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Abstract

This work is devoted to a study of the classical homogenization process and its in
uence on the behavior of a
composite under non linear dynamic loading due to contact and friction. Firstl y, the general problem of convergence
of numerical models subjected to dynamic contact with friction loading i s addressed. The use of a regularized friction
law allows obtaining good convergence of such models. This study shows that for a dynamic contact with friction
loading, the classical homogenization process, coupled with an homogenization of the frictional contact, enables
replacing the entire heterogeneous model by a homogenized one. The dynamic part of the frictional contact must be
homogenized by modifying the dynamic parameter of the friction law. Modi�cati on of the dynamic parameter of the
friction law is function of the type and regime of instability. A calculat ion of a homogenized friction coe�cient is
presented in view to homogenizing the static part of the frictional contac t when the friction coe�cient is not constant
over the contact surface. Finally matrix and heterogeneities stresses in the heterogeneous models are identi�ed by
using the relocalization process and a frictional contact dynamic analys is of a homogeneous model. To cite this
article: Peillex G., Baillet L., Berthier Y., International Jour nal of Solids and Structures (2008).
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1. INTRODUCTION

The subject of composite materials under frictional contact loading is ofgreat interest to the aeronautical
industry. However frictional contact is a complex form of non linear dynamical loading. The main character-
istics of such loading are caused by instabilities at the contact interface. This fact has been widely studied
for homogeneous materials (Adams, 1995)(Oueslati et al., 2003)(Linck, 2005)(Massi etal. 2007). From a nu-
merical point of view, frictional contact loading with a constant Coulomb f riction coe�cient may be ill posed
(Martins and Sim~oes, 1998)(Ranjith and Rice, 2001)(Renardy, 1992) and so convergence of numerical models
may be hard to achieve. However, experimental studies (Prakash 1993)(Prakash and Clifton, 2001), have led
to the formulation of a speci�c friction law called the "Prakash Clifton " law. It appears that a simpli�ed
version of this law avoids ill-posed situations in numerical frictional contact problems (Cochard and Rice,
2000). All the studies cited above were carried out with homogeneous and mostly isotropic materials. Alart
and Lebon (1998) mixed static frictional contact and heterogeneous materials.To our knowledge no work on
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homogenization under dynamic contact with friction loading has been published as yet. This work is devoted
to the study of a composite under non linear dynamic loading. Contact with friction boundary conditions
leads to considerable non linearity. The two di�erent scales of the composite are studied. A comparison
is drawn between the results obtained from heterogeneous models (matrix+heterogeneities) that represent
the mesoscopic scale of the material, and from a homogeneous model representing the macroscopic scale
whose properties are obtained by using classical homogenization theory (Bornert et al., 2001). Although the
di�erent heterogeneous models all have the same homogenized sti�ness matrix, which will be that of the
homogeneous model, it will be shown that for certain loading cases the heterogeneous models do not exhibit
the same behavior under dynamic frictional contact loading.
The following study is divided into three parts. The �rst intro duces the numerical model, the particular
friction law, achieving convergence and the speci�cities of the material. The second is devoted to mapping
from mesoscopic to macroscopic scale by applying the homogenization procedure to the elastic properties
of the heterogeneous model and by homogenizing the frictional contact. Particular attention is given to the
role of the di�erent parameters of the friction law and to the determi nation of the values of these parameters
entered in the homogeneous model. The aim of the previous determination was to ensure that the homo-
geneous model exhibited the same frictional contact behavior as the heterogeneous ones. The last part is
a reversal of the second part as it deals with macro to meso mapping withrelocalization procedures. This
process, introduced by Kruch et al. (Kruch and Forest, 1998)(Kruch et al., 2004), for the quasi-static loading
of composite materials, is used to obtain the stresses at the mesoscopic scale of the material (heterogeneous
models) by performing simulations of the macroscopic scale. This part will emphasize the ability of this
process under dynamic frictional contact loading.

2. NUMERICAL MODEL

2.1. Finite element formulation

The problem of unilateral contact with Coulomb friction problem (cf. �gu re 1) consists in �nding the
displacementu and the second order stress tensor

��
� (u) satisfying the equation (1) of the mechanics, unilateral

contact (2), and Coulomb friction law (3) :
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� (u) in 
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div
��
� (u) + f = � •u in 
 1

��
� (u)

�
n =

�
P over  2

u:t = 0 over  2

(1)

[u :n ] � 0; � n (u) � 0; � n (u) [u :n ] = 0 over  4 (2)

(
j� t j < � j� n j ) stick: [ _u] = 0
j� t j = � j� n j ) slip: 9
 � 0 s:t : [ _u] =  
� t

(3)

where � is the density,
���
�
D is the fourth order tensor of the linear elasticity,

��
� (u) = ( r (u) + r (u)T )=2 is the

linearized strain tensor, � n and � t is the normal and tangential contact stress acting on the surface  4, f is
the external forces distribution acting on the pin,

�
P is the applied pressure,n and t stand for the normal

and tangential directions for the surface considered while [x] is the symbol for the jump of variable x at the
contact interface  4. The double dot superscript stands for the second partial derivativerelative to time.
As the simulations take into account non linear dynamic e�ects, the PlastD (Baillet and Sassi, 2002)(Linck
et al., 2003) 2D explicit dynamic �nite element laboratory code is employed to solve the systems (1), (2)
and (3). This software uses the forward Lagrange multiplier (4) method to determine the contact forces,� n ,
and a Newmark-� 2 time integration scheme (Bathe, 1982)(Hughes, 1987) (5).
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Figure 1. Boundary conditions and the model used.

The equation of the forward increment Lagrange multiplier method is constructed using equations of
motion developed via the principle of a virtual work equation at time tn (tn = n� t ) and the displacement
constraints acting on the surfaces in contact at timetn +1
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M •u n + C _u n + Ku n + GT
n +1 � n = f ext

n

Gn +1 f x n + u n +1  u n g � 0
C = � K

(4)

whereGn +1 is the global matrix of the constraint, u n and u n +1 are the displacement vectors at timetn and
tn +1 , x n and x n +1 are the position vectors respectively at timetn and tn +1 . M, C and K are respectively
the mass , damping and sti�ness matrices.� is a damping coe�cient. f ext

n are the nodal vectors of external
forces. The dot and double dot superscript stand for �rst and second partial derivative related to time. At
any time step, the velocity _u n and acceleration•u n vectors are related to displacements and time step �t in
accordance with the� 2 method (� 2 2 [0:5; 1[)

(
_u n = 1

1+2 � 2

h
_u n  1 + � t(1  � 2) •u n  1 + 2� 2

� t (u n +1  u n )
i

•u n = 2
� t 2 (u n +1  u n  � t _u n )

(5)

In order to achieve stability and convergence of the� 2 method, the time increment � t must conform to the
Courant-Friedrichs-Lewy condition (Sanz-Serna and Spijker, 1986) :

� t �
hmini

cL
(6)

where hmini is the minimal element length and cL is the longitudinal wave velocity of the material. The
time step � t is equal to 5ns throughout this study. The element length used in this study, hmini = 10  4m,
is much smaller than the wavelength� = c

f of the frequencies,f , which arise in the model (� 105Hz)(�gure
5(c)). For cL = 4400ms 1 and f � 105Hz, � is estimated at 440:10 4m which is much larger than the
element size.
The deformable/rigid model used is shown in �gure 1. It consists of a rectangular pin (
 1), modeled with
linear quadrilateral �nite elements assumed to be under plane strain, rubbing against a rigid 
at surface
with a translation velocity of 2 m:s 1.A pressure P is applied on the top of the pin. The status of a node
on the contact surface is obtained by using a friction law (3). The loading due to dynamic contact with
a constant friction coe�cient is neither uniform over the whole mo del nor constant. Contact instabilities
coexisting with the waves can occur and propagate in the model and are observed experimentally (Ben-Zion,
2001)(Lykotra�tis and Rosakis, 2004)(Xia et al., 2004). These instabilities are of di�erent types depending
on the di�erent contact statuses (stick, slip or separated) that occur in the model. The works of Linck (Linck
et al., 2003), Oueslati (Oueslati et al., 2003), Adams (Adams, 1995) and Martins (Martins et al., 1999) show
that, due to the non linearity of the problem, the type of instabiliti es depends on the elastic properties of
the material and on the applied pressure - velocity pair of the rigid 
at surface.
In order to avoid convergence problems that can occur when using a classical Coulomb law (3), a regularized
Coulomb friction law, also called simpli�ed "Prakash-Clifton" law (7) , is used (Peillex et al., 2006) to model
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solids rubbing against one each other numerically (Ranjith and Rice, 2001)(Cochard and Rice, 2000). This
regularized friction law (�gure 2) links the tangential contact stress � t to the normal contact stress � n by
way of the friction coe�cient �
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>:

j� �
t j < � j� n j ) stick: [ _u] = 0; � t = � �

t

j� �
t j > � j� n j )

(
slip: _� t =  j V j =L� (� t  �� j� n j)
9
 � 0 s:t : [ _u] =  
� t

� =

(
1 � �

t � 0
 1 � �

t < 0:

(7)

Here [ _u] stands for the relative tangential velocity between a point at the interface and the rigid surface.
� �

t is the tangential contact stress calculated under the sticking assumption and V is the sliding velocity of
the surface.L � is a length parameter and the superscript dot stands for partial derivative relative to time.
Throughout this study the friction coe�cient � is equal to 0.25 at every point of the pin in contact with the
rigid 
at surface, and if not speci�ed the ratio � = L �

jV j > 0 is equal to 300 times the time step (� t = 5ns).
The friction law used in this study, i.e. the regularized Coulomb friction law, has two parameters: the friction
coe�cient � and regularization time � . The regularized Coulomb friction law tends asymptotically toward
the classical Coulomb law. For example, if the normal stress is a Heaviside (�gure 2) then the tangential
stress follows the same evolution with a classical Coulomb law and for� = 0 :25. With the regularized
friction law the response is almost similar except that the step is no longer sharp but has an exponential
shape. Figure 2 shows that the friction coe�cient � expresses a slow evolution through time and so is a
\static" parameter whereas the regularization time � expresses the fast evolution of the friction law and so
is a \dynamic" parameter.

2.2. The composite studied

The model composite (described on �gure 1) consists of a collection of heterogeneities embedded in
a matrix. The volume rate of the heterogeneities is ten percent. Theproperties of the matrix and the
heterogeneities are summarized in table 1. The heterogeneities are vertical as this is a characteristic of
the real composite. They are about a hundred microns in width with a height from 1.2 to 3.6 millimeters
(�gure 3). The homogeneous model takes the presence of heterogeneitiesinto account by using homogenized
properties (10). The aim of this study is to de�ne a homogeneous model that represents the real behavior
of the composite under non linear dynamics due to frictional contact. Results concerning convergence are
presented �rst.

2.3. Convergence of the model and e�ciency of the regularized friction law

The calculations for checking whether convergence is achieved wereperformed for the slip-separated
instability type. The trajectory (�gure 4) enhance the separation (0 :2�m ) of the node from the rigid 
at
surface. To summarize the di�erent results regarding convergenceobtained with the regularized friction
law and for the homogeneous model, �gure 5 shows di�erent data concerning the central node in contact,
M (�gure 1), for models with two di�erent mesh sizes and time steps. All the results except those of
�gure 5(a) are drawn during the periodic steady state. The phase diagram(�gure 5(b)) represents the
velocity of a node as a function of its displacement in the same direction (here x) and shows that the
periodic steady state is characterized by a limit cycle around an equilibrium position (center of the diagram).
The purpose of this �gure is therefore to illustrate that the convergence through grid size and time step
reduction is achieved. Moreover it provides an idea of the relativetangential velocity and displacement
between the contact nodes and the rigid 
at surface. This surface has aconstant tangential translation
speed of 2000mm:s 1, whereas the relative tangential speed between the central contact node and the
rigid surface evolves between 1200mm:s 1 and  2800mm:s 1. Figure 5(c) gives an idea of the main
frequency (40kHz ) and of the harmonics (80kHz and 120kHz ) present in the models and shows very good
correlation between the two curves representing the two di�erent sets of parameters, once again showing
that convergence is achieved. Then �gure 5 shows that convergence is achieved even if slip separated contact
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Figure 2. Evolution of the contact tangential
stress � t with the Prakash-Clifton law after
a Heaviside on the contact normal stress � n .

Heterogeneities Matrix

Young modulus E = 240 GPa E = 30 GPa

Poisson coe�cients v = 0 :2 v = 0 :2

Shear modulus G = E=2(1 + � ) G = E=2(1 + � )

Density 1770 kg/ m3 1770 kg/ m3

Longitudinal wave velocity 11644ms  1 4116ms  1

Shear wave velocity 7516ms  1 2657ms  1

Table 1. Mechanical properties of the components of the com-
posite.

Figure 3. Heterogeneous model : exact morphology (also used
for the localization calculations).

Figure 4. Trajectory of a contact node during the periodic
steady state. Slip-separated instabilities ( Y = 0 mm : rigid 
at
surface).

instabilities exist in the model, as shown here. Moreover, convergence is also achieved for the heterogeneous
model although this is not shown here.

2.4. Particularity of dynamic frictional loading : di�erent instabil ity regimes.

A crucial issue in the temporal analysis of bodies under dynamic frictional contact is the contact instabili-
ties. These instabilities can be of di�erent types according to the status of the contact nodes. The pressureP
applied on the �nite element model takes the values 0:4MPa or 0:5MPa. For a friction coe�cient � equal to
0.25 (the same as throughout this study), these two cases correspond to the "slip-separated" contact insta-
bility (Linck et al., 2003). An arbitrarily chosen contact node slides on the rigid 
at surface or separates from
it. For this type of contact instabilities di�erent regimes can appear , depending on the proportion of sliding
time of a contact surface node, versus separation time. If an arbitrarily chosen contact node slides 70% of
the time and is separated from the rigid surface 30%, it corresponds to regime N�1 ( P = 0 :5MPa). If the
same node slides 20% of the time (80% separated), then it will correspondto regime N�2 ( P = 0 :4MPa).
A characteristic of the di�erent regimes observed is the apparent friction coe�cient � app (t). This coe�cient
is the ratio, at every time step, of the sum of the tangential forces at the upper surface  2 of the model
over the sum of the normal forces at the same location. It corresponds to the friction coe�cient measured
experimentally. The �gure 6 presents the evolution through time of the apparent friction coe�cient for a
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(a) Transient regime t < 2:5 � 10 4 and periodic steady state
t > 2:5 � 10 4 of the abscissa.

(b) Mean phase diagram of the tangential movement during the
periodic steady state. Limit cycle.

(c) Spectrum of the tangential movement during the periodic
steady state.

Figure 5. Di�erent results, concerning the central contact n ode M (�gure 1), illustrating the convergence of the models th rough
grid size (h = 0 :1mm and h = 0 :08mm ) and time steps (� t = 5 ns and � t = 2 :5ns) reduction. Convergence is achieved by
using to the Coulomb regularized friction law ( � = 0 :25, P = 0 :5MP a , V = 2 ms  1 , � = 4 :4e 09 ,� = 1500 ns).

homogeneous model under two di�erent loading (P = 0 :5MPa and P = 0 :4MPa) resulting in two di�erent
instability regimes. For reasons of readability these types of curvesare not be presented in what follows.
Instead we use the concept of dissipated frictional energyE f riction . The dissipated frictional energy is calcu-
lated during the simulation, by using the tangential contact force Ft at every contact nodes, and the relative
sliding velocity Vrel between a contact node and the rigid 
at surface :

E f riction =
Z t

0

X

@
 SC

Ft Vrel dt (8)

where @
 SC is the set of the sliding contact nodes.
This dissipated frictional energy can also be related to global quantities of the contact such as the applied

pressureP, the velocity of the rigid 
at surface V , the whole contact surfaceS and the global interface
friction coe�cient � inter :

E f riction = � inter PSV t (9)
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where t is the time. Figure 7 is analogous with �gure 6 but from an energetic point ofview. As the periodic
steady-state is reached early in the simulation (t > 2:5 � 10 4), the evolution of E f riction through time is
a straight line. The two regimes dissipate di�erent energies and soare characterized by two di�erent global
interface friction coe�cients. Due to the presence of instabilities the dissipated frictional energy is less than
the one namedEPS which would be dissipated if all the contact nodes were sliding at constant speed and
if the pressure were uniform. In the following most of the resultswill be presented by making use of the
global interface friction coe�cient � inter .
Remark 1 Although� app characterizes the friction at the upper surface of the model whereas� inter describes
the friction at the contact surface, the average�� app through time of � app is equal to � inter , because from a
quasi static point of view the friction force at the upper surface of the model is equal to the one at the contact
surface.

Figure 6. Apparent friction coe�cient � app for two di�erent
regimes. The average of this coe�cient through time � � app is
�� app = 0 :21 in regime N�1 ( P = 0 :5MP a ) and �� app = 0 :17 in
regime N�2 ( P = 0 :4MP a ). The main vibration frequency is
f = 41200Hz for regime N�1 and is f = 39600Hz for regime
N�2.

Figure 7. Dissipated frictional contact energy E f riction for two
di�erent regimes. The slope of this curve in the periodic ste ady
state ( t > 2:5 � 10 4s) gives the global interface friction co-
e�cient � inter . � inter = 0 :21 for regime N�1 ( P = 0 :5MP a )
and � inter = 0 :17 for regime N�2 ( P = 0 :4MP a ). EPS stands
for the energy that would be dissipated if all the contact nod es
were sliding at constant speed and if pressure ( P = 0 :5MP a )
were uniform. In this case � inter = 0 :25 = � .

3. HOMOGENIZATION OF STIFFNESS MATRIX AND ADAPTATION OF THE
CONTACT FRICTION LAW

3.1. Homogenization of the composite material's properties

In order to determine the homogenized properties of the composite material (table 1), four identical
volumes (
 1 = 16mm � 56mm) with four randomized morphologies (i.e randomized distributions of hetero-
geneities with the same volume fraction : 10%), are modeled in two dimensions with the commercial code
Abaqus. The morphologies are assumed to be under plane strains with static loading. As the materials are
elastic, the properties are determined by using the classical theory of homogenization. Two di�erent types of
boundary conditions (stress or strain homogeneous on the contour  =  1 [  2 [  3 [  4)(�gure 1) are applied
in order to determine the �ve constants de�ning the behavior of a tr ansversely isotropic material (Lemaitre
and Chaboche, 2004). It was shown (Bornert et al., 2001)(Kanit et al., 2003) that the results given by these
two types of boundary conditions limit the exact result. The very low standard deviation (� 2:7%) between
the coe�cients of the homogenized sti�ness matrix obtained with the two types of boundary conditions and
for di�erent morphologies proves that the properties shown in matrix

��
D (equation 10) are very close to the
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exact ones and so the volume 
1 is su�ciently large to be considered representative of the morphologies, at
least under static loading.
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3.2. Homogenization of the sti�ness matrix and linear dynamics : a �rst step before non linear dynamic
loading

The following section deals with a comparison under linear dynamic loading between a homogeneous
model, with the properties obtained in the previous section, and aheterogeneous one, de�ned by hetero-
geneities embedded in the matrix whose properties are those of table 1.The goal here is to address the
question of the scale separation. A crucial issue in the problem of homogenization is the relationship be-
tween the size of the heterogeneities and the wavelength of typical elastic waves. If the wavelength of the
elastic waves propagating in the model is of the same order of magnitude as the size of the heterogeneities
or even smaller, then complex behavior may occur such as dissipation, refraction or di�raction. In such
cases it is necessary to use particular homogenization processes capable of taking into account the e�ect
of microstructure on wave propagation (Chen and Fish, 2001)(Fish and Chen, 2004)(Boutin, 1991)(Boutin,
1996)(Boutin and Auriault, 1993). In the cases of dynamic frictional contact loading the main frequency of
vibration of the model is about 40kHz which correspond to the �rst vibration mode of the model. Modal
analysis with two di�erent boundary conditions (BC1 and BC2) representing two extremal contact cases,
�gure 8, has shown in the case of the �rst mode of vibration that the mesostructure has no e�ect on the
dynamic behavior of the model, �gures 8(a) and 8(b). It is therefore impossible to dissociate the results
given by the heterogeneous model from those of the homogeneous one. This experiment proves that the
scale separation is realized for the �rst mode of vibration. Of course higher frequencies are present in the
model, due to the contact instabilities presented below. The spectrum of the normal contact stress reveals
that the highest frequency, which has an amplitude higher than 10% of the amplitude of the �rst frequency,
is about 500kHz . For a longitudinal wave celerity of cL = 4400m:s 1, this frequency correspond to a wave-
length � = 8 :8mm. This wavelength is much higher than the thickness of the heterogeneities (0:2mm) and
three times higher than the lenght of the heterogeneities (3mm). Thus, even if this frequency (500kHz )
of low amplitude is considered with caution, the corresponding wavelength is much higher than the size of
the heterogeneities. Therefore it is possible to conclude that thescale separation is e�ective, which is why
classical homogenization is used in the following.

(a) Results of the modal analysis for the BC1 boundary condi-
tion.

(b) Results of the modal analysis for the BC2 boundary condi-
tion.

Figure 8. Modal analysis of the model 
 1 .

The frequency (41580Hz) obtained by modal analysis when the surface  4 (�gure 1) is clamped in the y
direction and free along x, i.e. boundary conditions BC2 in �gure 8(b), is close to that (41200Hz - �gure
6) obtained during a temporal analysis, if the established regime is the �rst one. Inversely the frequency
(40000Hz) obtained by modal analysis when the surface  4 (�gure 1) is free in directions x and y, boundary
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conditions BC1 in �gure 8(a), is close to that (39600Hz - �gure 6) obtained during a temporal analysis, if
the regime established is the second one.

3.3. Dynamic frictional contact behavior of heterogeneous models

For each of the loading conditions (P = 0 :5MPa and P = 0 :4MPa) di�erent randomized heterogeneous
models with exactly the same friction law (� = 0 :25 and � = 1500ns) were tested under dynamic fric-
tional contact loading. These models have the particularity of all having the same homogenized sti�ness
matrix. Thus they are all equivalent under static, and linear dynamic loading. Table 2, which contains the
global interface friction coe�cient of the four heterogeneous models,shows that for P = 0 :5MPa, all the
heterogeneous models are equivalent, because they dissipate the same frictional energy and so the corre-
sponding global interface coe�cients are the same in periodic steadystate. All the heterogeneous models
are in regime N�1 ( � inter

�= 0:215). Inversely, for P = 0 :4MPa this equivalence disappears (table 3). The
heterogeneous model N�1 is no more in the regime N�1 but is now in the regime N�2 characterized by
� inter = 0 :173 whereas the heterogeneous model N�2 keeps the regime N�1. This di�erence in the behavior
of the heterogeneous models under dynamic frictional loading is probably due to local contact dynamics
that are di�erent from one model to the next and thus due to di�erent frictional stresses at the contact
interface. This di�erence of behavior between heterogeneous models with the same homogenized sti�ness
matrix prevents the homogeneous model from being equivalent to all the heterogeneous models. However,
it is shown hereafter that by applying an equation that links contact stress to instability type and regime,
it is possible to determine di�erent regularization times � for incorporation in the homogeneous model to
make it equivalent to the heterogeneous models.

3.4. Considerations about the friction law

To obtain two equivalent models (heterogeneous and homogeneous) in periodic steady state (i.e. limit
cycle), with dynamic friction problem, they must �rst be equival ent according to the static friction problem.
A necessary condition is therefore that they should be subjected tothe same tangential static load. Under
static loading, the regularization time � of the friction law does not play any role. This is why the local
friction coe�cient has to be identical in each model to ensure static equivalence between them.
Another necessary condition to ensure the equivalence of the homogeneous model with the heterogeneous one
is that they have the same local contact dynamics (governed by regularization time � ) in order to dissipate
the same energy by sliding on the rigid 
at surface thus obtain the same global interface friction coe�cient.

Therefore to obtain the same local contact dynamics and thus the same globalinterface friction coe�cient,
the parameter to be adapted is the regularization time� . This is the aim of the following section.

3.5. In
uence of regularization time � on the homogenization process : analytical development

Here, we focus on a the slip-separated instability regime (0:15 < � < 0:35). A node of the contact interface
slides or impacts on a rigid 
at surface. A calculation hypothesis is madein the framework of analytical
development. The shape of the real normal contact stress� n at node M, �gure 9, is approximated by the
shape described in �gure 10. Thus for period,T, of the signal there is a time,TG when the normal contact
stress is not nil, meaning that the node considered is sliding over the rigid 
at surface. TG depends on the type
and on the regime of instability and thus on the di�erent parameters (� ,� ,P ,V ) that govern the instability
type or regime. Time TG is almost constant for a given regime and type of instability. From equation 7, with
the regularization time, � , the local friction coe�cient, � , and considering that the relative sliding velocity
Vrel is uniform and constant, then the evolution of the tangential stress for the node considered is

� t =  � j� n j (1  e
 t
� )

Vrel

jVrel j
(11)

The friction coe�cient � � averaged through time at this node is then equal to
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0
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 t
� )dt (12)

�� = � [1 +
�

TG
(e T G

�  1)] (13)

Consequently, knowledge of the local friction coe�cient, � , the regularization time, � , and the time of sliding,
TG , makes it possible to estimate the friction coe�cient averaged through time �� . Thus this particular
friction coe�cient takes into account the in
uence of the instabil ities. Moreover if we assume that this
friction coe�cient averaged through time �� is the same over the whole contact, it is possible to link this
friction coe�cient to the energy dissipated by frictional contact E f riction :

E f riction = ��PSV t (14)

where P is the pressure applied on surfaceS and V is the sliding velocity of the rigid surface. Then, with
the assumptions made about the shape of the normal stress, �� should be a good approximation of the
global interface friction coe�cient � inter (equation 9). In order to validate this fact, a homogeneous model
with di�erent regularization time values has been simulated. The global interface friction coe�cient obtained
from the slope of the frictional dissipated energy curve,� inter is compared to the friction coe�cient averaged
through time, �� obtained from equation 13, �gure 11. Good correlation is found between the results. The
slight di�erence between the two curves is explained by the fact that analytical calculations are performed
with a strong assumption regarding the form of the normal stress (�gure 10). The change of sign for the
slope for � = 300� t is due to the transition from the instability regime N�2 to the N�1. T he analytical
equation gives good estimations of the global interface friction coe�cient and thus of the frictional energy
dissipated during contact instabilities.

It is important to note that this estimation requires the calculation of the model (homogeneous or het-
erogeneous) considered becauseTG cannot be determined before the analysis. It is also possible, knowing � ,
TG and the global interface friction coe�cient to estimate the regulariz ation time used in the model. It is
possible in this way to determine the regularization time needed in the homogeneous model to obtain the
same global interface friction coe�cient for two models (heterogeneous and homogeneous). A regularization
time of the homogeneous model di�erent from that of the heterogeneous model is a way of taking into
account the in
uence of the mesostructure over the behavior of thecomposite under dynamic with friction
loading.

3.6. Homogenization and regularization time

3.6.1. Applied pressureP = 0 :5MPa
For this applied pressure all the models, both heterogeneous and homogeneous, are in the slip-separated

instability type and in the regime N�1. The table 2 shows the global int erface friction coe�cient for the
four heterogeneous model and for the homogeneous model. As it is shown (section 3.3) all the heterogeneous
models are equivalent. The analysis of the heterogeneous model and equation 13 made it possible to determine
that if � = 1700ns the global interface friction coe�cient � inter of the homogeneous model is close to that of
the heterogeneous model (� = 1500ns). The results con�rm this determination of � . There is good equivalence
between the results obtained with the homogeneous model� = 1700ns and with the heterogeneous ones
� = 1500ns. The analysis of the homogeneous model with� = 1500ns, revealed that the measured global
interface friction coe�cient is � inter = 0 :22. For this particular loading case, modifying the regularization
time results in slightly better equivalence between the homogeneous model and the heterogeneous one.
Other results (not shown here) show that this improvement is important in the transient part of the signal
(t < 2:5 � 10 4s).

3.6.2. Applied pressureP = 0 :4MPa
As described in section 3.3, for this loading case, two heterogeneous models that were equivalent under

the previous loading (P = 0 :5MPa) now have two very di�erent behaviors illustrated by two di�er ent global
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Figure 9. Real evolution of the normal contact stress during
slip-separated instability at node M (�gure 1) : � = 0 :25,
� = 1500 ns, P = 0 :5MP a , V = 2 ms  1 , � = 4 :2 � 10 09 s.

Figure 10. Schematic evolution of tangential stress with the
classical Coulomb friction law ( � t  Coulomb ) and with the reg-
ularized one ( � t  regul ) when normal contact stress ( � n ) is a
succession of steps. The friction coe�cient is equal to 0 :25.

Figure 11. Comparison of the values of the global interface
friction coe�cient � inter , obtained by numerical experiments
from the slope of the frictional dissipated energy curve, an d
the friction coe�cient � � averaged through time, obtained an-
alytically.

Model and regularization time � Global interface friction coe�cient � inter

Heterogeneous N�1 - � = 1500 ns � inter = 0 :215

Heterogeneous N�2 - � = 1500 ns � inter = 0 :213

Heterogeneous N�4 - � = 1500 ns � inter = 0 :214

Heterogeneous N�6 - � = 1500 ns � inter = 0 :216

Homogeneous - � = 1700 ns � inter = 0 :212

Homogeneous - � = 1500 ns � inter = 0 :220
Table 2
Global interface friction coe�cient for four heterogeneou s models (� = 1500 ns) and for a homogeneous model with two
regularization times ( � = 1500 ns and � = 1700 ns). ( � = 0 :25, P = 0 :5MP a , V = 2 m:s  1 )

interface friction coe�cients (table 3). Therefore the homogeneous model cannot be simultaneously equal
to both heterogeneous models, but the use of equation 13 allows determining that the heterogeneous model
called "Heterogeneous N�1" ( � = 1500ns) is equal to the homogeneous model with a regularization time of
� = 1500ns and that the other heterogeneous model "Heterogeneous N�2" (� = 1500ns) is equivalent to
the homogeneous model with a regularization time of� = 1750ns. Table 3 con�rms these calculations and
so proves that thanks to a slight modi�cation of the dynamic parameter (� ) of the friction law it is possible
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Model and regularization time � Global interface friction coe�cient � inter

Heterogeneous N�1 - � = 1500 ns � inter = 0 :173

Heterogeneous N�2 - � = 1500 ns � inter = 0 :213

Homogeneous - � = 1750 ns � inter = 0 :209

Homogeneous - � = 1500 ns � inter = 0 :175
Table 3
Comparison of the e�ect of the regularization time over the h omogenization process. (P = 0 :4MP a , V = 2 ms  1 ).

to obtain equivalence between heterogeneous models and homogeneous ones.
The fact that the two heterogeneous models are no longer equivalent under this loading case has not yet

been clearly explained. Image analysis has been performed but no di�erence between the morphologies of
heterogeneous models have been found.

4. HOMOGENIZATION OF THE FRICTION COEFFICIENT

Contrary to the sections above, we now consider the situation in which the friction coe�cient at contacts
with heterogeneities di�ers from that at contacts with the matrix. For the heterogeneous model, a particular
friction coe�cient is attributed to the contact nodes belonging to the heterogeneities (� h ) and another
particular friction coe�cient is attributed to the contact nodes b elonging to the matrix ( � m ). Only one
morphology of the heterogeneous model, with the volume fraction of heterogeneities equal to the surface
fraction, is used and compared to the homogeneous model. An analytical development was used to de�ne
the value of the homogenized friction coe�cient, � homo , implemented in the analysis of the homogeneous
model.

4.1. Homogenization of the friction coe�cient: analytical development

The friction coe�cient � homo is obtained by equalizing the frictional power dissipated in the homogeneous
model with that dissipated in the heterogeneous ones. As shown in theprevious section the friction coe�cient
expresses the quasi-static evolution of the friction law. Consequently, all the considerations mentioned in
this section are based on static considerations and allow the determination of � homo which is the friction
coe�cient of the homogeneous model that will ensure that the homogeneousmodel is equivalent to the
heterogeneous ones under static loading. Dynamic equivalence is obtained in a second step by using equation
13 and determining the correct regularization time � .

In quasi static evolution, the power for the homogeneous model is given by

Whomo = � homo PV S (15)

where � homo is the friction coe�cient sought, P the pressure applied on a surfaceS of the model and V
the velocity of the rigid surface. For the heterogeneous model, thetotal power is equal to the sum of that
Wh dissipated through the surfaceSh of the heterogeneities and the other oneWm dissipated through the
surfaceSm of the matrix

Whetero = Wh + Wm = � h Ph V Sh + � m Pm V Sm : (16)

By equalizing the equations 15 and 16 it is possible to determine the value of � homo which is the value to
be entered in the homogenized model

Whetero = Whomo ) � h Ph Sh + � m Pm Sm = � homo PS (17)

as the velocity V of translation of the rigid surface is the same in the homogenized and heterogeneous
models.

The �rst way of estimating Ph and Pm is to use the balance equation at the contact interface and the
hypothesis of a static pressure distribution (SPR - equation 18). At this contact interface, the assumption is
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made that the loading is similar to a strain imposed loading. In such casesthe strain of the heterogeneities
is equal to that of the matrix :

� h =
Ph

Eh
= � m =

Pm

Em
(18)

In this equation E stands for Young's modulus. It allows writing the following equation:
(

SP = Sh Ph + Sm Pm

(SPR hypothesis) , Ph = Pm E h
E m

)

(
Pm = SP E m

Sh E h + Sm E m

Ph = SP E h
Sh E h + Sm E m

(19)

Equation 19 gives:

� homo =
Sh � h Eh + Sm � m Em

Sh Eh + Sm Em
(20)

and then, as the surface fraction is equal to the volume fraction :

� homo =
vh � h Eh + vm � m Em

vh Eh + vm Em
(21)

where vh and vm are the volume (or surface) fraction of the heterogeneities and matrices.
Another way of estimating Ph and Pm is to run a static contact analysis (SCA) of the heterogeneous model
subjected to a pressureP and to a friction contact. The results given by this process are closeto those
obtained analytically (table 4). The two processes of calculations of the pressures in the heterogeneities and
the matrix give similar homogenized friction coe�cients (table 4).

The following subsection is dedicated to the validity of the homogenized friction coe�cient calculated.

4.2. Numerical validation of the homogenization of the friction coe�cien t

In this subsection a comparison is made between the results obtainedfor a couple of local friction co-
e�cients ( � h ,� m ), for a heterogeneous model, and the results obtained with the homogenized model with
homogenized friction coe�cient. The pressure and velocity values of the rigid 
at surface are constant:
P = 0 :5MPa, V = 2ms 1.

� h � m Ph SP R Pm SP R � homo Ph SCA Pm SCA � homo

0:3 0:12 2:35MP a 0:29MP a 0:20 2MP a 0:33MP a 0:19
Table 4
Friction coe�cients used in the models. Volume fraction of h eterogeneities vh = 0 :1, and matrix vm = 0 :9. SPR=static pressure
repartition ; SCA=static contact analysis.

The couple of local friction coe�cients are summarised in table 4. In this table the value of the homogenized
friction coe�cient is obtained by the formula 17. The value of pressuresPh and Pm are determined by SPR
(equation 19) or by a static contact analysis (SCA) of the heterogeneous model. The two methods of
calculating the pressures give fairly similar results and the homogeneous friction coe�cient � homo is almost
the same for the two methods. The values of the homogeneous friction coe�cient used in the numerical
calculations are in bold type (table 4).

� h =0.3 and � m =0.12
Two di�erent results will be presented here. The di�erent glob al interface friction coe�cients are presented

in tables whereas the �gures show the evolution of the apparent friction coe�cient through time during the
transient part and during the periodic steady-state.
Table 5 and �gure 12 show that the results given by the homogeneous model(� = 1500ns) are far from that
given by the heterogeneous model. An adaptation, provided by equation 13, ofthe regularization time, �
(� = 2500ns) considerably improves the quality of the results and thus equivalence is achieved (table 5 and
�gure 12).
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Other couples of friction coe�cient have been tested and give the same kind of results.

Remark 2 In the case where� h = � m , the tangential stress of contacts under the heterogeneities is higher
than that of contacts under the matrix. Then the case where� h > � m is the worst case for the homogenization
because it increases this di�erence of tangential stress. Conversely if � h < � m this di�erence is slighter.

Model and regularization time � Global interface friction coe�cient � inter

Heterogeneous - � h = 0 :3, � m = 0 :12, � = 1500 ns � inter = 0 :157

Homogeneous - � homo = 0 :2, � = 1500 ns � inter = 0 :171

Homogeneous - � homo = 0 :2, � = 2500 ns � inter = 0 :158
Table 5
Global interface friction coe�cient of the heterogeneous m odel (� h = 0 :3, � m = 0 :12, � = 1500 ns) compared to those given by
two homogeneous models (� homo = 0 :2, � = 1500 ns and � homo = 0 :2, � = 2500 ns).

(a) During the transient part. (b) During the periodic steady-state.

Figure 12. Apparent friction coe�cient for the heterogeneo us model (� h = 0 :3, � m = 0 :12, � = 1500 ns) compared to those
given by two homogeneous models ( � homo = 0 :2, � = 1500 ns and � homo = 0 :2, � = 2500 ns).

Equation 13, can give the same value of �� for two di�erent couples � -� . Thus two homogeneous models
with two di�erent couples � -� can have the same global behavior.

Model and regularization time � Global interface friction coe�cient � inter

Heterogeneous - � h = 0 :3, � m = 0 :12, � = 1500 ns � inter = 0 :157

Homogeneous - � homo = 0 :23, � = 1500 ns � inter = 0 :198

Homogeneous - � homo = 0 :23, � = 4000 ns � inter = 0 :154
Table 6
Global interface friction coe�cient of the heterogeneous m odel (� h = 0 :3, � m = 0 :12, � = 1500 ns) compared to those given by
two homogeneous models (� homo = 0 :23, � = 1500 ns and � homo = 0 :23, � = 4000 ns).

The same homogeneous model with two di�erent couples of local homogenized friction coe�cient and
regularization time (table 5; � homo = 0 :2; � = 2500ns) (table 6; � homo = 0 :23; � = 4000ns) is equivalent to
the same heterogeneous model (�gure 12 and �gure 13). These results are valid for slip-separated contact
instabilities (0 :15 < � < 0:35).

4.3. Conclusion

It has been shown in this part that simple equations (17-21) based on staticconsiderations allow deter-
mining a homogenized friction coe�cient. This homogenized friction coe�cient ensures that the quasi-static
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(a) During the transient part. (b) During the periodic steady-state.

Figure 13. Apparent friction coe�cient for the heterogeneo us model (� h = 0 :3, � m = 0 :12, � = 1500 ns) compared to those
given by two homogeneous models ( � homo = 0 :23, � = 1500 ns and � homo = 0 :23, � = 4000 ns).

part of the energy received by the homogeneous model is the same as that received by the heterogeneous
model. For the dynamic part of the energy it is necessary to determine the regularization time so that the
homogeneous model is in the same instability mode (same vibrations frequency) as the heterogeneous model
and thus the total energy received by the two models is the same.
Although the equations (17-21) allow determining a homogenized friction predictively, the entire contact
homogenization process is not yet totally predictive. In fact determining the required regularization time
requires the simulation of the heterogeneous model to determine the instability regime existing within it.

5. LOCALIZATION PROCESS

The previous section focused on mapping from heterogeneous models that represent the mesoscopic scale
of the composite to homogeneous ones that represent the macroscopic scale ofthe material. This section
describes the reverse procedure. It focuses on the determination of local stresses in the heterogeneous models,
by using the dynamical contact with friction analysis of the homogeneous model.

While performing the calculations to obtain homogenized properties, with homogeneous strain or stress
over the contour, it is also possible to determine the localization stress matrix or concentration strain matrix
(Bornert et al., 2001). In this study only the strain concentration matrix L x is used. The subscriptx means
that this concentration matrix L x varies in space. For a static loading (subscriptstat ) with homogeneous
strain over the contour, it links the local strain vector, � x stat , to the main strain vector over the volume,
�� stat .

(
� x stat = L x �� stat

�� stat = 1
V

R
V � x stat dv

(22)

L x is determined in a static analysis with homogeneous strain over the contour of heterogeneous models.
Classical homogenization theory has shown that this matrix is able to provide the mapping from macroscopic
to mesoscopic scale (i.e determine the local stress-strain vectors in the heterogeneities and in the matrix) in
a static case subject to the condition that the macroscopic loading is uniform over the volume studied. This
section shows that the concentration strain matrix is useful to perform the mapping desired even in the case
where, in the model composite (�gure 1), loading is dynamic and non uniform over the volume modeled,
and if there is contact with friction.

Kruch et al. (2004) have shown that for coarse grain structures the re-localization process is able to perform
mapping from macro to meso scale. It consists in applying the concentration (or localization) matrix L x to
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the local strain (or stress) vector of the homogenized model� x homo (equation 24) instead of applying it to
the mean strain (or stress) vector of the homogenized model�� homo (equation 23).

� x hetero = L x �� homo (23)

� x hetero = L x � x homo (24)

The case studied by Kruch et al. is a static one but the macroscopical loading is non uniform over the
volume. Moreover the fact that the re-localization process gives such good results is not explained by the
theory of homogenization. In the problem studied here, it is the wave propagation in the model and the
particular contact conditions which are responsible for non homogeneous macroscopical loading.

This section focuses on the use of the re-localization process to determine the evolution through time
of the stress in the heterogeneities and in the matrix. A complete heterogeneous model whose morphology
is illustrated in �gure 3, is simulated under dynamical contact with f riction loading (direct process). The
results obtained are those of the reference. The results obtained by the equivalent homogeneous model are
modi�ed by the re-localization process. It is possible to obtain the stress in every element of the model by
using this process. The results given by the re-localization process and those of reference are compared in
�gures 14 and 15 for two di�erent elements in the model. The �gure 16 shows the Von Mises stress averaged
through time over the whole model.

Figure 14. � yy stress in element A, (�gure 3) owing to het-
erogeneity and in contact with the rigid 
at surface, for two
calculation processes: direct and with the re-localizatio n pro-
cess. P = 0 :5MP a , � = 0 :25, for the heterogeneous model :
� = 1500 ns and for the homogeneous one : � = 1700 ns.

Figure 15. � yy stress in element B (�gure 3), owning to the
matrix, for two calculations processes, direct one and with
re-localization process. P = 0 :5MP a , � = 0 :25, for the het-
erogeneous model : � = 1500 ns and for the homogeneous one
: � = 1700 ns.

(a) Direct calculation. (b) Re-localization calculation.

Figure 16. Von Mises stress averaged through time for two cal culations processes, direct one and with re-localization p rocess.
P = 0 :5MPa, � = 0 :25, for the heterogeneous model : � = 1500 ns and for the homogeneous one : � = 1700 ns.

For every element, the results given by the re-localization process (from the homogeneous model), for� yy ,
are very close to those obtained by a classical dynamical analysis of a heterogeneous model (less than 4%
error). However the re-localization process slightly overestimates the positive stress at the surface of the
contact because there is no contact law in the relocalization process (�gure 14). For the other stresses,� xx
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and � xy , correlation is very good when the element studied is in the volume (< 4%) and slightly worse when
it is at the surface (up to 25%). The main stress is� yy and whatever the element studied the values of the
mean and the standard deviation given by the re-localization process are very good (di�erences< 5%).

In conclusion it was shown in this section that the re-localization process is able to give a good approx-
imation of the stresses present in a heterogeneous model and of their evolution through time simply by
performing a static calculation of the heterogeneous model and a dynamical contact and friction analysis of
an equivalent homogeneous model.

6. CONCLUSION

This paper focused on the numerical study of a composite under non linear dynamical loading. The
model and the general problem of convergence of numerical models subjected to dynamic contact with
friction loading has been addressed. The use of a regularized frictionlaw makes it possible to achieve good
convergence between such models. The main results highlight that homogenization is a means of mapping
from mesoscopic to macroscopic scale, provided that the regularization time of the homogeneous model
gives it the same mode of instability as the heterogeneous model. Moreover, this study emphasizes the very
important role of contact dynamics in friction problems. It has been shown that all heterogeneous models
can be represented by homogeneous ones, though it is necessary to adapt the regularization time if the
model is very unstable. This modi�cation of regularization time can be considered as a homogenization of
local contact dynamics. In fact the latter beneath the heterogeneities is certainly di�erent from the contact
dynamics beneath the matrix. Consequently, the regularization time, a dynamic parameter of the friction
law, must be di�erent in the heterogeneous model from that in the homogeneous one. A formula based on
energy conservation is presented. It allows determining a "homogenized" local friction coe�cient in the case
where the di�erent constituents of the material have di�erent lo cal friction coe�cients. Finally, the mapping
from macroscopic to mesoscopic scale is developed by a simple re-localization procedure. Determining the
evolution of stresses through time is made possible by simple static calculations of the heterogeneous model
and a non linear dynamical analysis of the homogeneous equivalent model.
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