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S U M M A R Y
Weperform the full elastic waveform inversion in the frequency domain in a 2-D geometry. This
method allows imaging of two physical seismic parameters, using vertical and horizontal Þeld
components. The forward problem is discretized using Þnite difference, allowing to simulate
the full elastic waveÞeld propagation. Moreover, it is solved in the frequency domain, a fast
approach for multisource and multireceiver acquisition. The non-linear inversion is based on
a pre-conditioned gradient method, where Born and Rytov formulations are used to compute
Fr«echet derivatives. Parameter perturbations linearly depend on Þelds perturbations in the Born
kernel, and on the generalized complex phases of Þelds in the Rytov kernel, giving different
Fr«echet derivatives. The gradient is pre-conditioned with the diagonal part of the inverse
Hessian matrix, allowing to better estimate the stepping in the optimization direction. Non-
linearity is taken into account by updating parameters at each iteration and proceeding from low
to high frequencies. The latter allows as well to progressively introduce smaller wavelengths
in parameter images. On a very simple synthetic example, we examine the way the inversion
determines theVp (P-wave velocity) andVs (S-wave velocity) images. We highlight that, with
a transmission acquisition, Þnal parameter images weakly depend on the chosen formulation
to compute Fr«echet derivatives and on the inverted parameters choice. Of course, convergence
strongly depends on the medium wavenumber illumination which is related somehow to the
acquisition geometry. With a reßection acquisition, the Born formulation allows to better
recover scatterers. Moreover, the medium anomalies are not well reconstructed when surface
wavespropagate in the medium. This may be due to the evanescent nature of surface waves. By
selecting Þrst body waves and then surface waves, we improve the convergence and properly
reconstruct anomalies. This shows us that preparation of the seismic data before the inversion
is as critical as the initial model selection.

Key w ords: Born and Rytov formulations, diffraction tomography, Þnite difference methods,
medium wavenumber illumination, seismic imaging, waveform inversion.

1 I N T RO D U C T I O N

Quantitative imaging using full wave equation has been achieved through the use of the adjoint formulation problem for seismic data in the last
20 yr. Both formulations in time domain (Lailly 1984; Tarantola 1984; Gauthieret al.1986) and in frequency domain (Prattet al.1996; Pratt
1999; Ravautet al. 2004) have been implemented and applied to various synthetic and real data examples with speciÞc advantages on both
sides. Easier seismic traces processing in time domain will allow progressive introduction of phases by increasing the time domain window
in both observed and synthetic data (Kolbet al. 1986; Shipp & Singh 2002; Sheng 2004). EfÞcient ways of solving the forward problem
in the frequency domain make the frequency formulation appealing (Stekl & Pratt 1998). Moreover, the progressive introduction of higher
frequencies allows both to introduce and mitigate the non-linearity and recover shorter and shorter heterogeneities (Pratt 1999; Sirgue 2003).
Furthermore, for wide-angle data acquisitions, this frequency approach efÞciently takes beneÞt of the wavenumber redundancy by limiting
the number of inverted frequencies (Pratt 1990; Sirgue & Pratt 2004). The attenuation may be introduced, which has been applied to real data
examples (Hicks & Pratt 2001).

All kinds of waves are considered in the forward modelling with our approach, and it will avoid any ghost images arising in the imaging
procedure from incomplete wave reconstitution as it may happen when considering asymptotic ray seismograms (Lambar«eet al.1992; Jin 1992;
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Forgues 1996). In this asymptotic approximation, the forward problem is based on a linearization between parameters and data perturbations
based on ray theory (Beylkin 1985). While retaining the same adjoint formulation for Þtting waveforms, the so-called Ray+Born formulation
provides a better control of the diffracting point illumination, leading to rather efÞcient algorithms by adapting locally the weighting used in
the optimization scheme for both the acoustic case (Lambar«eet al.1992) and the elastic one (Jin 1992; Jinet al.1992; Forgues 1996). This
high-frequency approach does not require to go from low to high frequencies. Still, the capacity of Ray+Born formulation of considering
high frequencies should be acknowledged, especially in 3-D geometry (Lambar«eet al.2003). Moreover, attenuation reconstruction has been
considered by Tarantola (1988) and Ribodetti & Virieux (1998).

While time domain formulation has been applied for recovering elastic parameters using multicomponent data (Tarantola 1987; Mora
1987, 1988), frequency formulation for elastic parameters reconstruction has only been applied by Pratt (1990) for cross-hole data to our
knowledge. Moreover, investigations on the misÞt function deÞnition have not been performed as for the time domain formulation where
Craseet al.(1990) has introduced a norm which mimics a L1 norm, allowing new Fr«echet derivatives to be estimated. Discussions about data
and parameter sets we should consider have not yet been addressed for the frequency approach in the elastic case.

The Fr«echet derivatives calculation depends on the chosen approximation to linearly link data and parameters perturbations. Born (Clayton
& Stolt 1981; Beylkin 1985; Beydoun & Tarantola 1988; Beydoun & Mendes 1989; Lambar«eet al.1992) and Rytov (Bleistein 1987; Beydoun
& Tarantola 1988; Beylkin & Burridge 1990) approximations are currently used, although they proceed differently since the data space is not
the same : while the Born formulation focuses on the velocity Þeld, the Rytov formulation is based on the velocity Þeld complex phase. Some
authors (Beydoun & Tarantola 1988) argue that the Born formulation is well suited for reßection acquisitions, whereas the Rytov formulation
is more efÞcient with transmission acquisitions. Moreover, Woodward (1992) explained that the Rytov formulation is better adapted to the
frequency domain, whereas the Born formulation has a more direct interpretation in the time domain. However, Pratt (1990), Prattet al.(1998)
used the Born formulation in the frequency domain while studying the full waveform inversion with acoustic waves. Pratt & Worthington
(1988) applied the acoustic full waveform inversion on real data using Born and Rytov formulations. They showed that the Born formulation
better reconstructs the edges of a discrete object. In order to understand and clarify the inßuence of the chosen formulation in the calculation
of Fr«echet derivatives for the elastic case, we have considered Born and Rytov formulations to calculate Fr«echet derivatives.

We shall concentrate our attention on the reconstruction of elastic parameters in a 2-D medium using either single-component data or
multicomponent data. The attenuation parameter will not be considered in this study although such extension is possible. The minimization of
particle velocity trace residuals or complex phase trace residuals using iterative linearized algorithm will be outlined. Then, we shall consider
how to solve efÞciently in the frequency domain full wave equation by a Þnite difference scheme different from the one already used by Stekl
& Pratt (1998) or by Virieux (1986). While the forward problem is fully solved, we use Born and Rytov formulations to compute Fr«echet
derivatives, respectively, for amplitude Þtting and (complex) phase Þtting. On simple synthetic examples, we shall analyse the inßuence of
these two different misÞt functions as well as the effect of different sets of elastic parameters. For each example, the complete velocity models
have to be reconstructed (background and anomalies), even if we choose an initial homogeneous medium. The inßuence of the data acquisition
geometry will be discussed for the reconstruction of different types of anomalies.

Finally, we introduce the free surface, allowing us to model the surface waves propagation in the forward problem. Using surface waves
to determine the surface properties such as seismic velocities or anisotropy has already been done by several authors (Snieder 1986; Nolet
1987; Debayle & Kennett 2000a,b). The importance of the free surface will be analysed and compared with previous reconstructions, for
addressing the speciÞc contribution of both body and surface waves in the resulting images. We shall highlight the difÞculty to deal with
surface waves, whose amplitude exponentially decays with depth, in our inversion engine and show one possibility to efÞciently take them
into account.

This study will allow us to draw conclusions regarding the potential of the method for addressing challenging problems as crustal imaging,
reservoir characterization, subsurface reconstruction, cavity detection and so on. We shall concentrate in this article on issues of the proposed
method when elastic waves are considered. More realistic examples will be considered in future works.

2 I N V E R S I O N F O R M U L AT I O N

The reconstruction of medium parameters from seismograms is a non-unique inverse problem because non-linearity is present in the relation
between model and data spaces. Phase wavelets should be roughly in phase before adjustment to avoid cycle-skipping (Sirgue 2003). The
general relationg between the modelm and the datad can be expressed by

d = g(m). (1)

We choose to perform a non-linear inversion (Tarantola 1984, 1987) in the least-square sense because Fr«echet derivatives can be efÞciently
computed. We emphasize thatg(m) represents the fully solved forward problem. The misÞt functionE is equal to

E(m) =
1
2

[g(m) Š dobs]• [g(m) Š dobs], (2)

wheredobs represents observed data whereasd = g(m) are the calculated data with them model. The symbol• stands for the adjoint operator
(complex conjugate). In this formulation, each sourceÐreceiver couple contribution is implicitely summed. Weighted least squares can be
introduced to increase the importance of a speciÞc subset as, for example, far-offset traces (Opertoet al.2004). The misÞt function contains
the sum of squares of differences between the observed and calculated data, that is, data differences or residuals�d.
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Two-dimensional elastic full waveform inversion in the frequency domain607

First, we shall consider a data space of particle velocitiesVcalc(r, � , s) recorded at receiversr for different sourcess and for different
frequencies� . Therefore, in this case, synthetic datag(m) = [Vcalc

x (r, � , s),Vcalc
z (r, � , s)] and observed datadobs = [Vobs

x (r, � , s),Vobs
z (r, � ,

s)] are particle velocity amplitudes. The misÞt functionEb at a given frequency� will be equal to

Eb(m) =
1
2

�

s

�

r

[Vcalc(r, �, s) Š Vobs(r, �, s)] • [Vcalc(r, �, s) Š Vobs(r, �, s)]. (3)

This misÞt function will be considered as the Born misÞt function because the Born formulation (Clayton & Stolt 1981; Beylkin 1985;
Beydoun & Tarantola 1988; Beydoun & Mendes 1989; Lambar«eet al.1992) is used to compute associated Fr«echet derivatives as we shall see
later on.

As an alternative, we may consider the datad as the generalized complex phase of the particle velocity Þeld which includes the Neperian
complex logarithmLn of the velocity amplitude as the real part and the phase of the velocity Þeld as the imaginary part. In this case, particle
velocity phases are used for both synthetic datag(m) = [Ln[Vcalc

x (r, � , s)], Ln[Vcalc
z (r, � , s)]] and observed datadobs = [Ln[Vobs

x (r, � , s)],
Ln[Vobs

z (r, � , s)]]. The misÞt functionEr (m) is expressed for each frequency� as

Er (m) =
1
2

�

s

�

r

[Ln[Vcalc(r, �, s)] Š Ln[Vobs(r, �, s)]]
•
[Ln[Vcalc(r, �, s)] Š Ln[Vobs(r, �, s)]].

(4)

Fr«echet derivatives will be obtained through the Rytov formulation (Bleistein 1987; Beydoun & Tarantola 1988; Beylkin & Burridge 1990).
Wecall this misÞt function the Rytov misÞt function. Unwrapping phases is necessary for avoiding jumps in the phase perturbation estimation.

Because the data space is different, we may expect different behaviours of the minimization procedure for Born and Rytov formu-
lations. Let us remind that the forward problem is solved by a purely numerical technique and that we have selected a Þnite difference
method.

The misÞt function has a rather complex shape with many minima. Once an initial model is chosen, we perform iterations to reach
the neighbouring minimum and take the best model calculated at one iteration as the new initial model for the next iteration. We perform a
second-order TaylorÐLagrange development around a given initial modelm0 to get

E(m0 + � m) = E(m0) + � m E(m0)� m + 1/2� m• H (m0)� m + O(� m2), (5)

where the gradient is denoted� mE, the HessianH , � m is a small parameters perturbation andO(� m2) is a quantity that we neglect. A local
minimum ofE is reached when the increment in the model� m veriÞes the following equation,

H (m0)� m = Š� m E(m0). (6)

Let us introduce now the Fr«echet derivative denoted asB0 = (� g/� m)(m0). How to estimate this matrix and the way it is involved in the
gradient estimation will be discussed in a later paragraph. Taking the derivative of eq. (2) with respect to the modelm gives the following
expression

� m E(m) = �

� �
� g
� m

� •

[g(m) Š dobs]

�

, (7)

where� indicates the real part. Whenm = m0, the Þrst term of the right-hand side is the adjoint operator of the Fr«echet derivative and the
second one is the data residuals�d. Therefore, the gradient vector may be expressed by the adjoint operatorB•

0 applied to data residuals�d
following the linearized inversion formalism (Tarantola 1987). After another derivative, the misÞt function with respect to the modelm gives
the Hessian operator expression

H (m) =
�

� 2g
� m2

� •

[g(m) Š dobs] +
�

� g
� m

� • � g
� m

. (8)

The Þrst term is generally dropped off in non-linear problems (Prattet al. 1998). We only keep the second term, which turns out to be the
matrixB•

0B0 in the model space (Tarantola 1987). The following normal equation,

�[B •
0B0]� m = �

�
B•

0 �d
�
, (9)

coming from the transformation of eq. (6), should be veriÞed by the model increment for reducing the misÞt function. The Hessian matrix is
difÞcult to invert especially when the model space has a high number of degrees of freedom. We shall assume that this matrix is diagonally
behaving for solving the system through a gradient method. Since we take its real part, the right-hand side of eq. (9) may be written
as

�
�
B•

0 �d
	

= �
�
Bt

0�d
�
	

, (10)

whereBt
0 stands for theB0 transpose and complex conjugate residuals, corresponding to time-reversed residuals in the time domain, are

denoted by�d � .
Any pre-conditioning transforming the system (9) into an improved diagonal construction of the Hessian matrix will speed up the

convergence towards the minimum of the misÞt function (Shinet al.2001b). This has been achieved, for example, in the Ray+Born method
because the diagonal structure of the Hessian matrix, depending strongly on the data acquisition geometry, could be related to local ray
properties (Jinet al.1992).
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Weshall add a constant coefÞcient� to avoid divisions by too small numbers when inverting the diagonal approximation of the Hessian
matrix. When this regularization coefÞcient increases, the inverse diagonal Hessian provides a weaker inßuence, decreasing the jump between
old and new models. The new model is estimated through

ml+1 = ml Š � l



diag

�
�

�
B•

0B0
	� (l )

+ � l I
� Š1

�
� �

Bt
0

	 (l )
�d �

l



, (11)

where the modelml corresponds to the modelm at thelth iteration, The number� l is the stepping at thelth iteration. The stepping� l is
obtained by sampling a parabolic shape along the gradient direction. Because we use a line search approach as Prattet al.(1996), this requires
two additional forward modelling at each iteration. Please note that the matrixB0 is computed for each iterationl. To simplify the notations,
wewill not write the iteration numberl in all following equations.

With GaussÐNewton or full Newton methods (Prattet al.1998), the complete Hessian matrix given by the eq. (8) has to be inverted. It
contains the Þrst term of the Hessian operator in the full Newton method, which deals with multiple diffractions. The second term of the Hessian
operator allows to take into account the source band-limited frequency content and the incomplete medium illumination by the acquisition
system. Nevertheless, inverting the complete Hessian matrix is time-consuming and requires signiÞcant numerical resources although not
unrealistic in 2-D geometry. We have not tried this important feature investigated by Plessix & Mulder (2004). Moreover, when the Hessian
matrix is not taken into account and the gradient is used alone, the gradient is usually calculated with the adjoint operator.

3 T H E F O RW A R D F O R M U L AT I O N

The forward model will be solved for each new medium in the frequency domain because it allows to efÞciently consider multisources
acquisitions. In this study, we consider an isotropic 2-D linear elastic medium. The propagation of 2-D P-SV waves in elastic media can be
expressed thanks to the matrix formalism of Prattet al.(1998) and Stekl & Pratt (1998). Using Þrst an operator notation, the wave equation may
be compactly written as

WX = S, (12)

whereX t is the [V x(x, � ) V z(x, � )]t velocity Þeld vector,St is the [Sx(x, � ) Sz(x, � )]t source vector andW (x, � ) is the wave operator
deÞned as

W (x, � ) =

�
Wxx(x, � ) Wxz(x, � )

Wzx(x, � ) Wzz(x, � )

�

, (13)

where

Wxx(x, � ) = Š � 2� (x) Š
�

� x
[�(x) + 2µ(x)]

�
� x

Š
�
� z

µ(x)
�
� z

Wxz(x, � ) = Š
�

� x
�(x)

�
� z

Š
�
� z

µ(x)
�

� x

Wzx(x, � ) = Š
�
� z

�(x)
�

� x
Š

�
� x

µ(x)
�
� z

Wzz(x, � ) = Š � 2� (x) Š
�
� z

[�(x) + 2µ(x)]
�
� z

Š
�

� x
µ(x)

�
� x

, (14)

where� is the frequency,� (x) is the density,�(x) and µ(x) are Lam«e parameters. These parameters describe spatially variable properties of
the medium and are related to P ans S seismic velocities through

�(x) + 2µ(x) = � (x)Vp(x)2 and µ(x) = � (x)Vs(x)2. (15)

Let us emphasize thatVp and Vs are model parameters (mean seismic wave velocities) whereas previously deÞnedVx and Vz are data
parameters (mean horizontal and vertical particle velocities).

If the source is a dirac in the time domain, elementary solutions correspond to the Green functions of the medium:Gi p(x, � , s) is the
velocity Þeld recorded atx in theith direction and emitted by a point force source located atsand acting in thepth direction at the frequency
� . Therefore, the Þeld componentXi of eq. (12) can be written as the product of the Green functionGi p(r, � , s) calculated at the positionr
with the source frequency contentSf

p(� , s). This Green function depends on the medium velocity structure.
Please note that these equations are not linear with respect to parameters� , � andµ. We perform the non-linear forward modelling,

allowing to take multiple scattering into account. In order to fully solve the forward problem in the frequency domain (eq. 12), we resort to
Þnite difference techniques because of their simplicity. The spatial stencil we use is a rotated one, in which derivatives are calculated along 45�

rotated axes with respect to the reference Cartesian axes. This stencil has been shown to have enough accuracy in a velocityÐstress staggered
grid by Saengeret al.(2000). We apply twice this stencil of Þrst-order derivatives to get second-order derivatives, following the parsimonious
approach of Luo & Schuster (1990) and Hustedtet al. (2004). At the end, this stencil is equivalent to the popular P1 Þnite element stencil
(Abramowitz & Stegun 1965). A rather simple way to introduce the free surface boundary condition is zeroing elastic coefÞcients above the
free surface (Hayashiet al.2001; Graves 1996; Ohminato & Chouet 1997), making this stencil a very attractive one (Saenger & Bohlen 2004;
G«eliset al.2005).
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Two-dimensional elastic full waveform inversion in the frequency domain609

Figure 1. Comparison between the second-order Þnite difference stencils of Virieux (1986) (left) and Saengeret al. (2000) (right).

This stencil deÞnes elastic properties at a single node of the Þnite difference grid and density at another single node diagonally
shifted, making a partially staggered grid different from the one of Virieux (1986) (Fig. 1). It prevents any spurious spatial interpo-
lation problem between neighbouring medium parameters during the inversion procedure and the medium description for the forward
calculation.

Because the numerical grid is always Þnite, we introduce absorbing boundary conditions using Perfectly Matched Layers procedure
(B«erenger 1994; Hastingset al.1996; Hustedtet al.2004). This efÞcient technique for avoiding numerical reßections from grid edges is a key
element for the frequency formulation. It prevents any frequency resonance from the grid itself which would have complicated the frequency
sampling strategy in our inversion procedure.

Using this Þnite difference stencil, one can express eq. (12) through a matrix notation (Prattet al.1996; Stekl & Pratt 1998) which leads
to the following rather sparse discrete system

W X = S, (16)

where the vectorX contains the horizontal particle velocity denoted asVx and the vertical particle velocity denoted asVz for each
point of the medium. The so-called impedance matrixW is a square sparse matrix of dimension (2� nx � nz)2 where the number
of nodes in thex and z directions are, respectively, denotednx and nz. Only 18 coefÞcients are non-zero for each line of the matrix.
This block-diagonal matrix shape depends on the medium points ordering. The source functionS(� ) is applied at prescribed discrete
positions.

In practice, we solve this system by decomposingW in a LU form, whereL is a lower triangular matrix andU is an upper one. By
performing direct and back substitutions, the forward problem is efÞciently solved for each source. One must be aware that this decomposition
Þlls upL andU matrices, which do not have a sparse structure any more. We have selected the MUMPS software (Amestoyet al.2000, 2001)
which helps handling this Þll-in of the matrix through parallel computing using MPI library. Once this decomposition is performed, which is
the most CPU-demanding part (around 70 per cent of the total forward computational effort on average for examples presented in this paper),
computing the solution for different sources is simply a matter of substitution, and this can be done efÞciently with an incremental approach
as the number of sources increases.

The impedance matrixW is a symmetric matrix except in PML zones, thanks to the reciprocity principle (Aki & Richards 2002). Each
column of the matrixWŠ1 corresponds to the Green function value at each point in the medium. More precisely, the Green functionGxz(x,
� , s), which is the horizontal particle velocity recorded at positionx for a vertical point source emitted ins, is equal to the Green function
Gzx(s, � , x), which is the vertical particle velocity recorded ins for a horizontal point source emitted inx. As the matrixW depends on the
frequency, considering constant values of the point source at each frequency leads to a dirac function in the time domain if all frequencies
are considered. However, we use a limited number of frequency components in the inversion and do not reconstruct seismograms in the time
domain.

A 2-D-gridded waveÞeld, denoted as a Ôfrequency mapÕ (Hustedtet al. 2004), is any Þeld component computed at a given frequency
for a given source to each spatial point of the model. At the selected frequency, with the help of our Þnite difference technique, we simulate
all kinds of waves (propagating, evanescent, diffracted ones) existing in the medium. Vertical and horizontal velocity components frequency
maps are shown in the top right of Fig. 2 for a vertical force source in an inÞnite heterogeneous medium.

When applying inversion procedure in the next section, the particle velocity will be required at each point of the grid for each source.
Moreover, we will need to compute Green functions for impulsive sources located at receiver locations. This is related to the computation of
the diagonal part of the Hessian, as we will see in the next section.
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610 C. G«elis, J. Virieux and G. Grandjean

Figure 2. Gradient construction with the Born and Rytov formulations. Frequency maps show the wave propagation at a given frequency on the left for a real
vertical source (top) and the backpropagation of residuals located at receiver place for vertical residuals (middle) and horizontal residuals (bottom). To compute
the gradient, the forward Þeld is multiplied in the frequency domain with the sum of the Þelds due to backpropagated residuals. On the right the contributions
of one sourceÐreceiver couple to the gradient are displayed forVp andVs anomalies and for Born and Rytov formulations. Please note the difference between
theVp andVs contributions to the gradient for one sourceÐreceiver couple. Please remark as well the differences between wavepaths obtained with Born and
Rytov formulations

4 T H E G R A D I E N T E S T I M AT I O N F O R Vp A N D V s V E L O C I T Y PA R A M E T E R S F O R
B O R N M I S F I T F U N C T I O N

Fr«echet derivatives may be deduced from a local relation between medium parameters perturbations and particle velocity amplitudes pertur-
bations. This relation requires only the Þrst term of the Born series for the Þrst derivative estimation. Because we fully solve the forward
problem at each iteration, we do include multiple diffractions in our perturbation estimation.

Spatial derivatives of data perturbations could be obtained through the discrete propagatorW previously deÞned in the eq. (16) (Pratt
et al.1996, 1998). The elastic adjoint operator (Prattet al.1998) could be written as

�
�
Bt

0�d
�
�

= Š St (W Š1)t � W
� m

W Š1� V� . (17)

In this equation, we recognize the Born Kernel equal to (WŠ1)t � W /� m W Š1 and surrounded by two excitation terms: the real sourceSt

and the non-real source� V� , composed of conjugate residuals located at receivers places. With another reading of this equation, we can
distinguish three different terms, corresponding to physical phenomena: the forward propagation of the sources, the backpropagation of the
residuals and the derivatives of the differencing operator. We now detail them for the discrete case.

The discrete expressionSt (WŠ1)t of the forward propagation operatorSt (W Š1)t is the forward propagating Þeld (Prattet al.1996, 1998).
Wemay consider a dirac impulse source, discretized by a unitary vector in the model grid for a given frequency. SinceWWŠ1 = I whereI is
the identity matrix, the matrixWŠ1 describes discrete Green functions split into
�

G0
xx(i x, iz, �, s) G0

xz(i x, iz, �, s)

G0
zx(i x, iz, �, s) G0

zz(i x, iz, �, s)

�

(18)

at the node (ix, iz) of the model grid for a spatial point sources (ixs, izs) of the model grid.
The discrete termWŠ1� V� represents backpropagated residuals (Prattet al. 1996, 1998). Thanks to the reciprocity principle,

(WŠ1)t = WŠ1, and therefore,WŠ1 can be expressed as Green functions emitted from receivers,
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Two-dimensional elastic full waveform inversion in the frequency domain611

�
G0

xx(i x, iz, �, r) G0
zx(i x, iz, �, r)

G0
xz(i x, iz, �, r) G0

zz(i x, iz, �, r)

�

, (19)

where the receiver is at the discrete positionr (ixr, izr).
Conjugate data residuals� V� correspond to time-reversed residuals in the time domain. They may be backpropagated at once, by using as a

non-real source all the residuals located at corresponding receivers for one source. This allows to efÞciently compute the misÞt function gradient
but this prevents from calculating the discrete Hessian matrix diagonal part. Indeed, in order to obtain the discrete Hessian matrix diagonal
coefÞcients, we have to evaluate the discrete expressionB•

0 B0 (eq. 8) whereB0 is the discrete Born Kernel equal to (WŠ1)t � W/� m WŠ1. We
can equivalently useBt

0B�
0 since we take the real part. Therefore, in order to get the discrete Hessian matrix diagonal coefÞcients, we need

to compute Green functions for sources located at each receiver. One Green function is then multiplied with the conjugate data residual at
this receiver for the selected frequency in order to get the backpropagated Þeld from this residual. We follow the second possibility to get the
discrete Hessian matrix diagonal coefÞcients.

Moreover, as we consider two oriented data Þelds (the vertical and the horizontal ones), two Green functions have to be calculated for
each receiver. This allows to backpropagate horizontal and vertical residuals.

Finally, we compute the discrete expression of operator� W /� Vp thanks to eqs (14) and (15) and the Þnite difference stencil we use. The
discrete partial operator� W/� Vp is equal to

� W
� Vp

(i x, iz, � ) =

�
� Wxx(i x, iz, � )/� Vp � Wxz(i x, iz, � )/� Vp

� Wzx(i x, iz, � )/� Vp � Wzz(i x, iz, � )/� Vp

�

, (20)

where partial derivatives are

� Wxx(i x, iz, � )/� Vp = Š
�

� x
2Vp(i x, iz)

�
� x

� Wxz(i x, iz, � )/� Vp = Š
�

� x
2Vp(i x, iz)

�
� z

� Wzx(i x, iz, � )/� Vp = Š
�
� z

2Vp(i x, iz)
�

� x

� Wzz(i x, iz, � )/� Vp = Š
�
� z

2Vp(i x, iz)
�
� z

, (21)

where formal notations�/� x and�/� z represent Þnite difference operators deduced from the discrete forward formulation.
Similarly, the discrete Fr«echet derivative� W/� Vs is equal to

� W
� Vs

(i x, iz, � ) =

�
� Wxx(i x, iz, � )/� Vs � Wxz(i x, iz, � )/� Vs

� Wzx(i x, iz, � )/� Vs � Wzz(i x, iz, � )/� Vs

�

, (22)

with following expressions of partial derivatives,

� Wxx(i x, iz, � )/� Vs =
�

� x
2Vs(i x, iz)

�
� x

Š
�
� z

2Vs(i x, iz)
�
� z

� Wxz(i x, iz, � )/� Vs = Š
�

� x
4Vs(i x, iz)

�
� z

Š
�
� z

2Vs(i x, iz)
�

� x

� Wzx(i x, iz, � )/� Vs = Š
�
� z

4Vs(i x, iz)
�

� x
Š

�
� x

2Vs(i x, iz)
�
� z

� Wzz(i x, iz, � )/� Vs =
�
� z

2Vs(i x, iz)
�
� z

Š
�

� x
2Vs(i x, iz)

�
� x

. (23)

Discrete operators� W/� Vp(i x, iz, � ) and� W/� Vs(i x, iz, � ) are Þnite difference diffracting terms, expressing the interaction of prop-
agating and backpropagating Þelds with medium parameters (Prattet al. 1998). They are sparse matrices thanks to the Þnite difference
construction of the matrixW and can be readily estimated from it. Eight non-zero coefÞcients per line appear in the Þnite differences
matrix nearby the diagonal, depending on the diffracting point position. These coefÞcients are equal to±1/2 Vp/ h2 for the Vp param-
eter (they are equal to±1/2 Vs/ h2 or ±3/2 Vs/ h2 when consideringVs as parameter), where the Þnite difference grid step is denoted
h.

Injecting discrete estimations of the forward propagation of the sources (eq. 18), the backpropagation of the residuals (eq. 19) and the
derivative of the diffracting operators (eqs 20Ð23) in the eq. (17) will provide the Þnal discrete formulae we shall use in our approach of
optimization. Let us write down explicitly the Born misÞt function gradient for an arbitrary seismic sourceSand two-components receivers
(therefore, horizontal and vertical residuals). Velocity Þeld components appear for the forward Þeld term through

V0
x (i x, iz, �, s) = G0

xx(i x, iz, �, s) Sf
x (�, s)+ G0

xz(i x, iz, �, s) Sf
z (�, s)

V0
z (i x, iz, �, s) = G0

zx(i x, iz, �, s) Sf
x (�, s)+ G0

zz(i x, iz, �, s) Sf
z (�, s), (24)
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612 C. G«elis, J. Virieux and G. Grandjean

for an arbitrary oriented source. Considering as well vertical and horizontal residuals� V�
x(r, � , s) and� V�

z(r, � , s), the discrete Born misÞt
function gradient for theVp parameter is equal to

�[( B0)t �d �
b]Vp = Š V0

p (i x, iz)/2 h2
�

s

� �

r

�

+
�

Š G0
xz(i x Š 1, iz Š 1, �, r) Š G0

zz(i x Š 1, iz Š 1, �, r)

Š G0
xz(i x Š 1, iz, �, r) + G0

zz(i x Š 1, iz, �, r)

+ G0
xz(i x, iz Š 1, �, r) Š G0

zz(i x, iz Š 1, �, r)

+ G0
xz(i x, iz, �, r) + G0

zz(i x, iz, �, r)
�
� V �

z (r, �, s)

+
�

Š G0
xx(i x Š 1, iz Š 1, �, r) Š G0

zx(i x Š 1, iz Š 1, �, r)

Š G0
xx(i x Š 1, iz, �, r) + G0

zx(i x Š 1, iz, �, r)

+ G0
xx(i x, iz Š 1, �, r) Š G0

zx(i x, iz Š 1, �, r)

+ G0
xx(i x, iz, �, r) + G0

zx(i x, iz, �, r)
�
� V �

x (r, �, s)
�

�
Š V0

x (i x Š 1, iz Š 1, �, s) Š V0
z (i x Š 1, iz Š 1, �, s)

Š V0
x (i x Š 1, iz, �, s) + V0

z (i x Š 1, iz, �, s)

+ V0
x (i x, iz Š 1, �, s) Š V0

z (i x, iz Š 1, �, s)

+ V0
x (i x, iz, �, s) + V0

z (i x, iz, �, s)
�
�

. (25)

In this lengthy expression, the forward Þeld spatial derivatives are expressed by a linear combination of terms such asV0
x(i x, iz, � , s),

propagating from the real seismic source. Conjugate data residuals, corresponding to time-reversed residuals in the time domain, are considered
as individual sources [terms as� V�

x(r, � , s)] backpropagated to the diffracting point (ix, iz) through discrete Green function components
combination [terms such asG0

zx(i x, iz, � , r)]. The interaction of these two Þeld values with medium scatterers appears in theŠ V0
p(i x, iz)/2 h2

term. Our Þnite difference stencil collects wave propagation contributions from four different nodes of the mesh.
Derivatives with respect to the parameterVs could be obtained using the same procedure and are not given explicitly here. Let us just

specify that the discrete Born misÞt function gradient has a more complicated expression for theVs parameter.
In eq. (25), we recognize the discrete Born KernelBt

0 coefÞcients, corresponding to the whole expression in which conjugate data
residuals have to be omitted. To compute the discrete Hessian matrix diagonal terms, the discrete Born Kernel coefÞcients must be multiplied
with their conjugate. This explains why we have to compute Green functions for sources located at receivers location, and not directly Þelds
due to the backpropagation of residuals.

We have started from the discrete wave operator and have deduced the discrete expression of Fr«echet derivatives. We may take another
road and proceed from the continuum formulation of the wave operator through Green functions and thus express the Fr«echet derivatives as
proposed by Tarantola (1987). By the discretization of these derivatives using the selected Þnite difference stencil, we obtain term to term
discrete expressions as the eq. (25) as we show in Appendix A.

The physical meaning and the contribution of different factors are shown on Fig. 2 for one sourceÐreceiver couple: Þelds coming from
the backpropagation of horizontal and vertical residuals are summed. The resulting Þeld is then multiplied with the Þeld coming from the real
source. Both Þelds meet together at the scatterer location, at the time corresponding to the time propagation from the source to the scatterer.
Fig. 2 shows as well that the contribution of one sourceÐreceiver couple is different forVp andVs parameters reconstruction. TheVp parameter
image for one sourceÐreceiver couple has a shape similar to the acoustic velocity parameter image in the acoustic conÞguration (Prattet al.
1998; Ravautet al.2004), whereas theVs parameter image is strongly different.

Let us now consider the complex phase data related to the Rytov misÞt function.

5 T H E G R A D I E N T E S T I M AT I O N F O R Vp A N D V s V E L O C I T Y PA R A M E T E R S
F O R RY T OV M I S F I T F U N C T I O N

Fitting observed and calculated Þeld complex phases leads to another data space. The non-linear relationg relates complex phase perturbations
to parameters perturbations. The Fr«echet derivative is deÞned by an operator, denotedBr

0. In order to estimate its discrete expressionBr
0, discrete

parameters perturbations have to be linearly related to discrete Þeld complex phase perturbations. This constitutes the Rytov formulation for
medium perturbation.

The unknown medium is the superposition of a reference background and small perturbations. Theith Þeld velocity componentVi (x)
that propagates in the medium is linked to theith velocity Þeld componentV0

i (x) that propagates in the reference background and to the
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Two-dimensional elastic full waveform inversion in the frequency domain613

complex generalized phase shift�	 i (x) due to the presence of small perturbations in the medium through

Vi (x) = V0
i (x)e�	 i (x). (26)

Since the misÞt function contains Þeld complex phases, we focus on the complex Neperian logarithm of the velocity ÞeldVi (x).
Moreover, as already pointed out in the acoustic case by Devaney (1981), Woodward (1992), Wu (2003), a relation between Green

functions perturbations� Gpq(r, � , s) and perturbations of their complex phase�	 pq(r, � , s) exists and is expressed through

� Gpq(r, �, s) = G0
pq(r, �, s)�	 pq(r, �, s). (27)

It means that, in the weak-scattering limit, Rytov data perturbations�	 pq(r, � , s) can be related to Born data pertubations� Gpq(r, � , s).
Similarly to the Born approach, the perturbation of complex phases can be deduced from model parameter perturbations as suggested by

Prattet al.(1998) through a discrete formulation based on Þnite difference stencil. Before doing so, let us write down operator expressions. The
complex source phaseSr and receiver phaseXr are related to the Þeld sourceS and synthetic receiver seismogramsX throughXr = Ln(X )
andSr = Ln(S). The Rytov elastic adjoint operator is equal to

�
� �

Br
0

	 t
�d �

r



=

�
� Xr

� m

� t

�d �
r , (28)

whered�
r are data considered in the Rytov case andBr

0 is the Fr«echet derivatives matrix for a forward problem with aSr source. As already
pointed out, the data we shall consider in the Rytov formulation are complex phases and may be written as�[Ln( V)� ] whereV represent
real seismograms which are the data considered in the Born approach. Furthermore, partial derivatives of seismograms with respect to model
parameters may be expressed as

� Xr

� m
=

� Ln(X )
� m

= X Š1 � X
� m

. (29)

The notationX Š1 means that we take the inverse of each term composing the vectorX .
Therefore, the eq. (28) becomes

�
� �

Br
0

	 t
�d �

r



=

� X t

� m
(X Š1)t �[ Ln(V)� ]. (30)

Because� X t /� m = X t � W /� m W Š1 (eqs 15 and 16 of Prattet al.1998), we deduce sequentially

�
� �

Br
0

	 t
�d �

r



= Š St (W Š1)t � W

� m
W Š1(X Š1)t �[ Ln(V)� ]

�
� �

Br
0

	 t
�d �

r



= Š St (W Š1)t � W

� m
W Š1(SŠ1)tW t �[ Ln(V)� ].

(31)

The term (WŠ1)t � W /� mW Š1(X Š1)t corresponds to the Rytov Kernel. The term (XŠ1)t = (SŠ1)tW t , appearing at the end of this expression
corresponds to the forward Þeld, propagating from the source to the receiver (eqs 27 and 29). Since the forward Þeld term (X Š1)t does
not depend on the diffracting point, it may be moved in the discrete Rytov Kernel expression, so that we may consider the expression
(W Š1)t (X Š1)t � W /� m W Š1 as the new Rytov Kernel.

Using this new expression, we can distinguish and physically interpret three terms of the misÞt function gradient, which are different
from these obtained with the Born formulation but are still similar. The forward propagating ÞeldW Š1 S from the source to the diffracting
point is multiplied with (XŠ1)t , whereX is the reference forward propagating Þeld propagating from the source to the receiver. Therefore, we
obtain the propagation of the forward Þeld complex phase from the source to the diffracting point. This represents a fundamental difference
with respect to the Born approach. Backpropagated complex phase residuals appear inW Š1�[ Ln(d� )], which is also speciÞc to the Rytov
approach. These two Ôcomplex phases ÞeldsÕ interact with local medium parameters variations� W /� m.

Let us now consider discrete formulation. The continuous operator� W /� m is replaced by the discrete one� W/�m , deÞned by
eqs (20)Ð(23). The matrixW in (XŠ1)t = Wt (SŠ1)t , corresponding to the forward Þeld propagating from the source to the receiver and
independent of the diffracting point (i x, iz) (eqs 27 and 29), can be expressed with Green functions between sources and receiver points.
By combining previously detailed discrete terms, we deduce the global discrete expression of the Rytov misÞt function gradient, similar to
the Born one (eq. 25). For an arbitrary source and vertical and horizontal receivers, the Rytov misÞt function gradient for theVp parameter
equals to
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614 C. G«elis, J. Virieux and G. Grandjean

�
�
(Br

0)t �d �
r


 Vp

= Š V0
p (i x, iz)/2 h2

�

s

�
�

r

�

+
�

Š G0
xz(i x Š 1, iz Š 1, �, r) Š G0

zz(i x Š 1, iz Š 1, �, r)

ŠG0
xz(i x Š 1, iz, �, r) + G0

zz(i x Š 1, iz, �, r)

+ G0
xz(i x, iz Š 1, �, r) Š G0

zz(i x, iz Š 1, �, r)

+ G0
xz(i x, iz, �, r) + G0

zz(i x, iz, �, r)
�
� Ln(Vz(r, �, s) � )

+
�

Š G0
xx(i x Š 1, iz Š 1, �, r) Š G0

zx(i x Š 1, iz Š 1, �, r)

ŠG0
xx(i x Š 1, iz, �, r) + G0

zx(i x Š 1, iz, �, r)

+ G0
xx(i x, iz Š 1, �, r) Š G0

zx(i x, iz Š 1, �, r)

+ G0
xx(i x, iz, �, r) + G0

zx(i x, iz, �, r)
�
� Ln(Vx(r, �, s) � )

	 �

�
1

V0
x (r, �, s)

�
Š V0

x (i x Š 1, iz Š 1, �, s) Š V0
x (i x Š 1, iz, �, s)

+ V0
x (i x, iz Š 1, �, s) + V0

x (i x, iz, �, s)
�

+
1

V0
z (r, �, s)

�
Š V0

z (i x Š 1, iz Š 1, �, s) + V0
z (i x Š 1, iz, �, s)

Š V0
z (i x, iz Š 1, �, s) + V0

z (i x, iz, �, s)
�
�

.

�

(32)

In this expression, we clearly distinguish the forward Þeld spatial terms (propagation from the real seismic source divided by
the source/receiver forward Þeld) from the backpropagated residuals, coming from the propagation (via Green functions derivatives) of
conjugate complex phase residuals considered as sources. In both cases, propagating Þelds are velocity complex phases Þelds. The interaction
of these two Þelds with the medium scatterers appears in theŠ V0

p(i x, iz)/2 h2 term and is equal to the one appearing in the eq. (25) for the
Born formulation.

Similarly to the Born formulation, this expression may be deduced from the discretization of equations coming from the Tarantola (1987)
approach and detailed in Appendix B. Moreover, contributions of different factors are shown in the Fig. 2 for one sourceÐreceiver couple.
Please note again thatVp andVs parameter images differ. We will analyse differences between the Born and Rytov approaches in the next
section.

6 C O N V E RG E N C E B E H AV I O U R F O R B O R N A N D RY T OV F O R M U L AT I O N S

Let us consider a very simple example in order to analyse how non-linear optimization performs when Fr«echet derivatives are calculated both
for Born (amplitude Þtting) and Rytov (phase Þtting) formulations. Comparative quantiÞcation is difÞcult because one method may be more
efÞcient for a speciÞc data acquisition geometry and for different types of heterogeneities. By considering rather simple diffracting elements,
convergence is analysed regardless deeper efÞciency investigation of Born and Rytov methods.

Let us consider an inÞnite medium with aP-wave velocity of 1500 m sŠ1 and anS-wave velocity of 1200 m sŠ1. TwoÞnite-sized anomalous
disks of radius 100 m are inserted withP-wave velocity of 1800 m sŠ1 and anS-wave velocity of 1440 m sŠ1. The numerical grid size is 201
by 201 points with a spatial step of 10 m. The vertical point force source is a Ricker signal centred on 5 Hz which represents a rather impulsive
signal. Fifteen shots are deÞned per edge separated by 100 m (Fig. 3). Each source is recorded by 36 geophones located on the opposite side
along the bold line with a stepping of 40 m. This transmission acquisition geometry allows to densely sample the medium and illuminates
anomalies with different diffracting angles. We choose to image two anomalies because multiple scattering occurs. The forward problem
should take care of that and ghost images, if any, should vanish.

The initial medium is the constant velocity medium without anomalies and we proceed from low frequencies towards high frequencies.
This allows us to reconstruct long wavelength anomalies before going into details. This careful introduction of the frequency content will also
prevent fast focusing of anomalies that may lead to some local minimum in the model space. One may hope we avoid somehow cycle-skipping
which is often more dramatic at high frequency than at low frequency. For each frequency, the initial model comes from the inversion of
the previously inverted frequency. Twenty iterations are performed at each frequency. We progressively introduce details in the reconstructed
images. The inverted frequencies are 1.75, 3, 4.25 and 10.25 Hz. Their choice depends on the acquisition geometry and on the anomaly
position to be reconstructed as showed Sirgue & Pratt (2004) for a reßection acquisition geometry. We show in Fig. 4 and Appendix C that
the relation proposed by Sirgue & Pratt (2004) may be used for a transmission acquisition geometry. Thus, this relation can be used to select
frequencies, such as to cover a continuous wavenumber spectrum in the target zone.
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Two-dimensional elastic full waveform inversion in the frequency domain615

Figure 3. Background and transmission acquisition geometry synthetic example for illustration of Born and Rytov formulations performances. Receivers
recording waves coming from the corresponding sources are the same colour. Background medium is homogeneous. Perturbations are 20 per cent high.
Acquisition geometry provides transmission effects.

Figure 4. Wavenumber imaging, depending on the source and receiver locations. The wavenumber norm remains the same whatever the source and receivers
positions are.
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616 C. G«elis, J. Virieux and G. Grandjean

Figure 5. Vp progressive imaging with the frequency increase in the Born formulation. Please note the importance of frequency in focusing anomalies.

Figs 5 and 6 show the progressive reconstruction of anomalies both in shape and in velocity amplitude forVp and Vs parameters
when considering the Born formulation.Vp andVs parameters are simultaneously inverted and differently reconstructed. Rytov formulation,
although equivalent for weak anomalies, behaves differently when considering this example where anomalies have amplitude perturbation as
high as 20 per cent (see Figs 7 and 8).

Although the Born and Rytov formulations are strictly restricted to small perturbations, in this experiment the acquisition redundancy
allows the use of a homogeneous starting model without preventing the accurate reconstruction of the anomalies in shape, depth and amplitude.
Moreover, Þnal parameter images obtained with the Born and Rytov formulations are almost the same, showing the good convergence of the
inversion in both cases, although patterns to search the minima are not identical.
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Two-dimensional elastic full waveform inversion in the frequency domain617

Figure 6. Vs progressive imaging with the frequency increase in the Born formulation. Please note the importance of frequency in focusing anomalies.Vp

(Fig. 5) andVs parameters are differently reconstructed with the Born formulation.

The size of reconstructed scatterers depends on the selected wavelengthL. Details progressively appear when the inverted frequency
increases, allowing to characterize scatterers more Þnely. The way anomalies are recovered is different when inverted parameters change, as
already noticed by Mora (1987).

The choice of the Þrst frequency is not critical in this very speciÞc example of very well-localized anomalies but one may see that broad
reconstruction at low frequencies does not prevent further reÞnements in this case. The frequency content will be essentially limited by the
source spectrum in real applications (Sirgue 2003).

To better understand differences between Born and Rytov formulations, we focus on the gradient of the misÞt function expression. Fig. 2
shows Born and Rytov wavepaths (Woodward 1992) that represent the kernels of the misÞt function gradient for theVp andVs parameters for
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618 C. G«elis, J. Virieux and G. Grandjean

Figure 7. Vp progressive imaging with the frequency increase in the Rytov formulation. Please note the importance of frequency in focusing anomalies. The
Vp parameter is differently reconstructed with the Born (Fig. 5) and the Rytov formulations. The Þnal image is similar to the one obtained with the Born
formulation (Fig. 5).

one sourceÐreceiver couple. They correspond to eqs (25) and (32) when only one sourceÐreceiver couple is considered in the summation. They
are obtained here by simultaneously inverting theVp andVs parameters. This wavepath describes the path followed by a scattered waveÞeld
from the source to the scatterer and from the scatterer to the receiver. Once more, this highlights that one simple diffraction is considered
with the Born and Rytov formulations. The central area is equivalent to the Þrst Fresnel zone (Woodward 1992; Prattet al.1996). The width
of the Þrst Fresnel zone for one wavepath depends on the inverted frequency through the considered wavelengthL and the distance between
the source and the receiverO since the Þrst Fresnel zone width equals

�
L � O (Prattet al.1998). For higher frequencies, the wavelength is

smaller and positive and negative variations zones are closer. By summing up such wavepaths for all sourceÐreceiver couples, Fresnel zones
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Two-dimensional elastic full waveform inversion in the frequency domain619

Figure 8. Vs progressive imaging with the frequency increase in the Rytov formulation. Please note the importance of frequency in focusing anomalies.Vp

(Fig. 7) andVs parameters are differently reconstructed with the Rytov formulation. TheVs parameter is differently reconstructed with the Born (Fig. 6) and
the Rytov formulations. The Þnal image is similar to the one obtained with the Born formulation (Fig. 6).

containing signiÞcant energy (due to scatterers) are progressively surimposed and Þnally allow to locate the scatterers. As each wave going
from one source to one receiver differently illuminates anomalies, denser and wider acquisition geometries provide better images in practice
(Prattet al.1996).

Fig. 2 shows as well that the inversion differently reconstructsVp andVs anomalies for the Born and Rytov formulations. As Figs 5Ð8
show, images obtained from Born and Rytov formulations differ. Differences are weak and mainly located in the Þrst Fresnel zone. This was
already noticed by Woodward (1992) who shows Rytov and Born wavepaths for the acoustic case. When considering the time domain and,
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620 C. G«elis, J. Virieux and G. Grandjean

Figure 9. Comparison of data differential seismograms (difference between data to be inverted and data calculated in the initial model), synthetic differential
seismograms (difference between data calculated in the Þnal model and data calculated in the initial model) and residuals (difference between data differential
seismograms and synthetic differential seismograms) with the Born formulation and a transmission acquisition geometry. Please note that residuals are very
weak, which indicate the very good Þt of data.

therefore, the contribution of all frequencies, Woodward (1992), Dahlenet al. (2000), Dahlen & Baig (2002), Spetzler & Snieder (2004)
noticed that heterogeneities located on the ray path do not affect traveltimes but only wave amplitudes.

Wenow focus on the practical way Born and Rytov formulations allow to reconstruct anomalies for theVp andVs parameters. The Born
formulation images heterogeneities in the medium as a series of independent simple scatterers. The diffracted Þeld is, therefore, considered
as a series of neighbouring hyperbolae due to the presence of simple scatterers. These hyperbolae result from the convolution in the time
domain of the forward Þeld and the backpropagated Þeld residuals. These hyperbolae constructively and successively are added in the time
domain, thus reproducing the desired diffracting waveÞeld. The Fig. 9 shows three differential seismograms for the vertical component, a
source located on the bottom left of the model and the corresponding receivers. The Þrst differential seismogram represents the difference
between the initial Þeld and the data Þeld, the second one shows the difference between the initial Þeld and the Þeld calculated in the Þnal
inverted model. The third seismogram, called residual seismogram, contains the difference between the Þrst and second seismograms. The
inversion explains 92 per cent of the vertical seismograms energy and 87 per cent of the horizontal seismograms energy. Unexplained energy
mainly comes from small phases shifts, indicating that the Þnal inverted model corresponds to a minimum model.

The Rytov formulation proceeds in a different manner. The medium perturbations are reconstructed owing to the phase shifts and
logarithmic amplitude variations they induce on receivers. The diffracted Þeld is considered as a series of waves of different phase shifts,
coming from different scatterers. Residuals (Fig. 10) calculated in the Rytov formulation contain almost the same level of energy as for the
one deduced by the Born formulation: 93 per cent of the vertical seismograms energy and 88 per cent of the horizontal seismograms energy
are explained.

As a partial conclusion, scatterers are well located spatially. They have the correct size and the velocity amplitude is fairly well
estimated. Optimization is quite robust leaving unexplained energy in residuals. The Þnal images very weakly depend on the chosen Born
or Rytov formulation, whereas the road taken to reach the global minimum of the misÞt function is quite different (see the Þrst parameter
images for the Þrst frequency in Figs 5Ð8). We may expect more complex convergence when other data acquisition geometries will be
considered.

7 C H O I C E O F I N V E RT E D PA R A M E T E R S

Selection of the parameter space is expected to be important and non-linear relations may lead to different results. Based on radiation pattern
diagrams (Forgues 1996), we may consider four other parameters couples, denoted (V
 , Vs), (�, µ), (� , µ) and [Ln(Vp), Ln(Vs)]. V
 and�
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Two-dimensional elastic full waveform inversion in the frequency domain621

Figure 10. Comparison of data differential seismograms (difference between data to be inverted and data calculated in the initial model), synthetic differential
seismograms (difference between data calculated in the Þnal model and data calculated in the initial model) and residuals (difference between data differential
seismograms and synthetic differential seismograms) with the Rytov formulation and a transmission acquisition geometry. Please note that residuals are very
weak, which indicate the very good Þt of data. Final results are equivalent to the ones obtained with the Born formulation (Fig. 9).

are deÞned by relation (15) and following expressions

V
 (x)2 = � (x)
�

Vp(x)2 Š
4
3

Vs(x)2

�

� (x) = � (x)
�

Vp(x)2 Š
4
3

Vs(x)2

�
. (33)

The bulk velocity is denoted byV
 (Gorbatov & Kennett 2003) and is currently inverted in the acoustic case (Ravautet al.2004; Opertoet al.
2004; Dessaet al. 2004). By choosingV
 instead ofVp, we separate strict acoustic phenomena to shear ones in model reconstruction. We
consider as well Lam«e parameters couples: (�,µ) and also (�, µ). The parameter set [Ln(Vp), Ln(Vs)] may be of interest because derivatives
are related to relative variations of seismic velocitiesVp andVs.

The geometry and amplitudes of anomalous disks to be recovered are identical to the previous example as well as the acquisition geometry.
Selected parameters are simultaneously inverted for each couple. After the inversion, we reconstruct theVp andVs parameters for analysis
and horizontal proÞles crossing the lowest anomaly (Fig. 3) are shown in Figs 11 and 12.

Whatever the inverted couple we select, Þnal images show Gaussian-shape amplitude variations due to the Þnite frequency effects that
do not allow to recover sharp velocity contrasts. The Born and Rytov formulations similarly reconstruct scatterers in amplitude and in shape.
With the Rytov formulation, we have not tried to unwrap the phase and have adopted to ignore any data with a phase shift higher than 2�.

As a partial conclusion, results obtained with any parameters couple are equivalent for the data acquisition geometry and the frequency
content we have considered.

8 T H E I N F L U E N C E O F A C Q U I S I T I O N G E O M E T RY

The acquisition geometry plays a key role in the image reconstruction (Mora 1988; Prattet al. 1998). We now illustrate its inßuence in a
synthetic example based on the geometry of a real experiment which has taken place in the North of France near a railway (Leparouxet al.
2002). Detection of identiÞed near-surface cavities, embedded at a maximal depth of 5 m, was the objective. We consider a zone of 45 m
width and 20 m depth (Fig. 13a). Two disk anomalies are inserted with roofs located at 2 and 4 m depth, respectively, and their radius is equal
to 1.2 m. The background medium has following properties:Vp equals 888 m sŠ1, Vs equals 431 m sŠ1 and� equals 1600 kg mŠ3. The model
is discretized with a 0.1 m numerical spatial step and contains 451 points horizontally and 201 points vertically.

In this synthetic simulation, we do not introduce yet the free surface for better analysis. Nevertheless, the medium has been discretized
following the rule of 30 points per wavelength (Saenger & Bohlen 2004) used when the free surface is introduced, in order to compare these
results with the ones obtained with the free surface.
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622 C. G«elis, J. Virieux and G. Grandjean

Figure 11. Vp andVs parameters cross-sections extracted along a horizontal line crossing the lowest anomaly (see Fig. 3) and calculated with the Born
formulation for different parameters couples. Anomalies size, location, shape and amplitudes are well reconstructed. The inverted parameters couple choice
has a weak inßuence with this transmission acquisition geometry.

Figure 12. Vp andVs parameters cross-sections extracted along a horizonatal line crossing the lowest anomaly (see Fig. 3) and calculated with the Rytov
formulation for different parameters couples. Anomalies size, location, shape and amplitudes are well reconstructed. The inverted parameters couple choice
has a weak inßuence with this transmission acquisition geometry. Final results are equivalent to the ones obtained with the Born formulation (Fig. 11).

Sources and receivers are located above anomalies. The acquisition conÞguration is expected to inßuence the parameters Þnal images
since anomalies are differently illuminated with respect to the previous transmission acquisition conÞguration example.

If sources and receivers are located on opposite sides with respect to scatterers, the latter will be contained in the Þrst Fresnel zone for
some sourceÐreceiver couples and, therefore, the full waveform inversion performs more or less like a traveltime tomography (Prattet al.
1996). On the contrary, if sources and receivers are located on the same side with respect to scatterers, the latter are located on external Fresnel
zones corresponding to high phase shifts, and therefore, will inßuence later times in seismograms. One may think that the full waveform
inversion provides migration-like tomography (Prattet al.1996).

Fourty-three receivers record horizontal and vertical velocity Þelds coming from thirty-seven vertical force sources (Fig. 13a). The
spacing between sources is 1 m as well as for receivers. Each source is recorded by all receivers. The source is a Ricker wavelet. The frequency
content is centred around 88 Hz. We select four inverted frequencies at 10, 20, 50 and 130 Hz.
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Two-dimensional elastic full waveform inversion in the frequency domain623

Figure 13. (a) Background and reßection acquisition geometry. (b)Vp parameter calculated with the Born formulation. (c)Vs (right) parameter calculated
with the Born formulation. (d)Vp parameter calculated with the Rytov formulation. (e)Vs parameter calculated with the Rytov formulation. Please note the
better anomalies reconstruction with the Born formulation forVp andVs parameters.

We choose to perform the elastic full waveform inversion with the Born and the Rytov formulations. Moreover, as our main goal is
locating anomalies and determining perturbation amplitudes in real cases, we select the (Vp, Vs) seismic velocities as inverted parameters.

The background structure is known as for the previous example. We focus our attention on anomalies reconstruction. We assume that
long wavelengths of the model have already been determined with another method such as the Þrst arrival traveltime tomography (Improta
et al.2002) or the Spectral Analysis of Surface Waves (Nazarian & Stokoe 1984).

Results obtained from the inversion are presented on the Figs 13(b)Ð(e). Anomalies are better reconstructed with the Born formulation
than with the Rytov formulation, due to the reßection acquisition (Beydoun & Tarantola 1988). These results are in good agreement with
the ones obtained by Pratt & Worthington (1988). They show in the acoustic case that the Born formulation allows to better reconstruct the
edges of discrete objects than the Rytov approximation. In theVp andVs parameter images calculated with the Born formulation, we clearly
distinguish the two anomalies although small ghosts appear beneath them. They are due to the limited aperture of the acquisition conÞguration.
Let us point out that we perform an image of each point of the medium, therefore, background parameters are imaged as well, even if we
take as their initial values the true ones. Moreover, as the background is homogeneous, no diving wave propagates, thus preventing us from
getting some knowledge about the medium parameters from grazing angles. We explain 60 per cent of energy in vertical seismograms and
45 per cent of energy in horizontal seismograms.

9 T H E I N F L U E N C E O F T H E F R E E S U R FA C E

Let us now introduce the free surface in our previous example. We choose the Born formulation since it is better suited for reßection acquisition
(Beydoun & Tarantola 1988) as the previous example showed. Moreover, Keller (1969) and Woodward (1992) explained the Rytov formulation
should be used only with one diffracted wave, in order to model phase shift due to one wave. When the free surface is present, surface and
body diffracted waves contribute to data residuals.

The effect of the free surface is taken into account by the Þnite difference modelling of the vacuum zeroing elastic coefÞcients above
the free surface while keeping a small density (Saengeret al. 2000). Stresses are zero on the free surface. The free surface has a stair-case
geometry and we must include thirty points per wavelength in our simulations for accurate modelling (Bohlen & Saenger 2003; G«eliset al.
2005).

The reßection acquisition geometry remains the same as for the previous realistic example. Receivers are located at the free surface
whereas sources are embedded at 1 m depth in order to properly emit downwards the energy inside the solid medium (Fig. 14a).

The presence of strong surface waves in seismograms may introduce a supplementary difÞculty for the optimization scheme: surface
wavesresult from constructive interferences of reßected/transmitted body waves at the free surface and decay exponentially with depth. One
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624 C. G«elis, J. Virieux and G. Grandjean

Figure 14. (a) Background, free surface and reßection acquisition geometry. (b)Vp parameter calculated with the Born formulation and the full data set. (c)
Vs parameter calculated with the Born formulation and the full data set. (d)Vp parameter calculated with the Born formulation and progressively introduced
data set. (e)Vs parameter calculated with the Born formulation and progressively introduced data set. Parameters maps colours are saturated to highlight
reconstructed anomalies. (f) Curves show horizontal and vertical cross-sections ofVp andVs parameters models. Velocity anomalies are better characterized
when data are progressively introduced.

may wonder how velocity anomalies are extracted from surface waves because of their evanescent nature. We present here a synthetic example
to understand how the inversion works with surface waves and how we could deal with them.

The frequency sampling remains the same as in the previous example, since its choice is based on the continuous wavenumber coverage.
Let us point out that this frequency sampling is well suited for surface waves. The exponential decay of surface waves amplitude with depth
makes the frequency choice for surface waves less dense, as we explain in Appendix C, for a reßection acquisition geometry.

By performing the inversion with the whole data set,Vp andVs anomalies are correctly detected and located, but spurious features appear
(Figs 14b and c). The comparison with the previous example without free surface indicates that this convergence towards a local minimum can
be attributed to surface waves and to the difÞculty to Þt both body and surface waves. We may consider Þrst body waves and introduce surface
waveslater on. This data pre-conditioning can be performed by successively performing inversion with different data sets. We Þrst consider
short-offset data containing mainly diffracted body waves and then, we use the Þnal results as initial models to perform an inversion with
higher offset data. Therefore, we progressively introduce higher-offset data during the inversion with more and more surface wave content.
The entire inversion is performed through the frequency range with a pre-conditioned data before moving to the other selected data set. For

C� 2006 The Authors,GJI, 168, 605Ð633

Journal compilationC� 2006 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/168/2/605/688919 by guest on 25 M

arch 2021



Two-dimensional elastic full waveform inversion in the frequency domain625

Figure 15. Comparison of data differential seismograms (difference between data to be inverted and data calculated in the initial model), synthetic differential
seismograms (difference between data calculated in the Þnal model and data calculated in the initial model) and residuals (difference between data differential
seismograms and synthetic differential seismograms) calculated without and with data pre-conditioning for the horizontal component with the Born formulation.
Data residuals are weaker when data are progressively introduced.

each inversion, the frequency choice has to be adapted to ensure the coverage of a continuous wavenumber spectrum. Therefore, the number
of imaged frequencies is higher than with the whole data set and they are equal to 10, 15, 20, 35, 50, 90 and 130 Hz.

This near-to-far offset data selection is possible because the background model is known in this synthetic example and anomalies will
focus at the right place. More realistic strategies could be envisioned although it is more complex in the frequency domain than in the time
domain. An (� , k) Þltering will reduce effects of surface waves but it must be handled with care for erasing initially surface waves. Let us
remind that the frequency increase during the inversion is also a data pre-conditioning.

TheVp andVs parameter images show better reconstructed anomalies when surface waves are progressively introduced (Figs 14d and e)
with respect to the case where body and surface waves are inverted at once (Figs 14b and c). Anomalie amplitudes have been increased. We
explain 59 per cent of the vertical component when inverting directly the whole data set and 97 per cent with offset pre-conditioning. Similarly,
we improve Þtted amplitude from 48 per cent for the horizontal component to 91 per cent. When data are pre-conditioned, the energy left in
residual seismograms is considerably reduced (Fig. 15). Because surface waves contain most of energy, they control the way optimization is
performed: incorrect interpretation of these surface wave in diffracted body waves will drive the optimization to a local minimum.

1 0 D I S C U S S I O N A N D C O N C L U S I O N

The optimization method

In this paper, we perform the elastic full waveform inversion following an iterative gradient optimization scheme. Other approaches may be
applied to Þnd the global minimum. First, conjugate gradient methods allow to reach the global minimum more quickly (Polak 1971; Luo &
Schuster 1991). The Hessian matrix is as well considered as diagonal behaving (Zadleret al. 2004). The main advantage of this method is
its faster convergence but Þnal models remain in the same misÞt function area (Molinariet al. 2002). In the Ray-Born approach (Jinet al.
1992), the Hessian diagonal approximation is counter-balanced by a local illumination coefÞcient depending on the considered point. Pratt
et al. (1998) show that iterations in the gradient method allows to progressively introduce Hessian matrix out-of-diagonal terms, related to
the data acquisition aperture and the limited frequency bandwidth. Shinet al. (2001a) use the virtual source concept developed by Pratt
et al. (1998) and modify it to render the Hessian matrix more diagonal, considering that virtual sources are more uncorrelated than when
using backpropagated residuals. However, this approach is more time-consuming since each virtual source must be calculated to construct the
Hessian matrix. Plessix & Mulder (2004) show that, in the acoustic case, the diagonal approximation of the Hessian misleads the inversion
engine. Moreover, they show that the non-diagonal elements size depends on the background velocity and on the depth. By including some
non-diagonal terms in the diagonal Hessian matrix, medium imaging is improved. This could be a further improvement of our optimization
scheme in the elastic case.

The main difÞculty with gradient or Newton methods (Prattet al. 1998) remains the error estimation and uncertainty assessment to
deÞne the quality of Þnal parameter images.
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626 C. G«elis, J. Virieux and G. Grandjean

The data and model spaces choice

In this study, we highlight the data and model spaces choice inßuence by considering Born and Rytov formulations and several inverted
parameters couples. Model space explorations performed with Born and Rytov formulations differently converge to the global minimum.
When the problem is ill-posed, for example with limited aperture acquisition geometries, different model exploration may lead to different
local minima. On the contrary, similar results coming from different formulations indicate the good quality of the Þnal parameter images.
Moreover, the inverted parameters couple choice will inßuence the Þnal parameter images by better recovering anomaly amplitudes or edges.
This effect becomes more important when the number of inverted parameters increases. For example, if one aims at recovering seismic
velocities and density, several couples of physical parameters may be chosen as Forgues (1996) shows and Þnal images may differ. In order to
choose parameters couples, diffraction patterns must be considered. Kormendi & Dietrich (1991) Þnd that seismic impedance inversion gives
better results than seismic velocity inversion.

Data pre-conditioning

Another way to modify the misÞt function or better control its gradient direction concerns the data pre-conditioning. In this study, we
perform two kinds of data selection by isolating only near-offset data or by ignoring out-of-phase data with the Rytov formulation. This data
discrimination is closely related to the L2 norm choice, very sensitive to few outliers. Opertoet al. (2004) strongly weights far-offset data in
their inversion scheme to Þrst reconstruct background parameters. Our data pre-conditioning with offset represents an opposite case of this
offset weighting when the long wavelenghts of the background are known. In the elastic case, it could also be possible to weight horizontal
versus vertical data. This should be studied in details in another paper. Tuning the inversion with selected data is a key point to avoid local
minima and better converge towards the global one. The weighting choice depends on the background knowledge and the type of information
weÞrst aim to recover.

The surface waves modelling

In this approach, we do not discriminate surface waves from body waves in the inversion. The frequency modelling allows to take into account
all waves propagating at a given frequency. In practice, this may give rise to some difÞculties since surface waves are stronger than body waves
in recorded seismograms and contain lower frequencies. As the inversion begins with low frequencies and progressively considers higher
frequencies, surface waves normally Þrst control the inversion. Methods using surface waves have been developed by Campmanet al.(2004)
and Hermanet al.(2000) to eliminate scattered surface waves masking waves coming from deeper areas. They construct an effective medium
containing anomalies explaining observed scattered waves but they do not search to Þnely image these anomalies. This method allows to
roughly detect scatterers and may be used in our approach as Þrst indicator of medium anomalies. This method allows to construct a less
smooth background than the SASW (Nazarian & Stokoe 1984) and/or the traveltime tomography (Improtaet al.2002).

Combining surface waves and body waves is still a challenge because of their different physical behaviour and nature. We present here
an efÞcient way to discriminate between body and surface waves and to take information from body waves Þrst. Other data pre-conditioning
may be used to reach this purpose. A more detailed study of the surface waves inßuence on the inversion scheme must now be done in another
forthcoming paper, to introduce surface waves in the optimal way.

Conclusion

In this paper, we have performed the elastic full waveform inversion following a gradient optimization method. The forward problem allows
to model all waves propagation in complex media and to properly simulate the free surface. We highlight that the reconstruction of several
parameters is possible as long as data allow to extract information. This means that we need to know the background medium and that this
inverse scheme works for backscattering as long as macromodel is available. Moreover, we highlight problems that may be encountered with
surface waves. Their evanescent nature may introduce instabilities when depth increases but body waves help collaborative recontruction as
soon as we discriminate data. The next step of this study will be to precisely understand how to introduce them in the inversion in the optimal
way.
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Two-dimensional elastic full waveform inversion in the frequency domain627
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A P P E N D I X A : B O R N K E R N E L C O M P U T A T I O N

We follow the approach described in many textbooks (Tarantola 1987; Chapman 2004) and linearly link the Green function perturbations to
the parameters perturbations, allowing to deÞne the so-called Born kernelK. For any 2-D medium, the perturbation of the Green function
component along the directionq at the receiver positionr for a point sources applied along the directionp is given for the Þrst-order Born
formulation, also denoted Born formulation, by the expression

� Gpq (r, �, s ) =
�

M

�
� 2�� (x)G0

ip(x, �, r) G0
iq (x, �, s)

Š � Ci jkl (x)
� G0

ip(x, �, r)

� x j

� G0
kq(x, �, s)

� xl

�
dx

= Š
�

M
Kpq(r, x, s, � ) dx, (A1)

in which the implicit Einstein convention for summation is used, whereM is the set of all points in the medium that may be considered as
scatterers and where

� (x) = � 0(x) + �� (x)

Ci jkl (x) = C0
i jkl (x) + � Ci jkl (x).

(A2)

For an isotropic linear elastic medium, the fourth-order elastic tensorCijkl (x) becomes

Ci jkl (x) = �(x)� i j � kl + µ(x)(� ik � jl + � il � jk ), (A3)

where� andµ are Lam«e parameters.
This expression, which has been obtained using the reciprocity theorem, allows estimation of Fr«echet derivatives with respect to velocities.

Weneglect here derivatives with respect to the� parameter which is kept constant throughout this study.
As an explicit example, the Green function� Gzz(r, � , s) can be expressed with respect toVp andVs physical parameters perturbations

� Vp and� Vs. One may write
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� Gzz(r, �, s ) =
�

M

�
�
2� 0(x)V0

p (x)� V0
p (x) Š 4� 0(x)V0

s (x)� V0
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+
�
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s (x)
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� G0
zz(x, �, s)

� x
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s (x)� V0

s (x)
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zz(x, �, r)
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� G0
xz(x, �, s)
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+ 2� 0(x)V0
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p (x)
� G0

xz(x, �, r)
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xz(x, �, s)
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p (x)� V0

p (x)
� G0

zz(x, �, r)
� z

� G0
zz(x, �, s)

� z

�

dx. (A4)

The Born Kernel deÞned in eq. (A1) comes from the contribution of the different spatial Green functions perturbations with respect to
the perturbations of one physical parameter, such asVp ouVs. These Green functions perturbations are then multiplied with conjugate velocity
residuals in order to get the misÞt function gradient (eq. 11). Moreover, in order to take the real source term into account, one may write

�
�
Bt

0�d
�
� Vp = Sf

z

� Gzz(r, �, s)
� Vp(x)

� V�
z (�, r) + Sf

x

� Gzx(r, �, s)
� Vp(x)

� V�
z (�, r)

+ Sf
z

� Gxz(r, �, s)
� Vp(x)

� V�
x (�, r) + Sf

x

� Gxx(r, �, s)
� Vp(x)

� V�
z (�, r), (A5)

which is physically similar to eq. (17) expressed with discrete Þelds.
To go on with the� Gzz(r, � , s) example, we link the Green function perturbations� Gzz(r, � , s) to �Vp and� Vs physical parameters

perturbations. Thanks to eq. (A4), the expression� Gzz(r, � , s)/� Vp(x) is equal to:

� Gzz(r, �, s)
� Vp(x)

= Š 2V0
p (x)

�
� G0

xz(x, �, r)
� x

+
� G0

zz(x, �, r)
� z

�

�
� G0

xz(x, �, s)
� x

+
� G0

zz(x, �, s)
� z

�
(A6)

Similarly,

� Gzz(r, �, s)
� Vs(x)

= Š 2V0
s (x)

�
� G0

xz(x, �, r)
� z

+
� G0

zz(x, �, r)
� x

�

�
� G0

xz(x, �, s)
� z

+
� G0

zz(x, �, s)
� x

�

Š 2
� G0

xz(x, �, r)
� x

� G0
zz(x, �, s)

� z

Š 2
� G0

zz(x, �, r)
� z

� G0
xz(x, �, s)

� x
. (A7)

Other components of Born gradient function could be similarly estimated forVp andVs giving following expressions

� Gxx(r, �, s)
� Vp(x)

= Š 2V0
p (x)

�
� G0

xx(x, �, r)
� x

+
� G0

zx(x, �, r)
� z

�

�
� G0

xx(x, �, s)
� x

+
� G0

zx(x, �, s)
� z

�
, (A8)

� Gxz(r, �, s)
� Vp(x)

= Š 2V0
p (x)

�
� G0

xx(x, �, r)
� x

+
� G0

zx(x, �, r)
� z

�

�
� G0

xz(x, �, s)
� x

+
� G0

zz(x, �, s)
� z

�
, (A9)
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� Gzx(r, �, s)
� Vp(x)

= Š 2V0
p (x)

�
� G0

xz(x, �, r)
� x

+
� G0

zz(x, �, r)
� z

�

�
� G0

xx(x, �, s)
� x

+
� G0

zx(x, �, s)
� z

�
, (A10)

� Gxx(r, �, s)
� Vs(x)

= Š 2V0
s (x)

�
� G0

xx(x, �, r)
� z

+
� G0
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� x

�

�
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xx(x, �, s)
� z

+
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� x

�

Š 2
� G0
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� x
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Š 2
� G0
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xx(x, �, s)

� x
, (A11)

� Gxz(r, �, s)
� Vs(x)

= Š 2V0
s (x)

�
� G0

xx(x, �, r)
� z

+
� G0

zx(x, �, r)
� x

�

�
� G0

xz(x, �, s)
� z

+
� G0

zz(x, �, s)
� x

�

Š 2
� G0

xx(x, �, r)
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zz(x, �, s)
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xz(x, �, s)

� x
, (A12)

� Gzx(r, �, s)
� Vs(x)

= Š 2V0
s (x)

�
� G0

xz(x, �, r)
� z

+
� G0

zz(x, �, r)
� x

�

�
� G0

xx(x, �, s)
� z

+
� G0

zx(x, �, s)
� x

�

Š 2
� G0

xz(x, �, r)
� x

� G0
zx(x, �, s)

� z

Š 2
� G0

zz(x, �, r)
� z

� G0
xx(x, �, s)

� x
. (A13)

By inserting eqs (A6), (A8), (A9) and (A10) into eq. (A5), we obtain the continuous expression of the gradient misÞt function for the
Vp parameter. When this equation is discretized thanks to the Þnite difference stencil used throughout this study, we obtain term by term the
discrete eq. (25).

When computing the gradient misÞt function for theVs parameter, the same Þnal expression is obtained with the discretization of
analytical expressions such as (A5) and with the use of the Prattet al.(1998) formalism where discrete Þelds are always considered (equations
such as 25).

A P P E N D I X B : E L A S T I C RY T OV A N A LY T I C A L F O R M U L AT I O N

We Þrst recall that equations governing the waves propagation in a homogeneous elastic medium deÞned by the homogeneous density� 0(x)
and the fourth-order elastic tensorC0

ijkl (x) are (Tarantola 1987; Chapman 2004):

Š� 2� 0(x)V0
i (x, � ) Š

�
� xj

�
C0

i jkl (x)
� V0

k (x, � )
� xl

= Si (x, � )
�

. (B1)

We then consider weak heterogeneities (scatters) in the medium that perturb waves through eq. (A5). Therefore, eq. (B1) can be written as

Š� 2� 0 (x) Vi (x, � ) Š
�

� xj

�
C0

i jkl (x)
� Vk(x, � )

� xl

�

= Si (x, � ) + � 2�� (x)Vi (x, � ) +
�

� x j

�
� Ci jkl (x)

� Vk(x, � )
� xl

�
. (B2)

Because of the scatters presence, propagating ÞeldsVi (x, � ) are perturbed and are shifted with respect to referenced propagating ÞeldsV0
i (x,

� ) in the homogeneous medium through

Vi (x, � ) = V0
i (x, � )e�	 i (x,� )

Vk(x, � ) = V0
k (x, � )e�	 k(x,� ). (B3)
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Two-dimensional elastic full waveform inversion in the frequency domain631

Therefore, the left hand side of eq. (B2) equals to

Š� 2� 0(x)Vi (x, � ) Š
�

� xj

�
C0

i jkl (x)
� Vk(x, � )

� xl

�

=
�

Š � 2� 0(x)V0
i (x, � )e�	 i (x,� )Š�	 k(x,� ) Š

� C0
i jkl (x)

� xj

� V0
k (x, � )
� xl

Š C0
i jkl (x)

� 2V0
k (x, � )

� xk� xl
Š C0

i jkl (x)
� V0

k (x, � )
� xl

� �	 k(x, � )
� x j

Š
� C0

i jkl (x)

� xj
V0

k (x, � )
��	 k(x, � )

� xl
Š C0

i jkl (x)
� V0

k (x, � )
� x j

� �	 k(x, � )
� xl

Š C0
i jkl (x)V0

k (x, � )
� 2�	 k(x, � )

� xk� xl

�
e�	 k(x,� ).

(B4)

We perform a Þrst-order TaylorÐLagrange development ofe�	 i (x,� ) ande�	 i (x,� )Š�	 k(x,� ) since�	 i (x, � ) and �	 i (x, � ) Š �	 k(x, � ) are
considered as small perturbations. Therefore, we approximate these expressions usingex = 1 +x. We develop eq. (B1) and elimine common
terms which gives us the following expression

Š� 2� 0(x)Vi (x, � ) Š
�

� xj

�
C0

i jkl (x)
� Vk(x, � )

� xl

�
= Š � 2� 0(x)V0

i (x, � )[�	 i (x, � ) Š �	 k(x, � )]

Š
� C0

i jkl (x)

� xj

� V0
k (x, � )
� xl

�	 k(x, � ) Š C0
i jkl (x)

� 2V0
k (x, � )

� xl � x j
�	 k(x, � )

Š C0
i jkl (x)

� V0
k (x, � )
� xl

� [�	 k(x, � )]
� x j

[1 + �	 k(x, � )] Š
� C0

i jkl (x)

� xj
V0

k (x, � )
� [�	 k(x, � )]

� xl
[1 + �	 k(x, � )]

Š C0
i jkl (x)

� V0
k (x, � )
� x j

� [�	 k(x, � )]
� xl

[1 + �	 k(x, � )] Š C0
i jkl (x)V0

k (x, � )
� 2�	 k(x, � )

� xl � x j
[1 + �	 k(x, � )] (B5)

The last expression is equal to�� (x)Vi (x, � ) + �
� x j

(� Ci jkl (x) � Vk(x,� )
� xl

) + Si (x, � ) since it is the right hand side of eq. (B2). Since

�� (x)Vi (x, � ) +
�

� x j

�
� Ci jkl (x)

� Vk(x, � )
� xl

�
+ Si (x, � )

= �� (x)V0
i (x, � )[1 + �	 i (x, � )] +

�
� x j

�
� Ci jkl (x)

� {V0
k (x, � )[1 + �	 k(x, � )]}

� xl

�
+ Si (x, � ), (B6)

weget the expression

Š � 2� 0(x)V0
i (x, � )�	 i (x, � ) Š

�
� xj

�
C0

i jkl (x)
� [V0

k (x, � )�	 k(x, � )]
� xl

�
= � 2� 0(x)V0

i (x, � )�	 k(x, � )

Š C0
i jkl (x)

� V0
k (x, � )
� xl

� �	 k(x, � )
� x j

�	 k(x, � ) Š
� C0

i jkl (x)

� xj
V0

k (x, � )
��	 k(x, � )

� xl
�	 k(x, � )

Š C0
i jkl (x)

� V0
k (x, � )
� x j

� �	 k(x, � )
� xl

�	 k(x, � ) Š C0
i jkl (x)V0

k (x, � )
� 2�	 k(x, � )

� xl � x j
�	 k(x, � )

+ �� (x)V0
i (x, � )[1 + �	 i (x, � )] +

�
� x j

�
� Ci jkl (x)

� {V0
k (x, � )[1 + �	 k(x, � )]}

� xl

�
. (B7)

The right hand side of the equation is the source termSi
c(x, � ) corresponding to scatters effects. The propagating Þeld is nowV0

i (x, � ) � 	 i (x,
� ) instead ofV0

i (x, � ) e�	 i (x,� ) as in eq. (B1). Following the classical scattering Þeld formulation, we write

V0
n (r, � )�	 n(r, � ) =

�

M
G0

ni (r, x)Si
c(x, � ) dx. (B8)

By replacingSi
c (x, � ) with its value, we Þnally obtain

�	 n(r) V0
n (r, � ) =

�

M

�
� 2� 0(x)V0

i (x, � )�	 k(x, � ) Š C0
i jkl (x)

� V0
k (x, � )
� xl

� �	 k(x, � )
� x j

�	 k(x, � ) Š
� C0

i jkl (x)

� xj
V0

k (x, � )
��	 k(x, � )

� xl
�	 k(x, � )

Š C0
i jkl (x)

� V0
k (x, � )
� x j

� �	 k(x, � )
� xl

�	 k(x, � ) Š C0
i jkl (x)V0

k (x, � )
� 2�	 k(x)
� xl � x j

�	 k(x, � )
�

+ �� (x)V0
i (x, � )[1 + �	 i (x, � )]

+
�

� x j

�

� Ci jkl (x)
�
�
V0

k (x, � )[1 + �	 k(x, � )]
�

� xl

�

G0
ni (r, x) dx. (B9)

By neglecting multiple scattering terms as for the Born formulation, performing integration by part for the second remaining term of the
right-hand side and considering no perturbation on the model edges, we Þnally get the perturbed phase

�	 n(r) V0
n (r, � ) =

�

M

�
� 2�� (x)V0

i (x, � )G0
ni (r, �, x) Š

� G0
ni (r, �, x)

� xj
� Ci jkl (x)

� V0
k (x, � )
� xl

�
dx. (B10)

Following the Born formulation approach, we factorize the source termSf
q(r, � ) in the previous equation and, therefore, we obtain

�	 nq(x)G0
nq(r, �, s) =

�

M

�
� 2�� (x)G0

iq (x, �, s) G0
ni (r, x) Š

� G0
ni (r, �, x)

� xj
� Ci jkl (x)

� G0
kq(x, �, s)

� xl

�
dx. (B11)
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Dividing by the reference Green functionG0
nq(r, � , s), we obtain at last

�	 nq(x) =
1

G0
nq(r, �, s)

�

M

�
� 2�� (x)G0

iq (x, �, s) G0
ni (r, x) Š

� G0
ni (r, �, x)

� xj
� Ci jkl (x)

� G0
kq(x, �, s)

� xl

�
dx. (B12)

This equation linearly connects model parameters and complex phases through Rytov formulation. The elastic adjoint operator will be deduced
and discretized (see eq. 32 for the general expression) as for the Born formulation.

A P P E N D I X C : C H O I C E O F I N V E RT E D F R E Q U E N C I E S

A1 For a transmission acquisition geometry and only body waves

The Fig. 4 explains how we obtain the expressions forkx andkz in any acquisition geometry. They are equal to

kx = k0sin(� ) Š k0sin(
 )

kz = k0cos(� ) + k0cos(
 )
(C1)

wherek0 is the vertical wavenumber (Sirgue 2003; Sirgue & Pratt 2004) and� and
 are deÞned on Fig. 4 as angles between the source or
receiver vector and the vertical direction.

Using the trigonometric formulae cos(�) + cos(
 ) = 2 cos(� +

2 ) cos(� Š


2 ) and sin(�) Š sin(
 ) = 2 cos(� +

2 ) sin(� Š


2 ) and cos2( � Š

2 ) +

sin2( � Š

2 ) = 1, we get

�k � = k 2
x + k2

z

= 2k0 cos
�

� + 

2

�
(C2)

and

kx = � k� sin
�

� Š 

2

�

kz = � k� cos
�

� Š 

2

�
(C3)

In the pure transmission case (Fig. 4 case 3), the imaged wavenumber at a given frequency is zero (continuous component of the medium).
Therefore, the frequency choice is determined by souce-receiver couples corresponding to horizontal or vertical geomoetries (case 1 and 2 in
Fig. 4). Thus, the inverted frequencies may be chosen as equal to the ones calculated for the reßection acquisition geometry determined by
Sirgue (2003), Sirgue & Pratt (2004).

A2 For a reßection acquisition geometry and surface waves

With only body waves, frequencies are chosen such as (Sirgue 2003; Sirgue & Pratt 2004):

kz min = 2k0/
�

1 + h2/ z2

kz max = 2k0

(C4)

whereh is the half-offset,z is the target depth,k0 is the vertical wavenumber,kzmin andkzmax are minimal and maximal imaged wavenumbers
for one frequency. When surface waves are present, their exponential decay with depth must be introduced, leading to

kz min = 2k0/
�

1 + h2/ z2 exp(Š2k0z)

kz max = 2k0 exp(Š2k0z) (C5)

Sirgue (2003), Sirgue & Pratt (2004) explained that the wavenumber spectrum continuous imaging condition is

kz min( fn+1 ) = kz max( fn) (C6)

for two consecutive frequenciesf n and f n+1 . This gives

fn+1 = fn/
�

1 + h2/ z2 (C7)

for body waves, thanks to eq. (C4). For surface waves, thanks to eq. (C5), this equation becomes

Fn+1 = Fn/
�

1 + h2/ z2 exp(2z/c [Fn+1 Š Fn)]

Fn+1 = fn+1 exp(2z/c [Fn+1 Š Fn)], (C8)

where f (small letters) are frequencies chosen for body waves whereasF (block letters) are frequencies chosen for surface waves. As
exp(2z/c [F n+1 Š F n)] > 1 since 2z/c (F n+1 Š F n) > 0, the frequency choice is less constraining for surface waves than for body waves.
Therefore, we choose frequencies corresponding to the body waves imaging conditions.
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Let us point out that the frequency choice proposed by Sirgue & Pratt (2004) is based on the wave propagation in a homogeneous
medium. In more realistic media, inverted frequencies distribution may be denser to take beneÞt of the wavenumber spectrum overlapping
and redundancy.
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