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[1] The deployment of a worldwide network for
infrasound detection requires numerical methods for
modeling these signals over long distances. A ray
theoretical approach appears robust and efficient. It
furthermore allows a straightforward interpretation of
recorded phases. We have developed a three-dimensional
Hamiltonian ray tracing for modeling linear acoustic waves
in the atmosphere. Propagating over distances superior to
500 km requires the curvature of the Earth to be considered,
which is achieved by using spherical coordinates. High
atmospheric winds are properly handled through a modified
Hamiltonian. These winds as well as sound velocity can
change significantly during long-lasting propagations; these
variations are also included in our modeling. Finally, the
amplitude of infrasonic signals is computed by
concomitantly solving for paraxial rays and assessing the
evolution of the ray tube thus defined. We present the theory
for this atmospheric infrasound modeling and some simple
applications that establish its robustness and potential.
Citation: Dessa, J.-X., J. Virieux, and S. Lambotte (2005),
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1. Introduction

[2] An international detection network dedicated to the
control of the Comprehensive Test Ban Treaty (CTBT) over
the entire Earth is being deployed. Infrasonic waves of
various origins are recorded by these stations and fast
acoustic propagation tools over the 200-km thick, spherical
atmosphere are required to model these signals. Atmospheric
winds are very strong (up to 100 m.s�1) along the East-West
direction in the stratosphere and mesosphere, and along the
North-South direction in the thermosphere (Figure 1). These
winds are not negligible compared to the sound velocity.
Therefore, they may modify significantly the wave propa-
gation and the resulting ray paths, travel times and ampli-
tudes, recorded at ground-based micro-barometric stations
[Virieux et al., 2004]. Furthermore, daily to seasonal varia-
tions are observed for these winds as well as for the sound
velocity. These observations—based on radar, balloons,
satellites experiments etc.—help construct global databases
for spatial and temporal descriptions of the wind and sound
velocity distributions in the atmosphere [Hedin, 1991;
Hedin et al., 1991, 1996]. Taking these variations into

account is essential for an accurate modeling of long-range
infrasound propagation.
[3] Complete solutions based on numerically demand-

ing fluid mechanics tools are of little use in an operating
context where the rapidity for discriminating infrasound
sources is a crucial issue. Asymptotic wave propagation
therefore appears as an elegant competitive approach that
however theoretically reduces the modeling to signals
above �5 Hz, out of the range of gravity waves;
numerous natural or artificial sources (e.g. volcanic erup-
tions, explosions) radiate significant energy in this validity
range.
[4] Ray-based modeling of infrasound propagation has

already been achieved for 1D layered structures [Garcés et
al., 1998] and for 2D cartesian ones [Virieux et al., 2004]. In
the approach of Virieux et al. [2004], both ray trajectories
(with corresponding travel times) and amplitudes are com-
puted and the caustics are detected [Abdullaev, 1993]. We
present here the extension of this approach to 3D spherical,
non stationary structures in order to handle the Earth’s
curvature and the effect of time variations in the atmospher-
ic properties during long-range modeling of infrasound
propagation.

2. Ray Theory in a Moving Medium

2.1. Canonical Equations

[5] Pressure perturbations are assumed to be small so that
the motion of the atmospheric medium follows linearized
hydrodynamic equations for a compressible fluid. The high
frequency approximation propagation introduces the Ham-
iltonian function H [Burridge, 1976]. It is modified here in
order to include the wind’s effect [Abdullaev, 1993; Virieux
et al., 2004]:

H p; qð Þ ¼ 1

2
p2 � 1

c0 qð Þ2
1� p � v qð Þð Þ2

" #
: ð1Þ

The ray position is denoted by q; the slowness vector p is
normal to the wavefront and related to the travel time T
along the ray by p = rT; the sonic velocity c0(q) is a scalar
while the wind velocity v(q) is a vector.
[6] If atmospheric properties are allowed to vary during

the time of propagation, then quantities c0, v and H depend
explicitly on a variable of evolution n and the general
Hamilton-Jacobi equation is:

H p; q; nð Þ þ @T

@n
¼ 0; ð2Þ

where dependence upon time is considered through the ray
sampling parameter n, mathematically defined below. Using
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analytical mechanics, canonical equations defining the ray
in space and time are

dq

dn
¼ rpH;

dp

dn
¼ �rqH;

dT

dn
¼ �Hþ p � rpH ð3Þ

2.2. Ray Tracing in Spherical Coordinates

[7] Due to its sound velocity structure, the atmosphere
predominantly behaves as a wave guide for infrasonic
waves whose traveling distance can thus prove very large.
It is therefore fundamental to take the Earth’s curvature into
account by using spherical coordinates. In a spherical
reference frame attached to the Earth, a position is defined
by its coordinates r, q, and j, denoting respectively the
distance from the Earth’s center, the colatitude—measured
with respect to its S-N axis—and the longitude. Position and
slowness vectors are defined by

~q ¼
r
r q
r sin q j

0
@

1
A; ~p ¼

_r�1

r _q
� ��1

r sin q _jð Þ�1

0
B@

1
CA: ð4Þ

[8] In a similar way, the vector ~v for wind velocity is
introduced. The hamiltonian written in spherical coordinates
is thus given by

1

2
~p2 � 1

c0 q; nð Þ2
1� ~p � ~v q; nð Þð Þ2

" #
: ð5Þ

[9] The axis defined by q = 0 represents a singularity and,
if the ray tracing equations are to be solved in the vicinity of
the poles, an appropriate rotation of the reference frame
must be preliminarily performed to avoid the singularity
problem.

2.3. Numerical Integration

[10] The system (3) is solved by a second-order Runge-
Kutta scheme with a finite integration step Dn and initial
conditions q(n = 0) and p(n = 0) defining the position of the
source and the initial direction of the ray. The latter is
defined in 3D by the azimuth of the ray with respect to the
North and the dip angle with respect to the local vertical
direction. For a given initial ray parameter, two dip angles at
most should be considered, corresponding to initially
upgoing and downgoing modes. These angles are comple-
mentary only if the vertical component of the wind is zero.

For a source on the ground, only the upgoing solution is
meaningful.
[11] The atmospheric sound speed and wind velocities are

sampled in time and space on a grid. During numerical
integration, spatial interpolation at each point of the ray is
done with 3rd order cardinal b-spline functions and time
interpolation is done linearly. For real applications, space
and time dependent models MSISE-90 and HWM-93
[Hedin, 1991; Hedin et al., 1991, 1996] can be used. These
standard models only include horizontal winds. Note, how-
ever, that vertical winds could be considered at no extra-
cost.

2.4. Amplitude Computation

[12] Considering small perturbations dp and dq around a
central ray of reference, one can build neighboring paraxial
rays. First order linearization of the system (3) yields [Farra
and Madariaga, 1987]

@dq
@n
@dp
@n

0
B@

1
CA ¼ rprq H rprp H

�rqrq H �rqrp H

� �
dq
dp

� �
: ð6Þ

[13] While computing a ray, arbitrarily close rays defined
through an initial perturbation can be propagated by solving
this paraxial system. In 3D, two paraxial rays and the
reference ray can thus define a ray tube whose cross-section
is calculated. Practically, these two paraxial rays derive
from three paraxial trajectories by linear combinations.
The cross-section J of the ray tube is then calculated (see
Appendix A and complete algebra given by Virieux and
Farra [1991]).
[14] Caustics are detected by sign changes of J and are

handled by incrementing kKMAH, the so-called KMAH
index [Chapman, 1985], and phase shifting the wave
accordingly. Considering a constant energy flux in the ray
tube and a variable density d, this yields the equation ruling
the amplitude’s evolution along the ray [e.g., Virieux et al.,
2004]:

A n1ð Þ ¼ A n0ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c n1ð Þd n1ð ÞJ n0ð Þ
c n0ð Þd n0ð ÞJ n1ð Þ

s
ei kKMAHp=2; ð7Þ

with c the effective velocity of the wave (taking the wind
into account).
[15] Atmospheric absorption by diffusion, visco-thermic

and relaxation losses is not negligible for long thermospheric
propagations. This effect can be introduced in the amplitude
calculation through attenuation coefficients [Sutherland
and Bass, 1996] that depend on the wave frequency and
atmospheric properties (composition, temperature, pressure,
density). Practically, mean attenuation profiles are computed,
based on model MSISE-90. During the ray integration, they
are linearly interpolated and yield a coefficient a. The
amplitude is subsequently multiplied by exp (�aDl) where
Dl is the length of the ray segment.

2.5. Rebound Conditions

[16] As explained before, infrasonic pressure waves are
usually guided in the atmosphere and can periodically
bounce on the ground. Care must be taken in computing

Figure 1. (A) Analytic atmospheric profiles (combined
exponential and sinusoidal functions) used to compare
cartesian and spherical kinematic ray tracing. (B) Atmo-
spheric model used in the other tests presented. Winds
blowing northward and eastward are positive.
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these bounces. Considering a simple flat ground, bouncing
conditions for the central ray are quite simple, the normal
component being simply replaced by its opposite (pr

R =
�prI, where the superscripts I and R stand for the incident
and reflected wave respectively) and the others remaining
unchanged. Note that more complicated topographies make
this condition more complex but could be easily taken into
account. For paraxial rays, reflection conditions are some-
what more cumbersome to derive since the paraxial ray does
not hit the ground at the same time and must be projected
down to the ground before being reflected. Two operators P
and R must therefore be applied, yielding:

dqR

dpR

� �
¼ RP dqI

dpI

� �
: ð8Þ

[17] The algebra for the calculation of P and R is given
by Farra et al. [1989]. The expression of these operators in
our case is given in Appendix B.

3. Validation of the Kinematic Ray Tracing

[18] A first test consists in validating our ray tracing in
spherical coordinates by comparing its results with those
independently obtained by a 3D extension of its cartesian
equivalent, whose robustness is established [Virieux et al.,
2004]. For a given model of atmosphere, computed ray
paths must be independent of the coordinate system in
which ray tracing equations are solved. Therefore, the
computations in cartesian and spherical coordinates should
give the same result, provided that the atmosphere is
described with the same symmetry for both modelings.
Analytical sound velocity and wind profiles with roughly
realistic variations are designed for this purpose, so that
possible differences in the numerical interpolations do not
affect the result. Only a zonal wind is considered, which is
not limiting. An analytical, laterally invariant model of
atmosphere is thus built (Figure 1a). It is either described
on a cartesian or spherical modeling grid but has a spherical
symmetry in both cases. Rays are shot from a ground-based
source, towards East (Figure 2). The two sets of trajectories
and travel times are practically indiscernible. The same level

of agreement is obtained for perpendicular directions of
propagation (not presented here). The kinematic part of our
ray tracing is thus proven to give compatible results.
[19] The Earth being considered as a sphere at first order,

the natural parameterization of atmospheric models is a
spherical coordinate system. Neglecting the Earth’s curva-
ture is only justified for short range propagations. At
horizontal distances larger than about 500 km, inaccurate
results may exceed both the intrinsic uncertainties of the
modeling and the data precision. This is illustrated in
Figure 3 where errors as large as �100 km between
corresponding rebound positions are observed after
2000 km of propagation. Unlike the preceding test, the
modelings are performed in models whose symmetry cor-
respond to the coordinate system in which equations are
solved (cartesian or spherical). The vertical profiles of
atmosphere used for this test and those presented hereafter
are displayed in Figure 1b. Note again that, for simplicity,
tests are carried out with this 1D, stationary model but that
lateral and time variations can be considered as well.

4. Validation of the Dynamic Ray Tracing

[20] A simple test for the computation of wave amplitude
is made by propagating over a long range in a homogeneous
model and checking that the solution matches the simple

Figure 2. Rays obtained with our spherical ray tracing and
a 3D extension of the code described by Virieux et al.
[2004]; the propagation model has a spherical symmetry
in each case. (A) Ray paths with labeled initial incidences.
(B) Corresponding travel times.

Figure 3. Rays obtained with the same 1D profiles
considering either cartesian (flat Earth with horizontal
distance) or spherical (curvilinear distance) symmetries.

Figure 4. (A) Ray path for a westward propagation
(source altitude: 50 km, initial incidence: 80�). The in-
plane paraxial ray and a neighboring ray computed
independently by slightly varying the initial incidence are
also represented with artificial amplification of differences;
they cross the reference ray coincidentally at caustics.
(B) Amplitude of the pressure wave along the central ray;
the singularities correlate exactly with caustics.
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analytic solution, inversely proportional to the distance;
agreement to within a range of 4.2% is found after 1500 km.
[21] For realistic velocity models, the focusing and defo-

cusing effects of the ray tube can be surveyed by checking
the coincidence between singularities of the computed
amplitude and the existence of caustics at which neighbor-
ing rays cross each other. These crossing rays can be either
two very close rays or a ray and a paraxial ray [Virieux et
al., 2004]. Two such tests are presented in Figures 4 and 5.
Depending on the initial incidence and direction with
respect to the wind, the ray is either totally guided in the
atmosphere (with upper and lower refraction altitudes) or
experiences periodic rebounds on the ground. In both cases,
one can verify the correlation between caustics and ampli-
tude singularities. The second example moreover validates
our rebound conditions for paraxial rays as the correlation
can still be observed after rebounds, thanks to the paraxial
reflection conditions. In these two examples, only the in-
plane paraxial ray yields caustics, the other one moving
increasingly away from the central ray in a 1D atmosphere.

5. Conclusions

[22] Thanks to the Hamiltonian formulation, ray tracing
in a moving atmosphere can be performed quite simply and
efficiently. Spherical geometry is taken into account and
proper conditions for rebounds on the ground of rays and
paraxial rays have been applied for a spherical topography.
Amplitude exhibits bright spots related to ray focusing in
the atmospheric wave guide. One may detect these features
with a global micro-barometric network of sufficient den-
sity. Amplitude decay with distance could be corrected and
the source estimation and discrimination should be possible.
Furthermore, tomographic approaches based on such mod-
eling could be developed in order to improve atmospheric
models and to provide a large-scale complement to existing
means of in situ measurement, in the same way as what is
routinely done for investigating the deep solid earth by
seismic or seismological methods.
[23] Due to the exponential decay of the atmospheric

density with altitude, the assumption of small pressure
perturbation by the propagating signal on which the

present study is based may not be verified for powerful
sources and non linear shock waves may occur. In that
case, the propagation velocity does not only depend on the
local atmospheric properties but also on the amplitude of
the wave itself [e.g., Besset and Blanc, 1994]. Here,
paraxial ray tracing is proven to be capable of modeling
amplitudes along ray fields in a complex varying atmo-
sphere. Therefore, this approach makes possible addressing
the problem of non-linear acoustic propagation in complex
models of atmosphere. This is a clear direction for future
developments.

Appendix A: Ray Tube Cross-Section

[24] Three paraxial trajectories are defined with initial
perturbations d~ptj = (dj,k)k2[1,3]�[r,q,j], (with dj,k the Kro-
necker symbol), from which two paraxial rays p1,2 are built:

d~wp1 nð Þ ¼ p̂ji
d~wt2 nð Þ � p̂qid~w

t3 nð Þ;
d~wp2 nð Þ ¼ p̂ji

d~wt1 nð Þ � p̂rid~w
t3 nð Þ; ðA1Þ

with d ~w = (d~q, d~p) and p̂ri, p̂qi, p̂ji
dimensionless scalars

proportional to the initial slowness vector’s components.
The central ray and the two paraxial rays define a tube
whose cross-section is proportional to [Virieux and Farra,
1991]:

J ¼

~pr d~qt1r d~qt2r d~qt3r
~pq d~qt1q d~qt2q d~qt3q
~pj d~qt1j d~qt2j d~qt3j
0 p̂ri p̂qi p̂ji

��������

��������
: ðA2Þ

Appendix B: Rebounds of Paraxial Rays

[25] The P andR operators for rebounds on a flat ground
are:

P ¼ P1 0

P2 Id

� �
; R ¼ Id 0

R1 R2

� �
; ðB1Þ

with Id, the identity matrix and P1, P2, R1 and R2, 3 � 3
submatrices whose non zero coefficients are:

P21
1 ¼ �rpHI � eq

rpHI � er
;P31

1 ¼ �rpHI � ej
rpHI � er

;

P11
2 ¼ rqHI � er

rpHI � er
;P21

2 ¼ rqHI � eq
rpHI � er

;P31
2 ¼ rqHI � ej

rpHI � er
;

R11
1 ¼ �DrqH � er

rpHR � er
;R12

1 ¼ �DrqH � eq
rpHR � er

;

R13
1 ¼ �DrqH � ej

rpHR � er
;

R11
2 ¼ 1� DrpH � er

rpHR � er
;R12

2 ¼ �DrpH � eq
rpHR � er

;

R13
2 ¼ �DrpH � ej

rpHR � er
;

ðB2Þ

with Drq,pH = rq,pHR � rq,pHI.
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Figure 5. Same as in Figure 4 except for an eastward
propagation and an initial incidence of 70�. Periodical
rebounds on the ground are observed and here again,
amplitude singularities correlate with caustics.
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J.-X. Dessa, Laboratoire de Géosciences Marines, Institut de Physique du

Globe de Paris, Paris F-75252, France. (dessa@ipgp.jussieu.fr)
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