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SUMMARY o
Weperform the full elastic waveform inversion in the frequency domain in a 2-D geometry. This
method allows imaging of two physical seismic parameters, using vertical and horizontal De@
components. The forward problem is discretized using bnite difference, allowing to simulaté
the full elastic wavebeld propagation. Moreover, it is solved in the frequency domain, a fast
approach for multisource and multireceiver acquisition. The non-linear inversion is based
a pre-conditioned gradient method, where Born and Rytov formulations are used to compq?'e
Frechet derivatives. Parameter perturbations linearly depend on belds perturbations in the Bgrn
kemel, and on the generalized complex phases of belds in the Rytov kernel, giving differe@t
Frechet derivatives. The gradient is pre-conditioned with the diagonal part of the inversg
Hessian matrix, allowing to better estimate the stepping in the optimization direction. NonS
linearity is taken into account by updating parameters at each iteration and proceeding from léw
to high frequencies. The latter allows as well to progressively introduce smaller Wavelengttga
in parameter images. On a very simple synthetic example, we examine the way the inversign
determines th&, (P-wave velocity) and/s (S-wave velocity) images. We highlight that, with g’;
a transmission acquisition, Pnal parameter images weakly depend on the chosen formulaggon
to compute Frechet derivatives and on the inverted parameters choice. Of course, convergefce
strongly depends on the medium wavenumber illumination which is related somehow to%
acquisition geometry. With a rel3ection acquisition, the Born formulation allows to bett@§
recover scatterers. Moreover, the medium anomalies are not well reconstructed when sufgce
wavespropagate in the medium. This may be due to the evanescent nature of surface wavesZBy
selecting brst body waves and then surface waves, we improve the convergence and pro i
reconstruct anomalies. This shows us that preparation of the seismic data before the inve
is as critical as the initial model selection.

Key w ords: Bornand Rytov formulations, diffraction tomography, Pnite difference methods,
medium wavenumber illumination, seismic imaging, waveform inversion.

T20¢ YdIreN ¢

1 INTRO DUCTION

Quantitative imaging using full wave equation has been achieved through the use of the adjoint formulation problem for seismic data in the last
20 yr. Both formulations in time domain (Lailly 1984; Tarantola 1984; Gautttied. 1986) and in frequency domain (Prattal. 1996; Pratt
1999; Ravauet al. 2004) have been implemented and applied to various synthetic and real data examples with specibc advantages on both
sides. Easier seismic traces processing in time domain will allow progressive introduction of phases by increasing the time domain window
in both observed and synthetic data (Kebal. 1986; Shipp & Singh 2002; Sheng 2004). Efpcient ways of solving the forward problem
in the frequency domain make the frequency formulation appealing (Stekl & Pratt 1998). Moreover, the progressive introduction of higher
frequencies allows both to introduce and mitigate the non-linearity and recover shorter and shorter heterogeneities (Pratt 1999; Sirgue 2003)
Furthermore, for wide-angle data acquisitions, this frequency approach efbciently takes benebt of the wavenumber redundancy by limiting
the number of inverted frequencies (Pratt 1990; Sirgue & Pratt 2004). The attenuation may be introduced, which has been applied to real date
examples (Hicks & Pratt 2001).

All kinds of waves are considered in the forward modelling with our approach, and it will avoid any ghost images arising in the imaging
procedure from incomplete wave reconstitution as it may happen when considering asymptotic ray seismogramsdtaim98e Jin 1992;

¢ 2006 The Authors 605
Journal compilatiorr 2006 RAS



606 C. Gelis, J. Virieux and G. Grandjean

Forgues 1996). In this asymptotic approximation, the forward problem is based on a linearization between parameters and data perturbations
based on ray theory (Beylkin 1985). While retaining the same adjoint formulation for btting waveforms, the so-catdrR&yrmulation

provides a better control of the diffracting point illumination, leading to rather efpcient algorithms by adapting locally the weighting used in
the optimization scheme for both the acoustic case (Lamétaake1992) and the elastic one (Jin 1992; 8iral. 1992; Forgues 1996). This
high-frequency approach does not require to go from low to high frequencies. Still, the capacity of Ray+Born formulation of considering
high frequencies should be acknowledged, especially in 3-D geometry (Laettalr003). Moreover, attenuation reconstruction has been
considered by Tarantola (1988) and Ribodetti & Virieux (1998).

While time domain formulation has been applied for recovering elastic parameters using multicomponent data (Tarantola 1987; Mora
1987, 1988), frequency formulation for elastic parameters reconstruction has only been applied by Pratt (1990) for cross-hole data to our
knowledge. Moreover, investigations on the mispt function depbnition have not been performed as for the time domain formulation where
Craseet al.(1990) has introduced a norm which mimics a L1 norm, allowing new Frechet derivatives to be estimated. Discussions about data
and parameter sets we should consider have not yet been addressed for the frequency approach in the elastic case.

The Frechet derivatives calculation depends on the chosen approximation to linearly link data and parameters perturbations. Born (Clayton
& Stolt 1981; Beylkin 1985; Beydoun & Tarantola 1988; Beydoun & Mendes 1989; Lanabat€992) and Rytov (Bleistein 1987; Beydoun
& Tarantola 1988; Beylkin & Burridge 1990) approximations are currently used, although they proceed differently since the data space is nd¢
the same : while the Born formulation focuses on the velocity bPeld, the Rytov formulation is based on the velocity bPeld complex phase. Somé
authors (Beydoun & Tarantola 1988) argue that the Born formulation is well suited for re3ection acquisitions, whereas the Rytov formulatioré
is more efbcient with transmission acquisitions. Moreover, Woodward (1992) explained that the Rytov formulation is better adapted to thé.
frequency domain, whereas the Born formulation has a more direct interpretation in the time domain. However, Pratt (199@), f:288)
used the Born formulation in the frequency domain while studying the full waveform inversion with acoustic waves. Pratt & Worthington
(1988) applied the acoustic full waveform inversion on real data using Born and Rytov formulations. They showed that the Born formulatio
better reconstructs the edges of a discrete object. In order to understand and clarify the inBuence of the chosen formulation in the calculatig?h
of Frechet derivatives for the elastic case, we have considered Born and Rytov formulations to calculate Frechet derivatives. 2

We shall concentrate our attention on the reconstruction of elastic parameters in a 2-D medium using either single-component data ar
multicomponent data. The attenuation parameter will not be considered in this study although such extension is possible. The minimization ¢f
particle velocity trace residuals or complex phase trace residuals using iterative linearized algorithm will be outlined. Then, we shall conside§
how to solve efpciently in the frequency domain full wave equation by a Pnite difference scheme different from the one already used by Steki
& Pratt (1998) or by Virieux (1986). While the forward problem is fully solved, we use Born and Rytov formulations to compute Frechet <
derivatives, respectively, for amplitude btting and (complex) phase btting. On simple synthetic examples, we shall analyse the inBuence Qf
these two different mispt functions as well as the effect of different sets of elastic parameters. For each example, the complete velocity modegs
have to be reconstructed (background and anomalies), even if we choose an initial homogeneous medium. The inBuence of the data acquisi@n
geometry will be discussed for the reconstruction of different types of anomalies. =

Finally, we introduce the free surface, allowing us to model the surface waves propagation in the forward problem. Using surface waves
to determine the surface properties such as seismic velocities or anisotropy has already been done by several authors (Snieder 1986; Nget
1987; Debayle & Kennett 2000a,b). The importance of the free surface will be analysed and compared with previous reconstructions, fog
addressing the specibc contribution of both body and surface waves in the resulting images. We shall highlight the difpculty to deal witH?
surface waves, whose amplitude exponentially decays with depth, in our inversion engine and show one possibility to efPciently take thefn
into account.

This study will allow us to draw conclusions regarding the potential of the method for addressing challenging problems as crustal imagingé'
reservoir characterization, subsurface reconstruction, cavity detection and so on. We shall concentrate in this article on issues of the proposogd
method when elastic waves are considered. More realistic examples will be considered in future works.

}
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2 INV ERSION FORMULATION

T20Z Ydren

The reconstruction of medium parameters from seismograms is a non-unique inverse problem because non-linearity is present in the relation
between model and data spaces. Phase wavelets should be roughly in phase before adjustment to avoid cycle-skipping (Sirgue 2003). The
general relatiory between the modeh and the data can be expressed by

d = g(m). (1)

We choose to perform a non-linear inversion (Tarantola 1984, 1987) in the least-square sense because Frechet derivatives can be efbciently
computed. We emphasize thg{tn) represents the fully solved forward problem. The misbt fundiamequal to

Em) = 219 S dosd" [9(M) S s @

whered s represents observed data wherg@asg(m) are the calculated data with themodel. The symbdl stands for the adjoint operator
(complex conjugate). In this formulation, each sourceBreceiver couple contribution is implicitely summed. Weighted least squares can be
introduced to increase the importance of a specibc subset as, for example, far-offset tracee(@p@Q064). The misbt function contains

the sum of squares of differences between the observed and calculated data, that is, data differences odresiduals
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First, we shall consider a data space of particle velocWig®&(r, , s) recorded at receiversfor different sources and for different
frequencies . Therefore, in this case, synthetic dgtan) = [V, ,s),VS(r, ,s)]and observed dathys= [VSr, ,s),Vor,
s)] are patrticle velocity amplitudes. The mispt functi&nat a given frequency will be equal to

Ep(m) = % [veaer, ,s) S Vor, ,s)] “[VRYr, ,s) S Vo, ,8)l. (3)
S r

This misbt function will be considered as the Born mispt function because the Born formulation (Clayton & Stolt 1981; Beylkin 1985;
Beydoun & Tarantola 1988; Beydoun & Mendes 1989; Lamlsaiak 1992) is used to compute associated Frechet derivatives as we shall see
later on.

As an alternative, we may consider the daites the generalized complex phase of the particle velocity beld which includes the Neperian
complex logarithrin of the velocity amplitude as the real part and the phase of the velocity beld as the imaginary part. In this case, particle
velocity phases are used for both synthetic dgta) = [Ln[VS¥(r, , s)], Ln[VS¥Y(r, , s)]] and observed daty,s= [Ln[VXr, ,s)],
Ln[VoS(r, , s)]]. The misbt functiorE, (m) is expressed for each frequencyas

=

E (m) = [Ln[VE(r, ,s)] S Ln[Vor, ,s)]] "[Ln[VEAYr, ,s)] S Ln[VeYr, , )]

2
S r (4)

Frechet derivatives will be obtained through the Rytov formulation (Bleistein 1987; Beydoun & Tarantola 1988; Beylkin & Burridge 199@
We call this mispbt function the Rytov mispt function. Unwrapping phases is necessary for avoiding jumps in the phase perturbation estlma‘ﬁon.

Because the data space is different, we may expect different behaviours of the minimization procedure for Born and Rytov formu-
lations. Let us remind that the forward problem is solved by a purely numerical technique and that we have selected a bnite dlfferénce
method.

The misbt function has a rather complex shape with many minima. Once an initial model is chosen, we perform iterations to re@ch
the neighbouring minimum and take the best model calculated at one iteration as the new initial model for the next iteration. We perfogn a

second-order TaylorbLagrange development around a given initial mgdelget

umoq

E(mo+ m)= E(Mo)+ mE(Mo) m+ 1/2 m"H(mp) m+ O( m?), 5)
where the gradient is denoted, E, the Hessiamd, m is a small parameters perturbation @ m?) is a quantity that we neglect. A local
minimum of E is reached when the increment in the modalveribes the following equation,

H(mo) m=S mE(Mo). (6)
Let us introduce now the Frechet derivative denoteBpass ( g/ m)(mo). How to estimate this matrix and the way it is involved in the
gradient estimation will be discussed in a later paragraph. Taking the derivative of eq. (2) with respect to thea miodslthe following
expression

nEM= L [gm) S dad ™

16889/509/2/89T/3190e/I6/wod dno-diwsp

where indicates the real part. Whan = mq, the Prst term of the right-hand side is the adjoint operator of the Frechet derivative and
second one is the data residuasTherefore, the gradient vector may be expressed by the adjoint opeBitapplied to data residuald
following the linearized inversion formalism (Tarantola 1987). After another derivative, the mispt function with respect to themivesl
the Hessian operator expression
5 .
g & 9 9

Hm)= — m)S dpd + — —. 8

M= — [gmSdmd+ — — ®)

The brst term is generally dropped off in non-linear problems (Rtadt. 1998). We only keep the second term, which turns out to be the
matrix By By in the model space (Tarantola 1987). The following normal equation,

[B Bl m= Byd , 9)

T20Z YdIelN Ge u

coming from the transformation of eq. (6), should be veribed by the model increment for reducing the misbt function. The Hessian matrix is
difbcult to invert especially when the model space has a high number of degrees of freedom. We shall assume that this matrix is diagonally
behaving for solving the system through a gradient method. Since we take its real part, the right-hand side of eq. (9) may be written
as

Bod = Bid (20)
whereB{, stands for theB, transpose and complex conjugate residuals, corresponding to time-reversed residuals in the time domain, are
denoted byd
Any pre-conditioning transforming the system (9) into an improved diagonal construction of the Hessian matrix will speed up the
convergence towards the minimum of the mispt function (&hil. 2001b). This has been achieved, for example, in the Ray+Born method

because the diagonal structure of the Hessian matrix, depending strongly on the data acquisition geometry, could be related to local ray
properties (Jiret al. 1992).
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608 C. Gelis, J. Virieux and G. Grandjean

We shall add a constant coefbcientio avoid divisions by too small numbers when inverting the diagonal approximation of the Hessian
matrix. When this regularization coefpcient increases, the inverse diagonal Hessian provides a weaker inffuence, decreasing the jump between
old and new models. The new model is estimated through

m*2t=mg | di BE, O+ 11 g O g 11
= | diag obo + 0 ) (11)

where the modein' corresponds to the modgi at thelth iteration, The number, is the stepping at thkh iteration. The stepping, is
obtained by sampling a parabolic shape along the gradient direction. Because we use a line search approattah§1P@4), this requires
two additional forward modelling at each iteration. Please note that the nBatisxcomputed for each iteratidnTo simplify the notations,
we will not write the iteration numbelrin all following equations.

With GaussbNewton or full Newton methods (Pedtal. 1998), the complete Hessian matrix given by the eq. (8) has to be inverted. It
contains the brstterm of the Hessian operator in the full Newton method, which deals with multiple diffractions. The second term of the Hessian
operator allows to take into account the source band-limited frequency content and the incomplete medium illumination by the acquisition
system. Nevertheless, inverting the complete Hessian matrix is time-consuming and requires signibcant numerical resources although not
unrealistic in 2-D geometry. We have not tried this important feature investigated by Plessix & Mulder (2004). Moreover, when the Hessian
matrix is not taken into account and the gradient is used alone, the gradient is usually calculated with the adjoint operator.

3 THE FORW ARD FORMULATION

wioJ) papeojumoq

The forward model will be solved for each new medium in the frequency domain because it allows to efbciently consider multisources=
acquisitions. In this study, we consider an isotropic 2-D linear elastic medium. The propagation of 2-D P-SV waves in elastic media can bg\_
expressed thanks to the matrix formalism of Peatl.(1998) and Stekl & Pratt (1998). Using Prst an operator notation, the wave equation may
be compactly written as

WX = S, (12)

whereX ' is the Vx(x, )V(x, )]' velocity Peld vectorS' is the [S,(x, )S,(x, )]' source vector antlV(x, ) is the wave operator

debned as
W(X' ) - WXX(X! ) WXZ(XI ) ) (13)
WZX(X1 ) WZZ(X1 )

where

Wi, )=S 2 (xS 7[(X) + 2“00]7 S ;u(@;

W, (x, )=S ~ (x) - S —ZH(X) >
WX, )=8S - (x) < S —XH(X) —
Walx, )=8 2 (98 —[(x) + 20— S —ux) —, (14)

where is the frequency, (x) is the density,(x) and p(x) are Lam< parameters. These parameters describe spatially variable properties of
the medium and are related to P ans S seismic velocities through

() +2u(x) = (OVp(x)® and p(x) = ()Vs(x)”. (15)

Let us emphasize that, and Vs are model parameters (mean seismic wave velocities) whereas previously débaedV, are data
parameters (mean horizontal and vertical particle velocities).

If the source is a dirac in the time domain, elementary solutions correspond to the Green functions of the @gdium; s) is the
velocity Peld recorded atin theith direction and emitted by a point force source locateslaatd acting in theth direction at the frequency

. Therefore, the Peld componexi of eq. (12) can be written as the product of the Green fund@igyr, , s) calculated at the positian
with the source frequency conteﬁg( , S). This Green function depends on the medium velocity structure.

Please note that these equations are not linear with respect to parameteasd u. We perform the non-linear forward modelling,
allowing to take multiple scattering into account. In order to fully solve the forward problem in the frequency domain (eq. 12), we resort to
bnite difference techniques because of their simplicity. The spatial stencil we use is a rotated one, in which derivatives are calculated along 45
rotated axes with respect to the reference Cartesian axes. This stencil has been shown to have enough accuracy in a velocitybstress staggered
grid by Saengeet al.(2000). We apply twice this stencil of brst-order derivatives to get second-order derivatives, following the parsimonious
approach of Luo & Schuster (1990) and Hustetal. (2004). At the end, this stencil is equivalent to the popular P1 bnite element stencil
(Abramowitz & Stegun 1965). A rather simple way to introduce the free surface boundary condition is zeroing elastic coefpcients above the
free surface (Hayaskt al.2001; Graves 1996; Ohminato & Chouet 1997), making this stencil a very attractive one (Saenger & Bohlen 2004;
Geliset al. 2005).

1202 YareN Sz uo 1senb Aq 6T6889/509/2/89T/210me/1B/wod dno-olwsepese),
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Stencil of Virieux, 1986 Stencil of Saenger et al., 2000
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Figure 1. Comparison between the second-order bnite difference stencils of Virieux (1986) (left) and Saehd2000) (right).
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This stencil debnes elastic properties at a single node of the Pnite difference grid and density at another single node diago@ally
shifted, making a partially staggered grid different from the one of Virieux (1986) (Fig. 1). It prevents any spurious spatial inter@-
lation problem between neighbouring medium parameters during the inversion procedure and the medium description for the forgfard
calculation. g,

Because the numerical grid is always Pnite, we introduce absorbing boundary conditions using Perfectly Matched Layers procetiure
(Berenger 1994; Hastingsal. 1996; Hustedet al. 2004). This efpcient technique for avoiding numerical reRections from grid edges is a key
element for the frequency formulation. It prevents any frequency resonance from the grid itself which would have complicated the frequéncy
sampling strategy in our inversion procedure.

Using this Pnite difference stencil, one can express eq. (12) through a matrix notatioetBkdt996; Stekl & Pratt 1998) which leads
to the following rather sparse discrete system

W X= S, (16)

where the vectoiX contains the horizontal particle velocity denoted\gsand the vertical particle velocity denoted ®s for each
point of the medium. The so-called impedance mathixis a square sparse matrix of dimension (hix nz)? where the number
of nodes in thex and z directions are, respectively, denota® and nz Only 18 coefbcients are non-zero for each line of the matrix.
This block-diagonal matrix shape depends on the medium points ordering. The source fiB{ctias applied at prescribed discrete
positions.

In practice, we solve this system by decomposifign a LU form, whereL is a lower triangular matrix and is an upper one. By
performing direct and back substitutions, the forward problem is efbciently solved for each source. One must be aware that this decom
blls upL andU matrices, which do not have a sparse structure any more. We have selected the MUMPS software @rmale2Gg0, 2001)
which helps handling this Pll-in of the matrix through parallel computing using MPI library. Once this decomposition is performed, WhiCh(;B
the most CPU-demanding part (around 70 per cent of the total forward computational effort on average for examples presented in this paper),
computing the solution for different sources is simply a matter of substitution, and this can be done efbciently with an incremental appr%ach
as the number of sources increases. §

The impedance matri¥/ is a symmetric matrix except in PML zones, thanks to the reciprocity principle (Aki & Richards 2002). Each2
column of the matridSt corresponds to the Green function value at each point in the medium. More precisely, the Green fBpgHon

, S), which is the horizontal particle velocity recorded at positidor a vertical point source emitted ) is equal to the Green function
Gx(s, ,X), which is the vertical particle velocity recordedstfor a horizontal point source emitted xa As the matrixW depends on the
frequency, considering constant values of the point source at each frequency leads to a dirac function in the time domain if all frequencies
are considered. However, we use a limited number of frequency components in the inversion and do not reconstruct seismograms in the time
domain.

A 2-D-gridded wavebeld, denoted as a Ofrequency mapO (Huste@004), is any beld component computed at a given frequency
for a given source to each spatial point of the model. At the selected frequency, with the help of our Pnite difference technique, we simulate
all kinds of waves (propagating, evanescent, diffracted ones) existing in the medium. Vertical and horizontal velocity components frequency
maps are shown in the top right of Fig. 2 for a vertical force source in an inPnite heterogeneous medium.

When applying inversion procedure in the next section, the particle velocity will be required at each point of the grid for each source.
Moreover, we will need to compute Green functions for impulsive sources located at receiver locations. This is related to the computation of
the diagonal part of the Hessian, as we will see in the next section.

16889/509/2/89T/2on.re/B/wod

¢ 2006 The AuthorsiJl, 168, 6050633
Journal compilatiorr 2006 RAS



610 C. Gelis, J. Virieux and G. Grandjean

dno-olwapede)/:isdiny woly papeojumoq

Figure 2. Gradient construction with the Born and Rytov formulations. Frequency maps show the wave propagation at a given frequency on the left for a real3
vertical source (top) and the backpropagation of residuals located at receiver place for vertical residuals (middle) and horizontal residuals (bottom). To computg
the gradient, the forward beld is multiplied in the frequency domain with the sum of the Pelds due to backpropagated residuals. On the right the contributior%
of one sourceBreceiver couple to the gradient are displayad,fandVs anomalies and for Born and Rytov formulations. Please note the difference between
the V|, andVs contributions to the gradient for one sourceBreceiver couple. Please remark as well the differences between wavepaths obtained with Born al
Rytov formulations

e,

4 THE GR ADIENT ESTIMATION FOR Vo, AND Vs VELOCITY PARAMETERS FOR
BORN MISFIT FUNCTION

Ad 616889/509/2/89T/5®

Frechet derivatives may be deduced from a local relation between medium parameters perturbations and particle velocity amplitudes perteg:
bations. This relation requires only the brst term of the Born series for the brst derivative estimation. Because we fully solve the forwarda

problem at each iteration, we do include multiple diffractions in our perturbation estimation. S
Spatial derivatives of data perturbations could be obtained through the discrete propégatwviously debned in the eq. (16) (Pratt &

et al. 1996, 1998). The elastic adjoint operator (Peatal. 1998) could be written as g_%
3 o W 5

Byd =Ss‘(w>) S VASERYAR (17) §

N

In this equation, we recognize the Born Kernel equal to*® ¢ W/ m W S! and surrounded by two excitation terms: the real so&ce
and the non-real sourceV , composed of conjugate residuals located at receivers places. With another reading of this equation, we can
distinguish three different terms, corresponding to physical phenomena: the forward propagation of the sources, the backpropagation of the
residuals and the derivatives of the differencing operator. We now detail them for the discrete case.

The discrete expressi@(WS!)! of the forward propagation operat®h(W S1)t is the forward propagating beld (Pratial. 1996, 1998).
We may consider a dirac impulse source, discretized by a unitary vector in the model grid for a given frequendy\8tice | wherel is

the identity matrix, the matrixvS! describes discrete Green functions split into
GQX(.iX’ |z ,S) ng(.ix, |z ,S) a8)
Go(ix,iz, ,s) GYfix,iz, ,s)

at the nodeif, iz) of the model grid for a spatial point sourséixs, izs) of the model grid.
The discrete termW>! V represents backpropagated residuals (Reaital. 1996, 1998). Thanks to the reciprocity principle,
(WSh)t = W=, and thereforeW>! can be expressed as Green functions emitted from receivers,
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GO (ix,iz, ,r)  G(ix,iz, ,r)

o o 19)
G2 (ix,iz, ,r)  GIfix,iz, ,r)

where the receiver is at the discrete positidixr, izr).

Conjugate dataresidualsy correspond to time-reversed residuals inthe time domain. They may be backpropagated atonce, by usingasa
non-real source all the residuals located at corresponding receivers for one source. This allows to efbciently compute the mispt function gradien
but this prevents from calculating the discrete Hessian matrix diagonal part. Indeed, in order to obtain the discrete Hessian matrix diagonal
coefbcients, we have to evaluate the discrete expre&siBg (eq. 8) whereB, is the discrete Born Kernel equall /) W/ m WAL We
can equivalently us8} B, since we take the real part. Therefore, in order to get the discrete Hessian matrix diagonal coefpcients, we need
to compute Green functions for sources located at each receiver. One Green function is then multiplied with the conjugate data residual at
this receiver for the selected frequency in order to get the backpropagated Peld from this residual. We follow the second possibility to get the
discrete Hessian matrix diagonal coefbcients.

Moreover, as we consider two oriented data belds (the vertical and the horizontal ones), two Green functions have to be calculated for
each receiver. This allows to backpropagate horizontal and vertical residuals.

Finally, we compute the discrete expression of operafé/ V, thanks to eqgs (14) and (15) and the Pnite difference stencil we use. They
discrete partial operatorW/ V, is equal to

Wix(ix, iz, )V, Wi(ix, iz, ) Vp

Wiixiz, )= ' 20
Vp Wo(iX, iz, ) Vo Wyl(ix,iz, ) V,

where partial derivatives are

2
=]
o
2
@
o
S
3
=
8
Wix(ix,iz, ) Vp =S —XZVp(ix, iz)—X é?'
2
Wi (ix,iz, ) Vp, =8 —2V,(ix,iz)— g
X z ES
o
Wo(ix, iz, ) Vp =8 —2V,(ix,iz)— S
z X 8
. 3
Wodlix, iz, ) Vp = S —2Vy(ix,i—, @) g
o
where formal notationg xand/  zrepresent Pnite difference operators deduced from the discrete forward formulation. s
Similarly, the discrete Frechet derivativéV/ Vs is equal to g
[*)]
W Wi(iX,iz, ) Vs  Wi(ix,iz, ) Vs S
(ix,iz, )= , (22) I
Vs Wo,(ix,iz, M Vs  Woix, iz, ) Vs &
()]
with following expressions of partial derivatives, %
=
Wix(ix,iz, ) Vs= —XZVs(ix,iz)—X S —ZZVS(ix,iz)—Z

W, (ix,iz, ) Vs=8 —X4V5(ix, iz)—Z S —ZZVS(ix,iz)—X
=}
. . X . . = . . N
W,(ix,iz, ) Vs=8S —Z4VS(IX, |z)—X S —XZVS(IX, |z)—Z %
Wolix,iz, ) Vo= —2Vu(ix,iz)— & — 2Vi(ix, iz)—. @3) S
i, iz, ) Vo= —2Va(ix,i2) — § — 2Wulix, i) — 5
N
=

Discrete operators W/ V,(ix,iz, )and W/ V(ix,iz, ) are bnite difference diffracting terms, expressing the interaction of prop-
agating and backpropagating belds with medium parameters @Rraltt1998). They are sparse matrices thanks to the bnite difference
construction of the matrixV and can be readily estimated from it. Eight non-zero coefbcients per line appear in the bnite differences
matrix nearby the diagonal, depending on the diffracting point position. These coefPcients are egi@l\¥g/ h? for the V, param-

eter (they are equal ttl/2 Vs/ h? or £3/2 V/h? when considering/s as parameter), where the Pnite difference grid step is denoted

h.

Injecting discrete estimations of the forward propagation of the sources (eq. 18), the backpropagation of the residuals (eq. 19) and the
derivative of the diffracting operators (eqs 20D23) in the eq. (17) will provide the Pnal discrete formulae we shall use in our approach of
optimization. Let us write down explicitly the Born mispt function gradient for an arbitrary seismic sBuarme two-components receivers
(therefore, horizontal and vertical residuals). Velocity bPeld components appear for the forward Peld term through

VO(ix,iz, ,s) = G (ix,iz, ,s) S'(, s)+ G ix,iz, ,s) S'(, s)
VO(ix,iz, ,s) = GY(ix,iz, ,s) S/(, s)+ Go(ix,iz, ,s) S/(, s), (24)
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for an arbitrary oriented source. Considering as well vertical and horizontal residvals, ,s)and V,(r, ,s), the discrete Born mispt
function gradient for th&/,, parameter is equal to

[( By'd =8 Vg(ix, iz)/2 h?

s o

+ SGL(xS1,iz81,,n SG(xS1izS1,,n

SG(ix S 1,iz, ,r) + GY(ixS 1,iz, ,n

+ G(ix,izS 1, ,n) SGY(x,izS1,,n

+ ng(ix,iz, N+ G(Z)Z(ix,iz, N V, (r, ,s)

+ SGY(xS1,izS1, ,n SG.1xS1,izS1, .,

S G (ixS1,iz, ,r) +G(ixS1,iz, 1

+ G2 (ix,izS 1, ,r) SG(ix,izS1,,r

+ GO (ix,iz, ,r) + Go(x,iz, ,1)  V,(, ,s)
SVoix$1,izS1,,s) SVAixS1,izS 1, ,s)

SV2ix S 1,iz, ,s) + VAixS 1,iz, ,s)

+V2ix,izS 1, ,s) SVix,izS 1, ,s)

peoe//:sdny wolj papeojumod

+V0(3ix,iz, ,s) + V2(ix,iz, ,s) . (25)

In this lengthy expression, the forward Peld spatial derivatives are expressed by a linear combination of terms/§ioh &5 | s), g
propagating from the real seismic source. Conjugate data residuals, corresponding to time-reversed residuals in the time domain, are consideged
as individual sources [terms asV (r, , s)] backpropagated to the diffracting poiii, (iz) through discrete Green function components S
combination [terms such &5 (ix,iz, ,r)]. The interaction of these two beld values with medium scatterers appearsSrMFjeix, iz)/2h? %
term. Our bnite difference stencil collects wave propagation contributions from four different nodes of the mesh. S

Derivatives with respect to the paramet&rcould be obtained using the same procedure and are not given explicitly here. Let us just
specify that the discrete Born mispt function gradient has a more complicated expressiorMigrdhemeter. §

In eq. (25), we recognize the discrete Born KerBjlcoefbcients, corresponding to the whole expression in which conjugate data g

residuals have to be omitted. To compute the discrete Hessian matrix diagonal terms, the discrete Born Kernel coefbcients must be multipli€d
with their conjugate. This explains why we have to compute Green functions for sources located at receivers location, and not directly peldg
due to the backpropagation of residuals. 2

We have started from the discrete wave operator and have deduced the discrete expression of Frechet derivatives. We may take anotger
road and proceed from the continuum formulation of the wave operator through Green functions and thus express the Frechet derivatives@s
proposed by Tarantola (1987). By the discretization of these derivatives using the selected Pnite difference stencil, we obtain term to terﬁ
discrete expressions as the eq. (25) as we show in Appendix A.

The physical meaning and the contribution of different factors are shown on Fig. 2 for one sourcebreceiver couple: Pelds coming frorg
the backpropagation of horizontal and vertical residuals are summed. The resulting Peld is then multiplied with the beld coming from the real,
source. Both belds meet together at the scatterer location, at the time corresponding to the time propagation from the source to the scatte‘éer.
Fig. 2 shows as well that the contribution of one sourcebreceiver couple is differdftdadVs parameters reconstruction. TWg parameter
image for one sourceBreceiver couple has a shape similar to the acoustic velocity parameter image in the acoustic conbgueatbn (Pratt
1998; Ravauet al. 2004), whereas th¥; parameter image is strongly different.

Let us now consider the complex phase data related to the Rytov mispt function.

/

9/S

san

1202 Yyose

5 THE GR ADIENT ESTIMATION FOR Vo, AND Vs VELOCITY PARAMETERS
FOR RYTOV MISFIT FUNCTION

Fitting observed and calculated beld complex phases leads to another data space. The non-linegrretdatiscomplex phase perturbations
to parameters perturbations. The Frechet derivative is dePned by an operator,Biehotader to estimate its discrete expressBjndiscrete
parameters perturbations have to be linearly related to discrete Peld complex phase perturbations. This constitutes the Rytov formulation for
medium perturbation.

The unknown medium is the superposition of a reference background and small perturbatiatis PEh@ velocity componen¥; (x)
that propagates in the medium is linked to ttievelocity Peld componen?(x) that propagates in the reference background and to the
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Two-dimensional elastic full waveform inversion in the frequency domaiil3
complex generalized phase shift ; (x) due to the presence of small perturbations in the medium through
Vi) = Ve 1. (26)
Since the misbt function contains beld complex phases, we focus on the complex Neperian logarithm of the velogity)beld

Moreover, as already pointed out in the acoustic case by Devaney (1981), Woodward (1992), Wu (2003), a relation between Green
functions perturbationsGpq(r, , S) and perturbations of their complex phase,(r, , S) exists and is expressed through

qu(r' ,S) = G%q(n ,S) Pq(r' ,S). (27)

It means that, in the weak-scattering limit, Rytov data perturbationg(r, ,s) can be related to Born data pertubatio@g(r, ,S).
Similarly to the Born approach, the perturbation of complex phases can be deduced from model parameter perturbations as suggested b
Prattet al.(1998) through a discrete formulation based on Pnite difference stencil. Before doing so, let us write down operator expressions. The

complex source phas® and receiver phasg; are related to the Peld sourBeand synthetic receiver seismograkighroughX, = Ln(X) g
andS, = Ln(S). The Rytov elastic adjoint operator is equal to §
g
X, ! g
t
BE) d, = I'T; d,, (28) g
3
=
=1

whered, are data considered in the Rytov case Bfjds the Frechet derivatives matrix for a forward problem wigh aource. As already
pointed out, the data we shall consider in the Rytov formulation are complex phases and may be wifittef ¥3 ] whereV represent
real seismograms which are the data considered in the Born approach. Furthermore, partial derivatives of seismograms with respect to
parameters may be expressed as

BROR//'S

ode

X, Ln(X) _
m m

& X
XSt 29
- (29)

The notationX S! means that we take the inverse of each term composing the vector
Therefore, the eq. (28) becomes

By 'd, = imt(xsl)t[ Ln(V) 1. (30)

Because X'/ m= X' W/ mwS$? (egs 15 and 16 of Pradt al. 1998), we deduce sequentially

16889/509/2/89T/3onre/iB/woo dno-oiws

By d, =S S(WSH L WS XS [ Ln(V) ]
w (31)

By 'd, =8 s‘(wsl)t—mwgl(sél)tw‘[ Ln(V) 1.

The term (WAL)E W/ mw SL(X S1)t corresponds to the Rytov Kernel. The term™t = (SS1)'W?, appearing at the end of this expression
corresponds to the forward Peld, propagating from the source to the receiver (egs 27 and 29). Since the forward Befdtedmes
not depend on the diffracting point, it may be moved in the discrete Rytov Kernel expression, so that we may consider the expregsion
(WSHYX S1) W/ mWS! as the new Rytov Kernel.

Using this new expression, we can distinguish and physically interpret three terms of the misbt function gradient, which are different
from these obtained with the Born formulation but are still similar. The forward propagating#&i® from the source to the diffracting
point is multiplied with (X51)t, whereX is the reference forward propagating beld propagating from the source to the receiver. Therefore, we
obtain the propagation of the forward beld complex phase from the source to the diffracting point. This represents a fundamental difference
with respect to the Born approach. Backpropagated complex phase residuals aWéédian(d )], which is also specibc to the Rytov
approach. These two Ocomplex phases beldsO interact with local medium parameters Wafiations

Let us now consider discrete formulation. The continuous operatéf m is replaced by the discrete oneW/ m , debned by
egs (20)D(23). The matrW in (X51)t = Wt(SS1), corresponding to the forward Peld propagating from the source to the receiver and
independent of the diffracting poinitx, iz) (eqs 27 and 29), can be expressed with Green functions between sources and receiver points.
By combining previously detailed discrete terms, we deduce the global discrete expression of the Rytov mispt function gradient, similar to
the Born one (eq. 25). For an arbitrary source and vertical and horizontal receivers, the Rytov mispbt function gradiedt,fpathmeter
equals to

02 UdIep Gz u
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(B d, =3 Vix, iz)2h?
s
+ SGLGIxS1,izS 1, ,r) SG4ixS1,izS1,
SG(ix S 1,iz, ,r) + G%ix S 1,iz, 1)
+GY(ix,izS 1, ,r SGix,izS 1, ,r
+GO(ix,iz, ,1) + Gofix,iz, ,)  Ln(Vy(r, ,s) )
+ §G%(xS51,iz81,,1) §G%([xS1,iz81,,r
SGO (xS 1z, ,r) + Go(ixS1,iz, ,r)
+G2 (ix,izS 1, ,rn SG(ix,izS81,,n
+GO (ix,iz, ,r) + Go(ix,iz, ,)  Ln(V(r, ,s) )

1 < . X o4 s X v X
Voe ) SVoixS1,izS1,,s) SVAixS 1,z ,s)
+V23ix,izS 1, ,s) + V(ix,iz, ,s)

1 - - . 8
+——— SV%xS$1,izS1,,s) + VAixS1,iz ,s
VZO(I’, ,S) Z( ) Z( )

SVOix,iz8 1, ,s) + V(ix,iz, ,s) (32)

In this expression, we clearly distinguish the forward Peld spatial terms (propagation from the real seismic source divided byg
the source/receiver forward beld) from the backpropagated residuals, coming from the propagation (via Green functions derivatives) <§
conjugate complex phase residuals considered as sources. In both cases, propagating belds are velocity complex phases Pelds. The interagtion
of these two belds with the medium scatterers appears i V%.(ix, iz)/2h? term and is equal to the one appearing in the eq. (25) for the
Born formulation.

Similarly to the Born formulation, this expression may be deduced from the discretization of equations coming from the Tarantola (1987)=:
approach and detailed in Appendix B. Moreover, contributions of different factors are shown in the Fig. 2 for one sourceBbreceiver coupleg"'

Please note again theft, andVs parameter images differ. We will analyse differences between the Born and Rytov approaches in the next &
section.

eoe//:sdny wWouy papeojumoq
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6 CONVERGENCE BEHAVIOUR FOR BORN AND RYTOV FORMULATIONS

6889/509/2/89T/°

Let us consider a very simple example in order to analyse how non-linear optimization performs when Frechet derivatives are calculated bd:eh
for Born (amplitude ptting) and Rytov (phase btting) formulations. Comparative quantibcation is difecult because one method may be mor&
efbcient for a specibc data acquisition geometry and for different types of heterogeneities. By considering rather simple diffracting element%
convergence is analysed regardless deeper efbciency investigation of Born and Rytov methods.

Letus consider an inPnite medium witRavave velocity of 1500 m% and arS-wave velocity of 1200 m% . Two bnite-sized anomalous
disks of radius 100 m are inserted wiRhwave velocity of 1800 m¥ and anS-wave velocity of 1440 m%. The numerical grid size is 201
by 201 points with a spatial step of 10 m. The vertical point force source is a Ricker signal centred on 5 Hz which represents a rather impulsivg
signal. Fifteen shots are dePned per edge separated by 100 m (Fig. 3). Each source is recorded by 36 geophones located on the opposite §ide
along the bold line with a stepping of 40 m. This transmission acquisition geometry allows to densely sample the medium and iIIuminate§
anomalies with different diffracting angles. We choose to image two anomalies because multiple scattering occurs. The forward problem
should take care of that and ghost images, if any, should vanish.

The initial medium is the constant velocity medium without anomalies and we proceed from low frequencies towards high frequencies.
This allows us to reconstruct long wavelength anomalies before going into details. This careful introduction of the frequency content will also
prevent fast focusing of anomalies that may lead to some local minimum in the model space. One may hope we avoid somehow cycle-skipping
which is often more dramatic at high frequency than at low frequency. For each frequency, the initial model comes from the inversion of
the previously inverted frequency. Twenty iterations are performed at each frequency. We progressively introduce details in the reconstructed
images. The inverted frequencies are 1.75, 3, 4.25 and 10.25 Hz. Their choice depends on the acquisition geometry and on the anomaly
position to be reconstructed as showed Sirgue & Pratt (2004) for a ref3ection acquisition geometry. We show in Fig. 4 and Appendix C that
the relation proposed by Sirgue & Pratt (2004) may be used for a transmission acquisition geometry. Thus, this relation can be used to select
frequencies, such as to cover a continuous wavenumber spectrum in the target zone.

N GZ uo1ls
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Figure 3. Background and transmission acquisition geometry synthetic example for illustration of Born and Rytov formulations performances. Recei@zrs
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Figure 4. Wavenumber imaging, depending on the source and receiver locations. The wavenumber norm remains the same whatever the source and receiver:
positions are.
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Figure 5. V), progressive imaging with the frequency increase in the Born formulation. Please note the importance of frequency in focusing anomalies.

Figs 5 and 6 show the progressive reconstruction of anomalies both in shape and in velocity ampliMgearfiorVs parameters
when considering the Born formulatiod, andVs parameters are simultaneously inverted and differently reconstructed. Rytov formulation,
although equivalent for weak anomalies, behaves differently when considering this example where anomalies have amplitude perturbation as
high as 20 per cent (see Figs 7 and 8).

Although the Born and Rytov formulations are strictly restricted to small perturbations, in this experiment the acquisition redundancy
allows the use of a homogeneous starting model without preventing the accurate reconstruction of the anomalies in shape, depth and amplitude.
Moreover, bnal parameter images obtained with the Born and Rytov formulations are almost the same, showing the good convergence of the
inversion in both cases, although patterns to search the minima are not identical.
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Figure 6. Vs progressive imaging with the frequency increase in the Born formulation. Please note the importance of frequency in focusing afpmalies.
(Fig. 5) andVs parameters are differently reconstructed with the Born formulation.

The size of reconstructed scatterers depends on the selected wavéleDegtiils progressively appear when the inverted frequency
increases, allowing to characterize scatterers more bnely. The way anomalies are recovered is different when inverted parameters change,
already noticed by Mora (1987).

The choice of the Prst frequency is not critical in this very specibc example of very well-localized anomalies but one may see that broad
reconstruction at low frequencies does not prevent further rePnements in this case. The frequency content will be essentially limited by the
source spectrum in real applications (Sirgue 2003).

To better understand differences between Born and Rytov formulations, we focus on the gradient of the misbt function expression. Fig. 2
shows Born and Rytov wavepaths (Woodward 1992) that represent the kernels of the mispt function gradievi fanthé parameters for
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Figure 7. V) progressive imaging with the frequency increase in the Rytov formulation. Please note the importance of frequency in focusing anomalies. The
V, parameter is differently reconstructed with the Born (Fig. 5) and the Rytov formulations. The bnal image is similar to the one obtained with the Born
formulation (Fig. 5).

one sourcebreceiver couple. They correspond to egs (25) and (32) when only one sourcebreceiver couple is considered in the summation. They
are obtained here by simultaneously inverting ¥heandVs parameters. This wavepath describes the path followed by a scattered wavepeld

from the source to the scatterer and from the scatterer to the receiver. Once more, this highlights that one simple diffraction is considered
with the Born and Rytov formulations. The central area is equivalent to the brst Fresnel zone (Woodward 1980alPt886). The width

of the brst Fresnel zone for one wavepath depends on the inverted frequency through the considered waweldrigehdistance between

the source and the receiv@rsince the brst Fresnel zone width equals O (Prattet al. 1998). For higher frequencies, the wavelength is

smaller and positive and negative variations zones are closer. By summing up such wavepaths for all sourceBreceiver couples, Fresnel zones
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Figure 8. Vs progressive imaging with the frequency increase in the Rytov formulation. Please note the importance of frequency in focusing anpmalies.
(Fig. 7) andVs parameters are differently reconstructed with the Rytov formulation.VElparameter is differently reconstructed with the Born (Fig. 6) and
the Rytov formulations. The bnal image is similar to the one obtained with the Born formulation (Fig. 6).

containing signibcant energy (due to scatterers) are progressively surimposed and bnally allow to locate the scatterers. As each wave goin
from one source to one receiver differently illuminates anomalies, denser and wider acquisition geometries provide better images in practice
(Prattet al. 1996).

Fig. 2 shows as well that the inversion differently reconstrigtsindVs anomalies for the Born and Rytov formulations. As Figs 5D8
show, images obtained from Born and Rytov formulations differ. Differences are weak and mainly located in the Prst Fresnel zone. This was
already noticed by Woodward (1992) who shows Rytov and Born wavepaths for the acoustic case. When considering the time domain and,
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Figure 9. Comparison of data differential seismograms (difference between data to be inverted and data calculated in the initial model), synthetic differentiafy-
seismograms (difference between data calculated in the Pnal model and data calculated in the initial model) and residuals (difference between data dlfferen%l
seismograms and synthetic differential seismograms) with the Born formulation and a transmission acquisition geometry. Please note that residuals are Vij
weak, which indicate the very good bt of data.

therefore, the contribution of all frequencies, Woodward (1992), Daéteai. (2000), Dahlen & Baig (2002), Spetzler & Snieder (2004)
noticed that heterogeneities located on the ray path do not affect traveltimes but only wave amplitudes.

We now focus on the practical way Born and Rytov formulations allow to reconstruct anomalies ¥y #melV; parameters. The Born
formulation images heterogeneities in the medium as a series of independent simple scatterers. The diffracted Peld is, therefore, considef2d
as a series of neighbouring hyperbolae due to the presence of simple scatterers. These hyperbolae result from the convolution in the tirﬁe
domain of the forward Peld and the backpropagated pbeld residuals. These hyperbolae constructively and successively are added in the t@e
domain, thus reproducing the desired diffracting wavebeld. The Fig. 9 shows three differential seismograms for the vertical component, §
source located on the bottom left of the model and the corresponding receivers. The brst differential seismogram represents the differenge
between the initial Peld and the data Peld, the second one shows the difference between the initial Peld and the beld calculated in the Pgal
inverted model. The third seismogram, called residual seismogram, contains the difference between the brst and second seismograms. Phe
inversion explains 92 per cent of the vertical seismograms energy and 87 per cent of the horizontal seismograms energy. Unexplained enel%y
mainly comes from small phases shifts, indicating that the bnal inverted model corresponds to a minimum model. &

The Rytov formulation proceeds in a different manner. The medium perturbations are reconstructed owing to the phase shifts an§
logarithmic amplitude variations they induce on receivers. The diffracted beld is considered as a series of waves of different phase shifts;
coming from different scatterers. Residuals (Fig. 10) calculated in the Rytov formulation contain almost the same level of energy as for th%
one deduced by the Born formulation: 93 per cent of the vertical seismograms energy and 88 per cent of the horizontal seismograms energy
are explained.

As a partial conclusion, scatterers are well located spatially. They have the correct size and the velocity amplitude is fairly well
estimated. Optimization is quite robust leaving unexplained energy in residuals. The bnal images very weakly depend on the chosen Born
or Rytov formulation, whereas the road taken to reach the global minimum of the misbt function is quite different (see the brst parameter
images for the brst frequency in Figs 5D8). We may expect more complex convergence when other data acquisition geometries will be
considered.

/89T/3101e/[B/wod dn

7 CHOICE OF INVERTED PARAMETERS

Selection of the parameter space is expected to be important and non-linear relations may lead to different results. Based on radiation pattern
diagrams (Forgues 1996), we may consider four other parameters couples, dehotégd,((, 1), ( , 1) and [Ln(Vp), Ln(Vs)]. V and
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Figure 10. Comparison of data differential seismograms (difference between data to be inverted and data calculated in the initial model), synthetic differe%tial
seismograms (difference between data calculated in the Pnal model and data calculated in the initial model) and residuals (difference between data diﬁ@éntia
seismograms and synthetic differential seismograms) with the Rytov formulation and a transmission acquisition geometry. Please note that residuals a.@ very
weak, which indicate the very good bt of data. Final results are equivalent to the ones obtained with the Born formulation (Fig. 9).

are debned by relation (15) and following expressions

VORS00 Va0 S SV

)

The bulk velocity is denoted by (Gorbatov & Kennett 2003) and is currently inverted in the acoustic case (Retvalu2004; Opertcet al.
2004; Dessat al. 2004). By choosing/ instead ofV,, we separate strict acoustic phenomena to shear ones in model reconstruction.
consider as well Lame parameters couplegi)and also (, ). The parameter set [LM;), Ln(Vs)] may be of interest because derivatives
are related to relative variations of seismic velocitgsandVs.

The geometry and amplitudes of anomalous disks to be recovered are identical to the previous example as well as the acquisition g
Selected parameters are simultaneously inverted for each couple. After the inversion, we reconsityentié; parameters for analysis
and horizontal probles crossing the lowest anomaly (Fig. 3) are shown in Figs 11 and 12.

Whatever the inverted couple we select, Pnal images show Gaussian-shape amplitude variations due to the bnite frequency effecgs tha
do not allow to recover sharp velocity contrasts. The Born and Rytov formulations similarly reconstruct scatterers in amplitude and in shpe.
With the Rytov formulation, we have not tried to unwrap the phase and have adopted to ignore any data with a phase shift higher than 2,

As a partial conclusion, results obtained with any parameters couple are equivalent for the data acquisition geometry and the freq@ncy
content we have considered.

(9 V(S JV07 (33
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8 THE IN FLUENCE OF ACQUISITION GEOMETRY

The acquisition geometry plays a key role in the image reconstruction (Mora 1988gPahti998). We now illustrate its inuence in a
synthetic example based on the geometry of a real experiment which has taken place in the North of France near a railwaydt aparoux
2002). Detection of identibed near-surface cavities, embedded at a maximal depth of 5 m, was the objective. We consider a zone of 45 m
width and 20 m depth (Fig. 13a). Two disk anomalies are inserted with roofs located at 2 and 4 m depth, respectively, and their radius is equal
to 1.2 m. The background medium has following propertigsequals 888 m¥, V, equals 431 m% and equals 1600 kg fF. The model
is discretized with a 0.1 m numerical spatial step and contains 451 points horizontally and 201 points vertically.

In this synthetic simulation, we do not introduce yet the free surface for better analysis. Nevertheless, the medium has been discretized
following the rule of 30 points per wavelength (Saenger & Bohlen 2004) used when the free surface is introduced, in order to compare these
results with the ones obtained with the free surface.
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Figure 11. V, and Vs parameters cross-sections extracted along a horizontal line crossing the lowest anomaly (see Fig. 3) and calculated with the Borrs
formulation for different parameters couples. Anomalies size, location, shape and amplitudes are well reconstructed. The inverted parameters couple cho"jrge

has a weak inRBuence with this transmission acquisition geometry. §
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Figure 12. V, andVs parameters cross-sections extracted along a horizonatal line crossing the lowest anomaly (see Fig. 3) and calculated with the Rytov>
formulation for different parameters couples. Anomalies size, location, shape and amplitudes are well reconstructed. The inverted parameters couple choice
has a weak inBuence with this transmission acquisition geometry. Final results are equivalent to the ones obtained with the Born formulation (Fig. 11).

Sources and receivers are located above anomalies. The acquisition conbguration is expected to inBuence the parameters bnal images
since anomalies are differently illuminated with respect to the previous transmission acquisition conbguration example.

If sources and receivers are located on opposite sides with respect to scatterers, the latter will be contained in the Pbrst Fresnel zone for
some sourcebreceiver couples and, therefore, the full waveform inversion performs more or less like a traveltime tomogragthgl.(Pratt
1996). On the contrary, if sources and receivers are located on the same side with respect to scatterers, the latter are located on external Fresnel
zones corresponding to high phase shifts, and therefore, will inBuence later times in seismograms. One may think that the full waveform
inversion provides migration-like tomography (Prettal. 1996).

Fourty-three receivers record horizontal and vertical velocity Pelds coming from thirty-seven vertical force sources (Fig. 13a). The
spacing between sources is 1 m as well as for receivers. Each source is recorded by all receivers. The source is a Ricker wavelet. The frequency
content is centred around 88 Hz. We select four inverted frequencies at 10, 20, 50 and 130 Hz.
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Figure 13. (a) Background and ref3ection acquisition geometryMp)parameter calculated with the Born formulation. \)(right) parameter calculated
with the Born formulation. (d), parameter calculated with the Rytov formulation. \lg)parameter calculated with the Rytov formulation. Please note the
better anomalies reconstruction with the Born formulationMgrandVs parameters.

We choose to perform the elastic full waveform inversion with the Born and the Rytov formulations. Moreover, as our main goa
locating anomalies and determining perturbation amplitudes in real cases, we sel&fGf, g eismic velocities as inverted parameters. =

The background structure is known as for the previous example. We focus our attention on anomalies reconstruction. We assumEthat
long wavelengths of the model have already been determined with another method such as the brst arrival traveltime tomography (Irr@rota
et al. 2002) or the Spectral Analysis of Surface Waves (Nazarian & Stokoe 1984). 8

Results obtained from the inversion are presented on the Figs 13(b)D(e). Anomalies are better reconstructed with the Born formuatlon
than with the Rytov formulation, due to the rel3ection acquisition (Beydoun & Tarantola 1988). These results are in good agreement %Ith
the ones obtained by Pratt & Worthington (1988). They show in the acoustic case that the Born formulation allows to better reconstrugtthe
edges of discrete objects than the Rytov approximation. IVthandVs parameter images calculated with the Born formulation, we clearl
distinguish the two anomalies although small ghosts appear beneath them. They are due to the limited aperture of the acquisition conp
Let us point out that we perform an image of each point of the medium, therefore, background parameters are imaged as well, eve
take as their initial values the true ones. Moreover, as the background is homogeneous, no diving wave propagates, thus preventing
getting some knowledge about the medium parameters from grazing angles. We explain 60 per cent of energy in vertical seismogranig anc
45 per cent of energy in horizontal seismograms.

ue/%/woo'dno'ogwapeoe//:sduq woJj papeojumoq
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9 THE IN FLUENCE OF THE FREE SURFACE

Let us now introduce the free surface in our previous example. We choose the Born formulation since it is better suited for reBection acquisition
(Beydoun & Tarantola 1988) as the previous example showed. Moreover, Keller (1969) and Woodward (1992) explained the Rytov formulation
should be used only with one diffracted wave, in order to model phase shift due to one wave. When the free surface is present, surface anc
body diffracted waves contribute to data residuals.

The effect of the free surface is taken into account by the Pnite difference modelling of the vacuum zeroing elastic coefbcients above
the free surface while keeping a small density (Saergat. 2000). Stresses are zero on the free surface. The free surface has a stair-case
geometry and we must include thirty points per wavelength in our simulations for accurate modelling (Bohlen & Saenger 2088alG elis
2005).

The reRRection acquisition geometry remains the same as for the previous realistic example. Receivers are located at the free surface
whereas sources are embedded at 1 m depth in order to properly emit downwards the energy inside the solid medium (Fig. 14a).

The presence of strong surface waves in seismograms may introduce a supplementary difbculty for the optimization scheme: surface
wavesresult from constructive interferences of reRected/transmitted body waves at the free surface and decay exponentially with depth. One
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Figure 14. (a) Background, free surface and reBection acquisition geometry.,(parameter calculated with the Born formulation and the full data set. (c)

Vs parameter calculated with the Born formulation and the full data se¥ {darameter calculated with the Born formulation and progressively introduced
data set. (e)/s parameter calculated with the Born formulation and progressively introduced data set. Parameters maps colours are saturated to highlig
reconstructed anomalies. (f) Curves show horizontal and vertical cross-sectidpsntlVs parameters models. Velocity anomalies are better characterized
when data are progressively introduced.

1202 Yare@ Sz uo 1senb Aq 6T6889/509/2/89T/a101e/1B/wod dno-olwepese//:sdny woij papeojumoq

may wonder how velocity anomalies are extracted from surface waves because of their evanescent nature. We present here a synthetic example
to understand how the inversion works with surface waves and how we could deal with them.

The frequency sampling remains the same as in the previous example, since its choice is based on the continuous wavenumber coverage.
Let us point out that this frequency sampling is well suited for surface waves. The exponential decay of surface waves amplitude with depth
makes the frequency choice for surface waves less dense, as we explain in Appendix C, for a rel3ection acquisition geometry.

By performing the inversion with the whole data 3ét,andVs anomalies are correctly detected and located, but spurious features appear
(Figs 14b and c). The comparison with the previous example without free surface indicates that this convergence towards a local minimum can
be attributed to surface waves and to the difpculty to bt both body and surface waves. We may consider brst body waves and introduce surface
waveslater on. This data pre-conditioning can be performed by successively performing inversion with different data sets. We brst consider
short-offset data containing mainly diffracted body waves and then, we use the Pnal results as initial models to perform an inversion with
higher offset data. Therefore, we progressively introduce higher-offset data during the inversion with more and more surface wave content.
The entire inversion is performed through the frequency range with a pre-conditioned data before moving to the other selected data set. For
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Figure 15. Comparison of data differential seismograms (difference between data to be inverted and data calculated in the initial model), synthetic differeitial

seismograms (difference between data calculated in the Pnal model and data calculated in the initial model) and residuals (difference between data diffégentia
seismograms and synthetic differential seismograms) calculated without and with data pre-conditioning for the horizontal component with the Born formul&on.
Data residuals are weaker when data are progressively introduced.

each inversion, the frequency choice has to be adapted to ensure the coverage of a continuous wavenumber spectrum. Therefore, the aumb
of imaged frequencies is higher than with the whole data set and they are equal to 10, 15, 20, 35, 50, 90 and 130 Hz.
This near-to-far offset data selection is possible because the background model is known in this synthetic example and anomal|e§ will
focus at the right place. More realistic strategies could be envisioned although it is more complex in the frequency domain than in the@me
domain. An (, k) pbltering will reduce effects of surface waves but it must be handled with care for erasing initially surface waves. Let ﬁs
remind that the frequency increase during the inversion is also a data pre-conditioning.
TheV, andV; parameter images show better reconstructed anomalies when surface waves are progressively introduced (Figs 14d @d e
with respect to the case where body and surface waves are inverted at once (Figs 14b and c). Anomalie amplitudes have been increased.
explain 59 per cent of the vertical component when inverting directly the whole data set and 97 per cent with offset pre-conditioning. Simil&ly,
we improve btted amplitude from 48 per cent for the horizontal component to 91 per cent. When data are pre-conditioned, the energy I@t in
residual seismograms is considerably reduced (Fig. 15). Because surface waves contain most of energy, they control the way optimiza@on is
performed: incorrect interpretation of these surface wave in diffracted body waves will drive the optimization to a local minimum.

10 DISCUSSION AND CONCLUSION

The optimization method

OZ Udsep Gz u

In this paper, we perform the elastic full waveform inversion following an iterative gradient optimization scheme. Other approaches maybe
applied to Pnd the global minimum. First, conjugate gradient methods allow to reach the global minimum more quickly (Polak 1971; Lu@?&
Schuster 1991). The Hessian matrix is as well considered as diagonal behaving €éZadll2004). The main advantage of this method is
its faster convergence but Pnal models remain in the same mispt function area (Mzl@af002). In the Ray-Born approach (Bhal.
1992), the Hessian diagonal approximation is counter-balanced by a local illumination coefpcient depending on the considered point. Pratt
et al. (1998) show that iterations in the gradient method allows to progressively introduce Hessian matrix out-of-diagonal terms, related to
the data acquisition aperture and the limited frequency bandwidth. e3tah (2001a) use the virtual source concept developed by Pratt
et al. (1998) and modify it to render the Hessian matrix more diagonal, considering that virtual sources are more uncorrelated than when
using backpropagated residuals. However, this approach is more time-consuming since each virtual source must be calculated to construct th
Hessian matrix. Plessix & Mulder (2004) show that, in the acoustic case, the diagonal approximation of the Hessian misleads the inversion
engine. Moreover, they show that the non-diagonal elements size depends on the background velocity and on the depth. By including some
non-diagonal terms in the diagonal Hessian matrix, medium imaging is improved. This could be a further improvement of our optimization
scheme in the elastic case.

The main difbculty with gradient or Newton methods (Peital. 1998) remains the error estimation and uncertainty assessment to
debne the quality of Pnal parameter images.
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The data and model spaces choice

In this study, we highlight the data and model spaces choice inBuence by considering Born and Rytov formulations and several inverted
parameters couples. Model space explorations performed with Born and Rytov formulations differently converge to the global minimum.
When the problem is ill-posed, for example with limited aperture acquisition geometries, different model exploration may lead to different
local minima. On the contrary, similar results coming from different formulations indicate the good quality of the bnal parameter images.
Moreover, the inverted parameters couple choice will inBuence the Pnal parameter images by better recovering anomaly amplitudes or edges.
This effect becomes more important when the number of inverted parameters increases. For example, if one aims at recovering seismic
velocities and density, several couples of physical parameters may be chosen as Forgues (1996) shows and bPnal images may differ. In order to
choose parameters couples, diffraction patterns must be considered. Kormendi & Dietrich (1991) bnd that seismic impedance inversion gives
better results than seismic velocity inversion.

Data pre-conditioning

Another way to modify the mispt function or better control its gradient direction concerns the data pre-conditioning. In this study, we g
perform two kinds of data selection by isolating only near-offset data or by ignoring out-of-phase data with the Rytov formulation. This data%
discrimination is closely related to the L2 norm choice, very sensitive to few outliers. Ogteat2004) strongly weights far-offset data in 3
their inversion scheme to brst reconstruct background parameters. Our data pre-conditioning with offset represents an opposite case of @s
offset weighting when the long wavelenghts of the background are known. In the elastic case, it could also be possible to weight horizontat
versus vertical data. This should be studied in details in another paper. Tuning the inversion with selected data is a key point to avoid Ioczﬂ
minima and better converge towards the global one. The weighting choice depends on the background knowledge and the type of mforman@

we brst aim to recover.

The surface waves modelling

0°0llIBpRIR//:S

In this approach, we do not discriminate surface waves from body waves in the inversion. The frequency modelling allows to take into accourt
all waves propagating at a given frequency. In practice, this may give rise to some difbculties since surface waves are stronger than body wav&s
in recorded seismograms and contain lower frequencies. As the inversion begins with low frequencies and progressively considers highar
frequencies, surface waves normally Prst control the inversion. Methods using surface waves have been developed byeCalnipatst)
and Hermaret al.(2000) to eliminate scattered surface waves masking waves coming from deeper areas. They construct an effective medium
containing anomalies explaining observed scattered waves but they do not search to bnely image these anomalies. This method aIIowsgto
roughly detect scatterers and may be used in our approach as brst indicator of medium anomalies. This method allows to construct a I%s
smooth background than the SASW (Nazarian & Stokoe 1984) and/or the traveltime tomography (Ehat@a02).

Combining surface waves and body waves is still a challenge because of their different physical behaviour and nature. We present hegg
an efpcient way to discriminate between body and surface waves and to take information from body waves prst. Other data pre-conditionirig
may be used to reach this purpose. A more detailed study of the surface waves infRuence on the inversion scheme must now be done in anofBer
forthcoming paper, to introduce surface waves in the optimal way.

apie/)

Conclusion

Gz uo1sanb Aq

In this paper, we have performed the elastic full waveform inversion following a gradient optimization method. The forward problem allows 9§J
to model all waves propagation in complex media and to properly simulate the free surface. We highlight that the reconstruction of sever@
parameters is possible as long as data allow to extract information. This means that we need to know the background medium and that this
inverse scheme works for backscattering as long as macromodel is available. Moreover, we highlight problems that may be encountered with
surface waves. Their evanescent nature may introduce instabilities when depth increases but body waves help collaborative recontruction as
soon as we discriminate data. The next step of this study will be to precisely understand how to introduce them in the inversion in the optimal
way.
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We follow the approach described in many textbooks (Tarantola 1987; Chapman 2004) and linearly link the Green function perturbations t
the parameters perturbations, allowing to debne the so-called Born kerRet any 2-D medium, the perturbation of the Green function
component along the directianat the receiver position for a point sources applied along the directiopis given for the brst-order Born
formulation, also denoted Born formulation, by the expression

Gpg(r, ,8) = . 2 (G, .1 Gy(x, ,9)
. Go(x, ,r) G2 (x, ,s
IS Cijkl (X) |p( ) kq( ) dX
Xj X

S (A1)

Kpg(r, X, 8, )dx,
M

in which the implicit Einstein convention for summation is used, whdres the set of all points in the medium that may be considered as
scatterers and where

1202 YareN 5z uo 1senb Aq 616889/509/2/88T/a10me/1B/wod dno-olwepede//:sdny woij papeojumoq

x)= %)+ (x

) 0( ) () A2)
Cijln(¥) = Cja () + Cijia (x).
For an isotropic linear elastic medium, the fourth-order elastic te@gg(x) becomes
Cik() = X) ij w+ B ik ji + it k) (A3)

where andp are Lame parameters.
This expression, which has been obtained using the reciprocity theorem, allows estimation of Frechet derivatives with respect to velocities.
We neglect here derivatives with respect to thparameter which is kept constant throughout this study.
As an explicit example, the Green functioG,(r, , s) can be expressed with respecWipandVs physical parameters perturbations
Vp and Vs. One may write
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Gy, (r, ,s ) = 2 2V VO(X) S 4 CpVI(X) VO(x) ng(x); 1)

M
+ 2 %0Vx) VIX) S 4 2V VO(X) GEZ(X; 1)
+ 2 90V200) V2p -2 eD Gl 9
+2 20)VI(x) VI(x) ng(x)’( ) GSZ(X); .5)
+ 2 200V Vo)t Gl .9
+ 2 O(X)VSO(X) VSO(X) GSZ(X),( ,I’) ng(xz, ,S)

Go(x, , 1) GY%(x, ,9)
+2 2(X)Vy(x) Vo(x) . -

0 0

+2 O(X)VS(X) Vg(x) GzZ(X; )| GZZ(XZ, ,S) e

(A4)

papeojumoq

The Born Kernel debned in eq. (A1) comes from the contribution of the different spatial Green functions perturbations with respectto
the perturbations of one physical parameter, sudf,asi Vs. These Green functions perturbations are then multiplied with conjugate velocityi

residuals in order to get the misbt function gradient (eq. 11). Moreover, in order to take the real source term into account, one may Writ§

Vp _ f Gzz(rx 13) f GZX(rv ,S)

Bd TSR WO TS TG
¢ Gxar, 1S) ¢ Gxx(r, ,S)

+ Vp(X) VX( 1 r) + S( Vp(X)

which is physically similar to eq. (17) expressed with discrete pelds.
To go on with the G,,(r, ,s) example, we link the Green function perturbatior,(r,
perturbations. Thanks to eq. (A4), the expressiGn,(r,

G

V. (o0,

,S)| Vp(x) is equal to:

(A5)

,S)to V, and Vs physical parameters

G.Ar, ,S) < -0 Go(x, ,1) Go(x, ,1)
_ = +
) S 2V,(X) ”
ng(xv ’ S) + G(z)z(xv ’ S) (AG)
X z
Similarly,
Gafr, \S) _ 5 2v0(x) G2,(x, ,1) . G, ,1)
Vs(X) ° z
Gox .5) | GYX )
z X
&5 Gox, , ) GYLx, ,s)
X z
S 2 ng(x! !r) ng(xl 15) (A7)
z X '
Other components of Born gradient function could be similarly estimated f@ndVs giving following expressions
Gux(r, ) _ 5 V9 G.(x, ,1) . G(x, ,1)
Vp(X) P X z
GSX(X' s S) + ng(x, s S) (A8)
X z '
Gualr, ) _ & 2v0x) G (%, ,1) N Go(%, ,1)
Vp(X) P X z
ng(xi 1 S) + c;(Z)Z(X’ 1 S) (Ag)
X z '
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Gu(r, ,S) < 0 Gox, ,1) Go(x, ,1)
— =S 2V +
V(%) p() z
GhL( .8) .  Gx, .s) (A10)
X z '
Gyx(r, ,S) = § /%) Go(x, ,1) N Go(x, ,1)
Vs(X) S z X
Gl .8 | GY(X. ,)
z X
G2 (x,,1) G%(x, ,s)
S 2 XX 1 ZX LIS ]
X z
g5 Goul% 0 G(X ,S) (A11)
z X '
GXZ(rl ,S) - é 2V0(X) ng(xl rr) + GSX(X, rr)
Vs(X) s z X
GLX, ,5) , GiMx. .9)
z X
GO (x, ,r) G, ,s)
W) XX\ 22\
X z
g9 Golx 1) GR(x ) (A12)
z X '
Cadlls 15) _ 5 pyop S G B © Y ()
Vs(X) ° z X
Go(x, .8 | GY(X. ,9)
z X
Go(x, ,1) Go(x, ,s)
W) xz\™ zx\r
X z
o Gox, ,1  Go(x, ,s) . (A13)
z X

By inserting egs (A6), (A8), (A9) and (A10) into eq. (A5), we obtain the continuous expression of the gradient mispt function for the
V, parameter. When this equation is discretized thanks to the Pnite difference stencil used throughout this study, we obtain term by term t

discrete eq. (25).

When computing the gradient misbt function for tigparameter, the same bnal expression is obtained with the discretization of
analytical expressions such as (A5) and with the use of the@®raiti(1998) formalism where discrete belds are always considered (equations

such as 25).

APPENDIX B: ELASTIC RYTOV ANALYTICAL FORMULATION

We brst recall that equations governing the waves propagation in a homogeneous elastic medium dePned by the homogened(@)density

and the fourth-order elastic tens@ﬁkl (x) are (Tarantola 1987; Chapman 2004):

1202 Y2Ie Gz uo 1senb Aq 6T68g9/509/2/89T/2101e/(B/wod dno diwspede//:sdny wolj papeojumoq

0
S 200V )8 — Cl—t) =56 ) B1)
]
We then consider weak heterogeneities (scatters) in the medium that perturb waves through eq. (A5). Therefore, eq. (B1) can be written as
N - Vi(X, )
S 2 () Vi(x, )571_ Cﬁu(X)T
Vi (X,
= Sk )+ 7 WK ) G ®2)

J

Because of the scatters presence, propagating Welds ) are perturbed and are shifted with respect to referenced propagating#3étds
) in the homogeneous medium through

Vitx, )= VPO(x, Je 1)
Vi, ) = Vx, e &), (B3)
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Therefore, the left hand side of eq. (B2) equals to

S 7 v S X Ci?m(x)w

I]k|(X) Vk(x ) 0(1 ) Vko(xl ) k(xl )

= 8§ 2op)Vx, Je (xS kx)g XJ S Gl — 5 S Clu— X;
- IJkI (LI k(X ) 0 V2, ) kX ) & ~o 0 2 x ) )
\ ij Vi VI o
S X k( ) S Cljkl( ) X; X S Cljkl (X) k (X, ) Xe X e (B4)

We perform a prst-order TaonrDLagrange developmeneof® ) ande i )5 k) since (x, )and (x, )S (x, )are
considered as small perturbations. Therefore, we approximate these expressior$ asingx. We dewelop eg. (B1) and elimine common
terms which gives us the following expression

Vk(X, ) >
X

S 2 2Vilx, )57j Clu () =S 2 %00VPx, )l i(x )S  w(x )]

0
§ S We ) s 0 D
j | X
< VO(x, : & Cija(®) ,
scpw—oed X e e s JQJ v ) e
0 2
$ e~ L e 8 oW ) — S ) )

The last expression is equal to(X)V; (x, )+ T,-( Ciju (x)%l')) + S(X, ) since itis the right hand side of eq. (B2). Since

GOV )+ —  Cru)—% ) g
Xj X

(Vo L+ kx I

X

+ Sk ) (B6)

= (VX L+ ik )+ = Cijui (%)
i

we get the expression

Vo, )« )] 2 00VO(x, ) k(% )

S 2oV ) ik, )S—J Clu ()
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X
0
St ) ) yg BBy )
i j
0 2
S Chy () Vk(XJ ) ki):’ ) k(% ) S Cly V(X )+(>)((,j) kX, )
(Ve L+ «(x )l

VO L+, N+ —— G (B7)
]

X
The right hand side of the equation is the source tgtx, ) corresponding to scatters effects. The propagating Peld isff¢w ) (X,
)instead ofv2(x, )e i* )asineq. (B1). Following the classical scattering beld formulation, we write

VL) e )= G DS o ®) o

=

By replacingS. (x, ) with its value, we bnally obtain §

0 e N

OV )=V )k )8 Gl )y Sy ) )y F
i i

Sch k) ), )SC.,k.(x)vk"(x. ) e eV L )
| | X Xj
+— Cu®) Ve, )[1; % 1 Go . (B9)
J

By neglecting multiple scattering terms as for the Born formulation, performing integration by part for the second remaining term of the
right-hand side and considering no perturbation on the model edges, we Pnally get the perturbed phase
Gai(r, ,x) Vi, )
X;j X

Cijkl (X) dx. (BlO)

n(r) Vr?(r! ) = 2 (X)ViO(X, )Ggi(r! !X) g
M
Following the Born formulation approach, we factorize the source @(m ) in the previous equation and, therefore, we obtain

0 G2 (x, ,S
G(r, ,x) Cipa () kg, +'S)
Xj X

na(¥)Go(r, ,S) = 2 (G (X, ,S) G(r, X) S dx. (B11)
M
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Dividing by the reference Green functi@ﬁq(r, , S), we obtain at last

1 ~ Gﬂi(r, ,X) GO (X, ,S)
m " 2 (x)GiOq(x, ,8) Gpi(r, ) S T Ciju (X)kqixl

This equation linearly connects model parameters and complex phases through Rytov formulation. The elastic adjoint operator will be deduced
and discretized (see eq. 32 for the general expression) as for the Born formulation.

nq(X) = dx. (B12)

APPENDIX C: CHOICE OF INVERTED FREQUENCIES

Al For a transmission acquisition geometry and only body waves

The Fig. 4 explains how we obtain the expressionsfoandk, in any acquisition geometry. They are equal to
ke = kosin( ) S kosin( )
k; = kocoy( ) + kocos( )
wherekg is the vertical wavenumber (Sirgue 2003; Sirgue & Pratt 2004) aadd are debPned on Fig. 4 as angles between the source or
receiver vector and the vertical direction. ) . .

Using the trigonometric formulae cog(+ cos( ) = 2cos(5-) cos(-3-) and sin() S sin( ) = 2cos(5-) sin(-3-) and cod(-3-) +
sin’(-3-) = 1, we get

(C1)

k =k 2+ k2
= 2kycos (€2)
and
ke = k sin
k,= k cos (C3)

e/1[6/woo dno-oiwspese//:sdny woly papeojumoq

In the pure transmission case (Fig. 4 case 3), the imaged wavenumber at a given frequency is zero (continuous component of the mediurg).
Therefore, the frequency choice is determined by souce-receiver couples corresponding to horizontal or vertical geomoetries (case 1 and 2§n
Fig. 4). Thus, the inverted frequencies may be chosen as equal to the ones calculated for the ref3ection acquisition geometry determinedS\éy
Sirgue (2003), Sirgue & Pratt (2004).

A2 For a rel3ection acquisition geometry and surface waves

With only body waves, frequencies are chosen such as (Sirgue 2003; Sirgue & Pratt 2004):
Kz min = 2ko/ 1+ h2/Z2
I(Z max = 2%

whereh is the half-offsetzis the target deptlky is the vertical wavenumbek; mi, andk,max are minimal and maximal imaged wavenumbers
for one frequency. When surface waves are present, their exponential decay with depth must be introduced, leading to

Ky min = 2ko/ 1+ h2/Z2exp(S2ky2)

(C4)

T20Z YoIe Gz uo 1senb Aq 616889/509/2

Kz max = 2k exp(52k2) (C5)
Sirgue (2003), Sirgue & Pratt (2004) explained that the wavenumber spectrum continuous imaging condition is

Kz min(fre1) = Kz max( fn) (C6)
for two consecutive frequencies, and f .1 . This gives

foor = fol 1+ h2/22 (C7)

for body waves, thanks to eq. (C4). For surface waves, thanks to eq. (C5), this equation becomes
Foer = Fol 1+ h2/22 exp(2/c[Fr1 S Fo)]
Frt = faer €Xp(2/C[Fou S Fy)l, (C8)

wheref (small letters) are frequencies chosen for body waves whéte@ock letters) are frequencies chosen for surface waves. As
exp(2/c [Fna S Fu)] > 1since 2/c (Fn1 S Fp) > 0, the frequency choice is less constraining for surface waves than for body waves.
Therefore, we choose frequencies corresponding to the body waves imaging conditions.
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Let us point out that the frequency choice proposed by Sirgue & Pratt (2004) is based on the wave propagation in a homogeneous
medium. In more realistic media, inverted frequencies distribution may be denser to take benebt of the wavenumber spectrum overlapping
and redundancy.
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