastic declustering,
MISD) for selecting main shocks and aftershocks, that does
not rely on any particular model nor specific parameteriza-
tion, has been proposed [Marsan and Lengliné, 2008]. This
approach, based on the premises that seismicity dynamics
result from a linear cascade of earthquake triggering,
permits to distinguish between directly and indirectly trig-
gered aftershocks. Applying this method to southern
California data, Marsan and Lengliné [2008] found that
the c � 10am is indeed a good representation of the data,
with an a parameter equal to 0.6 for directly triggered
aftershocks, while a = 0.66 for all (i.e., direct and indirect)
aftershocks, which is what the space-time window methods
measure. In the context of the ETAS model, a single a
parameter characterize both the direct and the overall
aftershock populations. However, a values inverted by
cascading models with an isotropic spatial kernel are likely
to underestimate the real value as recently demonstrated for

the case of the space-time ETAS model [Hainzl et al.,
2008]. The reason is that real aftershock clusters are usually
anisotropically distributed in space due to the spatial exten-
sion of main shock ruptures. Indeed, relaxing the isotropy
assumption, Marsan and Lengliné [2008] found a = 0.86
(‘‘bare’’ value for directly triggered events) and a = 0.73
(‘‘dressed’’ value for directly and indirectly triggered
events), instead of a = 0.60 and 0.66, respectively, when
assuming isotropy.
[7] To further study the p and c dependence on m, we

here analyze the global earthquake catalog provided by the
ISC, focusing on the 1978–2005 period and m 	 5.5
earthquakes. The starting date of 1 January 1978 is con-
strained by the fact that surface wave magnitudes ms only
start to be reported at that date. We kept the maximum
magnitude (whatever its type) to characterize the size of an
earthquake. This choice is purely empirical, and was moti-
vated by the requirement that the frequency-magnitude
curve follows an exponential Gutenberg-Richter law. In-
deed, no deviation to the Gutenberg-Richter law above
magnitude 5.5 is found when examining the global seis-
micity, and when analyzing each year individually. Also, as
shown in Figure 1, the b value remains stable over the years,
indicating that there is no statistically significant change in
magnitude reporting in the 1978–2005 period.
[8] We select main shocks and aftershocks using several

different published selection rules, for comparison purposes.
An earthquake is characterized by its time of occurrence t,
its location x, and its magnitude m, which we use to define
its rupture length as L = 100.45�(m-6) � 10 km consistent
with the analysis of Wells and Coppersmith [1994] (with a
minimum L = 10 km, hence for all earthquakes with 5.5 

m 
 6, to account for location error). Namely, we use the
following:

Figure 1. The b value estimated for each year individually in the ISC catalog. A clear change in b value
is observed in 1978, when Ms magnitudes started to be reported.
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[9] 1. In a space-time window method, an earthquake
{t, x, m} is not a main shock if there exists too big and too
close a previous earthquake {t0, x0, m0}, with m0 	 m-Dm, at
t-Dt < t0 < t and their rupture zones overlap, i.e., jx-x0j <
L(m) + L(m0). The aftershocks of a main shock are all the
earthquakes that follows it in its rupture zone, until a new
main shock occurs which rupture zone overlaps with the
current one. To test the sensitivity of the method to Dm and
Dt, we take either Dt = 1 year, Dm = 1, or Dt = 3 years,
Dm = 2.
[10] 2. In the method by Helmstetter [2003], an earth-

quake {t, x, m} is not a main shock if there exists a previous,
larger earthquake {t0, x0, m0 > m} within 1 year and 50 km
independent of the magnitude. Then, all the earthquakes

within a rupture length L(m) and 1 year after the main shock
are its aftershocks.
[11] 3. The method by Helmstetter et al. [2005] mimics

the declustering algorithm of Reasenberg [1985]. Here, an
earthquake {t, x, m} is not a main shock if there exists a
previous earthquake {t0, x0, m0} with m0 	 m-1 that occurred
within 1 year and a distance L(m0). Then, an earthquake is
an aftershock of a given main shock {t, x, m} if it occurs
within L(m) and 1 year of it, or within L(m0) and 1 year of
any of its previous aftershocks {t0, x0, m0}.
[12] 4. In the algorithm by Gardner and Knopoff [1974],

an earthquake is an aftershock of a given main shock if it
occurs within a time T(m) and distance R(m) of it, with both
T and R increasing with m. We extend the magnitude range

Figure 2. Aftershock rates following main shocks of magnitude 5.5 
 m < 6, 6 
 m < 6.5, 6.5 
 m < 7,
7 
 m < 7.5, and m 	 7.5 (from bottom to top), using the various methods described in the text for
selecting main shocks and aftershocks. Figure 2 (top left) corresponds to method 1 with Dt = 1 year and
Dm = 1. The best power law fits performed in the interval between 0.1 day and 100 days are shown in
continuous lines.
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of Gardner and Knopoff [1974] up to magnitude 9, by
setting T = 1000 days for m 	 8.5 and keeping the R �
100.12m scaling. All the earthquakes that are not aftershocks
are considered as main shocks.
[13] 5. The model-independent stochastic declustering

(MISD) method by Marsan and Lengliné [2008] assumes
that all the previous earthquakes have an influence on a
subsequent earthquake, and that those influences sum up.
The method then amounts to running an iterative algorithm
converging toward the mean field influences (i.e., mean
field in the sense that two earthquakes of equal magnitudes
will be considered as having equal influences at the same
interevent distances and times). This gives the bare (i.e.,
direct) influences. The dressed (i.e., both direct and indirect)
influences are obtained by considering the full cascade of
aftershocks triggering other aftershocks and so on, and

summing over the various bare influences. There is no
parameterization in this method. Notice that all the other
methods exploited here only probe the dressed aftershock
sequences.
[14] Figure 2 displays the aftershock rates for all these

methods, along with the best power law fits l(t,m) = c� t�p

which amounts to the Omori-Utsu law after neglecting the
cutoff time c. These fits are computed for 0.1
 t
 100 days
(i.e., over 3 decades). No correction for the loss of after-
shocks due to detection issues at short timescales is intro-
duced. Given the quality of all the fits, we believe the
scaling interval is appropriate for this ‘‘no-correction’’
choice, given these fitting time intervals. Table 1 summa-
rizes the various estimates related to Figure 2.
[15] All the space-time window methods 1, 2, and 3 yield

very similar rates. The method using the work by Gardner
and Knopoff [1974] is also quite similar to the dressed rates
of the MISD method. Although the general aspect is well
preserved from one method to the other, with the notable
exception of the bare rates using the MISD method (i.e.,
because all the other rates are dressed), subtle differences
can however be seen. The parameters p and c obtained with
the best fits are reported on Figure 3. As can be observed,
there exists a significant dispersion of the parameters at all
magnitudes, especially for the p value, and even for one
method by just changing its parameters (i.e., method 1,
triangles). The p values proposed by Ouillon and Sornette
[2005] are occasionally significantly different from the ones
obtained here. This could be due to the fact that they
analyzed a very different data set than ours (southern
California earthquakes), and also to the way they selected
their time intervals for fitting the decays.
[16] The productivity is effectively found to follow a c �

10am scaling, although parameter a ranges between 0.66
(bare and dressed rates using MISD) and 1.15 (for most
space-time window methods). This confirms that the pro-
ductivity scaling is unfortunately strongly dependent on the
selection method, as already discussed above. Low a values
are typically obtained with ETAS inversions and the MISD
method, which both perform space-time analyses and esti-
mate the bare influences by assuming that the observed
seismicity results from cascading. The other methods do not
account for this cascading, and could therefore be biased
toward large a values as a result. On the other hand, the
inversion of cascading models with isotropic spatial kernel
can lead to significant underestimation of the a parameter as
recently shown for the space-time ETAS model [Hainzl et
al., 2008].
[17] In the following, we will use the results shown in

Figure 3 as a constraint for our model parameters. As there
is yet no clear consensus on the ‘‘correct’’ values of p and a,
we will ask our model to output values that are within the
ranges shown in Figure 3 and proposed in past analyses,
rather than attempting to reproduce one particular set of
values.

3. Model of Earthquake Occurrence

[18] Many aftershocks occur on fault where quasi-static
stress is expected to decrease after the main shock, resulting
in an apparent paradox. However, earthquake slip is known
to be heterogeneous, leading locally to an increased shear

Table 1. Estimates for p and c Valuesa

Magnitude p Value c Value r2

Method 1 (Dt = 1 Year, Dm = 1)
5.5 
 m < 6 0.96 ± 0.01 0.0052 ± 0.0001 0.99
6 
 m < 6.5 1.00 ± 0.05 0.010 ± 0.001 0.96
6.5 
 m < 7 1.02 ± 0.01 0.048 ± 0.001 0.98
7 
 m < 7.5 1.03 ± 0.02 0.15 ± 0.01 0.96
m 	 7.5 1.08 ± 0.01 0.55 ± 0.01 0.99

Method 1 (Dt = 3 Years, Dm = 2)
5.5 
 m < 6 0.98 ± 0.001 0.0052 ± 0.0001 0.99
6 
 m < 6.5 1.02 ± 0.07 0.010 ± 0.001 0.96
6.5 
 m < 7 0.99 ± 0.03 0.042 ± 0.002 0.96
7 
 m < 7.5 1.13 ± 0.03 0.13 ± 0.01 0.94
m 	 7.5 1.09 ± 0.03 0.40 ± 0.02 0.95

Method 2, Helmstetter [2003]
5.5 
 m < 6 0.97 ± 0.01 0.0026 ± 0.0001 0.97
6 
 m < 6.5 1.00 ± 0.04 0.013 ± 0.001 0.98
6.5 
 m < 7 0.99 ± 0.01 0.063 ± 0.002 0.99
7 
 m < 7.5 1.07 ± 0.01 0.18 ± 0.01 0.97
m 	 7.5 1.08 ± 0.01 0.57 ± 0.01 0.99

Method 3, Helmstetter et al. [2005]
5.5 
 m < 6 0.92 ± 0.01 0.011 ± 0.001 0.98
6 
 m < 6.5 0.95 ± 0.02 0.022 ± 0.001 0.96
6.5 
 m < 7 1.01 ± 0.01 0.10 ± 0.01 0.98
7 
 m < 7.5 1.01 ± 0.05 0.24 ± 0.02 0.94
m 	 7.5 1.05 ± 0.03 1.37 ± 0.01 0.95

Method 4, Gardner and Knopoff [1974]
5.5 
 m < 6 0.79 ± 0.01 0.017 ± 0.001 0.99
6 
 m < 6.5 0.86 ± 0.03 0.041 ± 0.001 0.98
6.5 
 m < 7 0.98 ± 0.01 0.098 ± 0.001 0.99
7 
 m < 7.5 1.02 ± 0.02 0.17 ± 0.01 0.98
m 	 7.5 1.06 ± 0.01 0.53 ± 0.02 0.96

Method 5, Marsan and Lengliné [2008], Bare
5.5 
 m < 6 0.87 ± 0.02 0.017 ± 0.001 0.99
6 
 m < 6.5 1.05 ± 0.04 0.029 ± 0.001 0.99
6.5 
 m < 7 1.07 ± 0.01 0.081 ± 0.002 0.99
7 
 m < 7.5 1.10 ± 0.02 0.16 ± 0.01 0.99
m 	 7.5 1.19 ± 0.02 0.40 ± 0.01 0.99

Method 5, Marsan and Lengliné [2008], Dressed
5.5 
 m < 6 0.82 ± 0.02 0.030 ± 0.001 0.99
6 
 m < 6.5 0.90 ± 0.07 0.061 ± 0.003 0.98
6.5 
 m < 7 0.96 ± 0.04 0.14 ± 0.01 0.99
7 
 m < 7.5 0.96 ± 0.05 0.34 ± 0.01 0.99
m 	 7.5 1.09 ± 0.07 0.88 ± 0.04 0.99

aValues are of the best fits as shown in Figure 2, along with their errors,
and the r2 value giving the goodness of fit.
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stress after main shock slip (i.e., loading rather than unload-
ing). This has been observed by Mikumo and Miyatake
[1995], Bouchon [1997], Bouchon et al. [1998], Day et al.
[1998], Dalguer et al. [2002], Zhang et al. [2003], and
Ripperger and Mai [2004] for a number of earthquakes.
Examples of stress drop heterogeneity images at large scales
are given by Day et al. [1998]. Heterogeneous fault stress
has also been found in simulations by Parsons [2008] to be
a long-lasting feature, with a spatial distribution of stress
gaps showing persistence over tens of years.
[19] Recently, it has been shown that coseismic stress

heterogeneities are able to explain aftershock activity,
especially those observed in stress shadows such as within
the main shock rupture [Helmstetter and Shaw, 2006;
Marsan, 2006]. At the scale of the nucleation of seismic
instability (typically meters to tens of meters as predicted by
rate and state friction [cf. Dieterich, 1992, Figure 11]), the
stress drop is dominated by this spatial variability: numer-
ous nucleation patches are then loaded rather than unloaded
by the main shock, resulting in the occurrence of aftershocks.
[20] As it is shown later, the situation is significantly

different for smaller main shocks, i.e., characterized by
rupture lengths not too large compared to the nucleation
length. Then, scale invariance of the coseismic slip implies
that the stress drop is much smoother (still at the scale of
nucleation) than that of large main shocks. The ruptured
fault is then mostly unloaded, and no aftershocks occur. The
direct observation of this shadowing effect for small main
shocks has been made by Rubin [2002], for relocated
earthquakes on the San Andreas fault, and by Fischer and
Horálek [2005] for relocated swarm earthquakes in the
Vogtland area. In both cases, the stacked seismicity showed
a significant gap within the rupture area.
[21] We here study how a model based on rate-and-state

friction with a magnitude-dependent distribution of coseis-

mic stress change can recover the aftershock decay charac-
teristics described in section 2.

3.1. Description of the Model

[22] In the following treatment, we postulate that (1)
seismicity can be well described by the rate-and-state model
of Dieterich [1994] with the ageing evolution law, in the
localized nucleation regime for which healing is negligible
[Rubin and Ampuero, 2005], (2) static stress triggering
dominates the production of aftershocks, (3) the coseismic
slip is fractal, causing the stress drop to be fractal as well,
(4) spatial fluctuations in stress drop can be modeled with
Gaussian statistics, (5) there exists a finite, time-independent
nucleation length ‘ that characterize the size of fault patches
self-accelerating to failure [Dieterich, 1992], and (5) all
earthquakes initially nucleate at scale ‘, their final size being
controlled by the dynamic propagation of the instability
outside the nucleation patch rather than by processes occur-
ring within this nucleation zone [Lapusta and Rice, 2003].
3.1.1. Rate-and-State Model
[23] According to Dieterich [1994], in the no-healing

approximation, the seismicity rate l is inversely propor-
tional to the state variable g describing the creep velocities
on the faults, namely l(t) = r

_tg tð Þ, where r is the stationary
background rate of earthquakes and _t the tectonic loading
rate. The evolution of the state variable g is given by

dg ¼ dt � gdt
As

ð2Þ

with A being a dimensionless fault constitutive parameter
usually �0.01 and s the effective normal stress. A sudden

Figure 3. Parameters (left) p and (right) c of Omori-Utsu law obtained from the best fits shown in
Figure 2. The symbols distinguish the various methods described in the text: method 1, triangles;
method 2, squares; method 3, diamonds; method 4, pluses; method 5, dressed, circles; method 5, bare,
crosses. For method 1, the two combinations using Dt = 1 year, Dm = 1 and Dt = 3 years, Dm = 2 are
shown. The p values obtained by Ouillon and Sornette [2005] for southern California earthquakes, using
their two methods for selecting main shocks and aftershocks, are displayed for comparison (light gray).
We added a small shift for presentation purposes. The two lines on Figure 3 (right) show a 100.66m and a
101.15m scaling. Table 1 summarizes all parameter estimates.
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stress jump of t for a background stationary rate r leads to a
time dependence of the activity according to

l t; tð Þ ¼ r

1þ e�
t
As � 1ð Þe� t

ta

ð3Þ

with ta = As/ _t. For simplicity, we will give hereinafter all
stress jumps in units of As and the time in units of ta, unless
stated otherwise, leading to the expression l(t, t) = r/[1 +
(e�t-1) e�t].

3.1.2. Fractal Coseismic Slip and Stress Drop
Heterogeneity
[24] The stress variations induced by an earthquake are

expected to be spatially heterogeneous due to coseismic slip
as well as material heterogeneities. Thus, for any given
crustal volume, the actual stress experienced by nucleation
patches must be described by a probability density function
f(t), and the earthquake activity of the volume must be
calculated by

l tð Þ ¼
Z

l t; tð Þf tð Þdt: ð4Þ

Figure 4. Stress drop distribution, in MPa, on a 10 � 10 km2 simulated fault, seen at a varying
nucleation length ‘. The fractal stress field becomes rougher as the scale ratio L/‘ grows. The mean stress
drop is 3 MPa whatever l. Stress loading corresponds to negative stress drops and is observed at places
starting at L/‘ = 100. (bottom right) Standard deviation st normalized by the mean stress drop 3 MPa,
function of the inverse ratio ‘/L. The power law trend (dashed line) follows the expected exponent �1 +
H = �0.3 as predicted by equation (5). This can be compared to Figure 5 of Marsan [2006].
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On or close to the main fault, stress heterogeneity is
dominated by slip variability. Scale-invariant slip models
have been proposed by several authors [Andrews, 1980;
Frankel, 1991; Herrero and Bernard, 1994; Mai and
Beroza, 2002]. For a two-dimensional fractal model, the slip
u(k) is proportional to k�1�H g(k) with H the Hurst exponent
related to the fractal dimension D = 3-H, where g is a
realization of a Gaussian white noise, and k the wave
number. In their extended analysis of the slip distributions
of 44 earthquakes, Mai and Beroza [2002] found that H =
0.71 ± 0.23. Since the stress drop scales as t(k) � k u(k) �
k�Hg(k) [e.g., see Schmittbuhl et al., 2006], the scaling of
the standard deviation st of the stress change at the length
scale of the nucleation sites, ‘, is given by Marsan [2006]:

st ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

‘

� �2�2H

�1

s
ð5Þ

for H < 1, where L is the rupture length of the earthquake.
The standard deviation, hence the variability of the stress
drop, thus diverges for ‘!0 when H 
 1 [Helmstetter and
Shaw, 2006]. Figure 4 shows an example of how the stress
drop roughness depends on the scale ratio between the
fault size L and the nucleation scale ‘. A 10 � 10 km2

fault is simulated, which roughly corresponds to a
magnitude 6 earthquake: we generate a fractal (scalar) slip
u(x, y) with Hurst exponent H = 0.7, such that the stress
drop, defined as (@x + @y) u, has a mean value of 3 MPa. We
vary the scale of observation, thus changing the scale ratio
between the rupture size L and the cutoff scale ‘. As this
scale ratio is increased, the roughness of the stress drop is
enhanced, with the emergence of patches undergoing stress
loading (i.e., negative stress drops).
[25] We calibrate the intensity of the stress fluctuation by

considering that the induced stress variability of large
earthquakes is typically of the order of the average stress

drop t, when observed at the ’5 km scale. Using H = 0.7,
this gives that the stress variability at the nucleation length
scale of approximately 10 m would be of the order of 6 t. In
the following, we define the stress variability s7 induced by
a m = 7 event as an input parameter, typically ranging
between 0.1 and 10 times the mean stress drop: 0.1 < CV =
s7/t < 10, where CV is the coefficient of variation of the
stress distribution.
[26] The dependence of the stress drop heterogeneity

on the magnitude is given by equation (5), together with
L = ‘ 10b(m-m0

) , where the empirical value of b is close
to 0.45 [Wells and Coppersmith, 1994] (assuming the
rupture length as the square root of the rupture area). We
denote by m0 the magnitude corresponding to a rupture
size of ‘, i.e., the minimum magnitude for friction-
controlled earthquakes.
3.1.3. Stress Drop Modeled With Gaussian Statistics
[27] A Gaussian model for t is only a first-order approx-

imation. There is evidence for an asymmetric stress drop in
some instances [Day et al., 1998], with pronounced peaks
of high stress drop embedded in large zones of low, negative
stress drop. Elaborating even further away from a Gaussian
model, Lavallée and Archuleta [2003, 2005] have proposed
that the slip distribution of both the 1979 Imperial Valley
and the 1999 Chi-Chi earthquakes are better modeled by
Lévy stable statistics. In this model, t(k) � k-H ga(k), where
ga is a Lévy noise with stability index a, typically with a
close to 1 (hence ga close to a Cauchy noise). The difficulty
in handling this type of model is that the stress drop
distribution can no longer be characterized by its standard
deviation, as it is not defined anymore. Clearly, Lévy-
distributed stress drops will generate even rougher fields,
and the results presented in this paper, that are based on
normal (Gaussian) laws, can therefore be seen as a ‘‘most-
conservative,’’ i.e., least heterogeneous, limit case.
3.1.4. Nucleation Size
[28] So far, nucleation zones lack direct observation.

Therefore, we assume the simplest case that the nucleation
size is independent of the aftershock magnitude. This is in
agreement with the well-known cascade model for earth-
quake ruptures [e.g., Kilb and Gomberg, 1999] and numer-
ical simulations [Lapusta and Rice, 2003]. In particular, we
assume that the magnitude m0, which corresponds to the
nucleation size ‘, is constant. In the case of m0(m), our
results would be directly applicable only for each magnitude
band of the aftershocks separately. However, because of the
weak dependence of our results on m0 (see Figure 5), our
general results are expected to remain valid even in this
case.

3.2. Model Predictions Versus Observations

[29] We calculate the seismicity rate within the rupture
zone of the main shock by solving equation (4) numerically
with a magnitude-dependent Gaussian probability distribu-
tion, i.e., f(t) is Gaussian with mean �t and standard
deviation st. t is the (Coulomb) stress drop on the main
fault which can be seen further away from the fault [King
and Cocco, 2001; Freed, 2005; Steacy et al., 2005]: adding
stress heterogeneities allows to go beyond usual Coulomb
stress modeling by introducing a stochastic term to the
deterministic stress field. This stochastic term is here
viewed as accounting for the small-scale variability that is

Figure 5. The dependence of the expected stress drop
variability s/s7 on the main shock magnitude m for Hurst
exponents inverted from observations. For each Hurst
exponent, the symbols refer to m0 = �2, while the lines
refer to m0 = �4 and m0 = 0, respectively. We use b = 0.45
in the L � 10b�m relation, according to Wells and
Coppersmith [1994].
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not accessible to direct measurement nor computation. It
can alternatively be seen as modeling the error on the large-
scale stress field: as well as a mean stress drop t, we also
need its uncertainty st. Accounting for such an uncertainty
is not a second-order refinement: as already shown by
Helmstetter and Shaw [2006] and Marsan [2006], it can
significantly alter the seismicity.
[30] The model has a number of parameters, which have a

direct influence on the Omori-Utsu parameters p and c. We
summarize these parameters in Table 2, along with their
values. For an earthquake of magnitude m, the distribution
of stress drops on the main fault is thus a Gaussian
distribution with mean t independent of m, and standard
deviation as given by equation (5). The crucial point here is
that this standard deviation increases with the magnitude m,
this increase being constrained by parameters C (or equiv-
alently s7 or CV), ‘ (or m0), and H. Changing these three

key parameters amounts to changing the dependence of p
and c on m.
[31] The standard value of the Hurst exponent H is set to

0.7 because it was the mean value obtained by Mai and
Beroza [2002]. Letting H vary within the acceptable range
0.5 
 H 
 0.9 strongly affects the results, as decreasing H
causes the stress field to become more heterogeneous. This
is further discussed in section 3.4.
[32] A first point is to note that the aftershock decay

depends very little on ‘ and m0, as long as they remain very
small compared to the sampled rupture lengths and magni-
tudes. Figure 5 illustrates the increasing stress drop hetero-
geneity for increasing earthquake magnitudes for the range
of Hurst exponents inverted from slip data and for three
different m0 value. The tested values of m0 = �4, �2, and 0
correspond to nucleation length of approximately 0.3 m,
2.2 m, and 18 m [Wells and Coppersmith, 1994]. Given that
the dependence on the assumed m0 value is very weak, we
(arbitrarily) set m0 to �2 for the remainder of this study.
[33] The only parameters left to vary are therefore the

mean stress drop and the calibration constant C (or s7, CV).
We calculate the aftershock rate as a function of the main
shock magnitude for different values of these parameters.
Figure 6 shows the aftershock decay for different main
shock magnitudes in the case of a coefficient of variation
CV � s7/t = 2.3 and a stress drop of t = 1 MPa.
[34] The Omori-Utsu law is fitted to each of these curves

in the time interval [10�4–10�1], yielding an estimate of the
p value as a function of the main shock magnitude. For a
stress field variation of CV = 2.3, the magnitude depen-
dence is found to be in good agreement with the observed
p value dependence in California [Ouillon and Sornette,
2005] and to our global analysis of section 2. This is shown
in Figure 7. Note that for significantly stronger heterogene-
ities, the magnitude dependence becomes quite weak and
would be difficult to detect in real data (see the curve for
CV = 8.0 in Figure 7): in this case, the stress heterogeneity

Table 2. Summary of the Model Parameters That Affect the

Aftershock Decay Characteristics

Parameter Description Value

As constitutive parameter
times effective normal stress

0.1 MPa

t mean stress drop on
the main fault (the negative
of the mean stress change)

variable

st stress drop standard deviation
at the nucleation length scale

variable

‘, m0 nucleation length (‘) and
equivalent nucleation
magnitude (m0)

‘ = 2.2 m, m0 = �2

C, s7, CV calibration constants for st,
see equation (5); s7 = st for
m = 7 earthquakes,
and CV = s7/t

variable

H Hurst exponent of fractal
slip distribution

0.7 ± 0.2

Figure 6. The aftershock decay as a function of the main
shock magnitude in the case of H = 0.7, CV = s7/t = 2.3,
and t = 1 MPa. The aftershock rate is normalized by the
background rate. At long timescales (i.e., t/ta typically
greater than 1), the aftershock rate becomes less than the
background rate, indicating the onset of a seismic
quiescence. This is caused by the overall stress drop [see
Marsan, 2006].

Figure 7. The p value as a function of the main shock
magnitude in the case of H = 0.7 and CV = s7/t = 2.3, 2.9,
and 8.0. The curves are compared with the observed p value
dependence in California (data from Ouillon and Sornette
[2005], results based on their declustering method 1 (dots)
and declustering method 2 (squares)) and with the range of
p values reported in section 2 (crosses).
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is large enough even at magnitude 2 to push the p value
close to 1.

3.3. Aftershock Productivity as a Function of Main
Shock Magnitude

[35] In the case that ruptures produce a stress drop
variability which is independent of the earthquake magni-
tude, our model would predict an aftershock productivity
which would simply scale with the main shock rupture area,
i.e., �100.9m. However, as another consequence of the
scaling of stress heterogeneity with main shock magnitude,
the aftershock productivity is not simply scaling with main
shock area anymore. For the previous examples, the pro-
ductivity values c are shown in Figure 8. For moderate

stress heterogeneities, the increase of the aftershock pro-
ductivity is close to �101.05m which is the empirical scaling
exponent found by Helmstetter et al. [2005] for California
and in agreement with our own investigations of the global
earthquake catalog with methods 1–3 (Figure 3).
[36] For significantly larger heterogeneities (CV = 8.0),

the scaling exponent is smaller and becomes almost�100.9 m.
Thus for large heterogeneities, the model predicts an almost
constant p � 1 value and an aftershock productivity which
simply scales with the rupture area.
[37] We have implicitly assumed that aftershocks can

occur everywhere on and close to the main shock fracture.
However, some studies indicate that aftershocks occur on
spatial fractals with dimension D < 2 [Turcotte, 1997;
Helmstetter et al., 2005]. Assuming that aftershocks are
restricted to such fractal subsets of the fault plane, we would
get a smaller theoretical cutoff value amin = b � D = 0.45 D
instead of 0.9.

3.4. Dependence on the Hurst Exponent and the Stress
Drop

[38] Our general findings are independent of the assumed
value of the mean stress drop t. The increase of the p value
and the aftershock productivity is found to be preserved for
other values of t. However, changing t impacts on the
degree of the stress field heterogeneity which is needed to
produce the same magnitude dependence. For example,
practically the same curve as shown in Figure 7 for t =
1 MPa and CV = 2.3 is found for t = 0.5 MPa with CV =
4.0 and t = 2 MPa with CV = 1.6. These results depend also
on the Hurst exponent. Figure 9 shows for the case of t =
1 MPa the same characteristics for the lower and upper
limits of the observed Hurst exponents, H = 0.5 and H = 0.9.
In each case, the standard deviation s7 is chosen such that
the p value dependence on magnitude fits the observation
best. It is found that higher Hurst exponents underestimate
the observed magnitude dependence whereas lower Hurst
exponents seem to overestimate the trend. Thus the value
H = 0.7 which is independently found to best describe

Figure 8. The aftershock productivity as a function of
main shock magnitude. Note that the productivity is
normalized by the background rate r. The results are
compared with the two scaling laws �101.05m and �100.9m.
For a comparison, the observational c values reported in
section 2 have to be rescaled by the unknown factor ta/r (ta
measured in units of days). For a factor of 1250, the
observations are represented by small crosses.

Figure 9. (a) The p value as a function of the main shock magnitude in comparison for the three
different values H = 0.5, 0.7, and 0.9. In each case the stress field heterogeneity is chosen in a way that
the empirically data points (for description, see Figure 7) are best fitted: CV = 6.5 for H = 0.5; CV = 2.3
for H = 0.7, and CV = 1.5 for H = 0.9. (b) The aftershock number as a function of main shock magnitude
for the same cases. In both cases, the data reported in section 2 are added (small crosses).

B10309 HAINZL AND MARSAN: MAGNITUDE DEPENDENCE OF THE OMORI LAW

9 of 12

B10309



observed slip distributions is also found to give consistently
the best description of the aftershock decay. This is another
indication of the applicability of the rate-and-state friction
model for aftershocks.
[39] To examine the whole parameter space more system-

atically, we calculate, for stress drops varying between
0.1 MPa and 10 MPa, the stress field variability CV which
leads to a p value increase of 0.1 from m = 3.0 to 7.0 main
shocks. The resulting curves are shown for the different
Hurst exponents in Figure 10. These curves can be seen as
the boundary delineating the parameter region where sig-
nificant p changes should be detectable from the analysis of
empirical data sets: For lower CV values, the p value change
is larger than 0.1 while, for higher CV values, p value
changes (smaller than 0.1) could be hardly detected in
empirical data sets. It is found that for the same CV value,
the p value change becomes more significant for smaller
stress drop values.

4. Influence of Afterslip on the p and c
Dependence on m

[40] There is growing evidence that large main shocks are
followed by significant amounts of afterslip [e.g., Miyazaki
et al., 2004; Chlieh et al., 2007]. It has been proposed that
this afterslip, which typically decays as 1/t (see Montési
[2004] for analysis and modeling of afterslip decay), could
be the driving force in producing aftershocks [Perfettini and
Avouac, 2004]. Dieterich [1994] derived, in the context of
rate-and-state friction, the earthquake rates that would be
triggered by a 1/t-decaying afterslip following a coseismic
stress change. Addition of afterslip is indeed seen to
substantially modify the aftershock decay, both in terms
of decay exponent (p value) and of aftershock productivity.
We therefore consider in this section how afterslip could
further change the conclusions reached in section 3.

[41] For a coseismic stress change t followed by an after-
slip-induced stress of the form

t1 � ln 1þ t=t�ð Þ; ð6Þ

solving equation (2) leads to the seismicity rate

l t; tð Þ ¼ r

e�
t
As 1þ t

t�

� ��aþ t�

1það Þta 1þ t
t� � 1þ t

t�

� ��a� 	 ð7Þ

in place of equation (3) [see Dieterich, 1994]. Parameter
a equals t1/As. This solution ignores the constant, tectonic
stressing rate _t contribution to the postseismic stress.
Accounting for it affects the aftershock decay l(t, t) (as
given by equation (7)) only when t becomes comparable
to ta, and amounts to a convergence of the rate to the
background rate r. As an illustration, Figure 11 compares
the solution of equation (7) that ignores the tectonic loading,
with the numerical solution of equation (2) that includes this
loading.
[42] We analyze the effect of afterslip on the p value

variations and the aftershock productivity for the previous
example of t = 1 MPa and CV = 2.3. Parameter t* is set to
10�7 ta. The strength of the stress changes induced by
afterslip is characterized by the ratio between the cumula-
tive stress change by afterslip within time ta and the mean
of the coseismic stress drop t. The results are shown in
Figure 12. For additional loading (positive values of t1), the
p values slightly decrease and the productivity increases.
Vice versa for an unloading (negative values of t1): p values
increase and the productivity decreases. p values larger than
1 are found in the case of very strong unloading when the
afterslip induced stress is of the order of the coseismic mean
stress drop. However, in all cases, the consideration of
afterslip does not change the general shape of both the

Figure 10. Phase diagram for significant p value changes.
The plot shows the stress field variability CV which leads to
a p value increase of 0.1 from m = 3.0 to 7.0 main shocks,
considered as an observable change: For lower CV values,
the p value change with main shock magnitude is
significant, while p value changes could be hardly detected
in empirical data sets for higher CV values.

Figure 11. Seismicity rate normalized by background rate,
for a 1 MPa coseismic stress drop followed by a stress
increase due to afterslip t1 � ln(1 + t/t*). Here t1 = 1 MPa,
t*/ta = 10�7, As = 0.1 MPa, and the tectonic stress rate is
_t = 0.1 MPa per unit ta. Both solutions are identical as long
as t < ta.
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p value change and the scaling of the productivity with
main shock magnitude.

5. Summary and Conclusions

[43] In this paper, we investigate the main shock magni-
tude dependence of the aftershock activity which results
from fractal slip and frictional nucleation of earthquakes.
Fractal earthquake slip directly leads to a rupture size-
dependent heterogeneity of the induced stress field. The
larger the earthquake, the stronger is the expected variance
of the stress changes. Thus larger earthquakes will typically
produce strongly loaded patches within the rupture zone,
even though the average stress level dropped significantly.
In such loaded patches, which are for smaller events less
frequent, aftershocks will nucleate rapidly. We systemati-
cally studied the predicted aftershock characteristics and
compared them with observations. First, the model predicts
that small earthquakes should be followed by an immediate
on-fault seismicity shadow, while larger earthquakes should
not because of the induced stress drop heterogeneity. Direct
observation of this shadowing effect for small main shocks
has been made by Rubin [2002], for relocated earthquakes
on the San Andreas fault, and by Fischer and Horlek [2005]
for relocated swarm earthquakes in the Vogtland area.
Second, Omori-Utsu’s p value increases with main shock
magnitude as a consequence of enlarged stress field hetero-
geneity. The aftershock productivity c is also affected,
although less significantly, by the stress heterogeneity: its
scaling c � 10am with main shock magnitude m is made
steeper by a rough stress field (a’ 1.05 compared to a = 0.9
when there is no heterogeneity). Both predictions are in
good agreement with recent observations by Ouillon and
Sornette [2005] and Helmstetter et al. [2005] and our own
observations of section 2. In particular, we find that the
Hurst exponent deduced from slip inversions, H = 0.7, gives
the best fit to the data which supports the model.
[44] To prove the robustness of the recently observed

main shock magnitude dependence of the p value and the

scaling of the aftershock productivity c, we have performed
an independent analysis of the global earthquake catalog for
main shock magnitudes M 	 5.5. For a number of different
declustering algorithms, we could confirm a systematic
increase of the p value with main shock magnitude. On
the other hand, we found that the apparent productivity
value is strongly dependent on the selection algorithm,
resulting in a broad interval of possible values between
0.6 and 1.15. By means of a systematic parameter analysis,
we have used these empirical observations to constrain the
expected degree of the stress drop variability.
[45] Within the same model framework, p values larger

than 1 cannot be explained if only coseismic main shock-
induced stress changes and tectonic loading are consid-
ered. This is in contradiction with empirical observations of
p > 1 aftershock decays. However, Dieterich [1994] already
showed that log(t) unloading in agreement with frequently
observed afterslip can explain p > 1. We have checked
numerically that this result remains true if tectonic
forcing is additionally taken into account. Our analysis
shows, however, that afterslip does not change the general
characteristics of the main shock–magnitude dependence of
the p value and the aftershock productivity.
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