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Abstract 
 
In this paper, an experimental analysis performed on a simplified brake apparatus is presented. Brake squeal 
is a major concern in braking design. During past years a common approach for squeal prediction was the 
complex eigenvalues analysis. Squeal phenomenon is treated like a dynamic instability. When two modes of 
the brake system couple at the same frequency, one of them becomes unstable leading to increasing 
vibration. The presented experimental analysis is focused on correlating squeal characteristics with the 
dynamic behavior of the system. The experimental modal identification of the set-up is performed and different 
squeal conditions and frequencies are reproduced and analyzed. Particular attention is addressed to the 
system dynamics in function of the driving parameters on squeal occurrence. Squeal events are correlated 
with the modal behavior of the system in function of the main parameters, like contact pressure, friction 
material properties and system geometry. The robustness of the obtained squeal events permits a further 
analysis on the triggering of the squeal instability during braking, including the values of parameters that bring 
to instability. The obtained results agree with the modal coupling approach for squeal prediction, and confirm 
the characterization of squeal as dynamic instability. 
 
Introduction 
 
Disc brake noise continues to be object of investigation for automotive manufacturers and researchers. 
Because of  the complexity of the problem and the need of estimating the squeal tendency during brake 
design, many analytical and numerical [1] approaches have been proposed. The modal coupling approach 
(mode lock-in) between two system modes, proposed by Akay & all [2], is one of the most accepted. The 
complex eigenvalues analysis is a popular numerical tool for squeal instability prediction [3-4]: squeal 
propensity is quantified by the dynamic instability of certain system modes. This paper shows an experimental 
analysis aimed to validate this approach for squeal prediction and to identify squeal phenomenon as a modal 
instability of the system. Brake squeal is a strongly non-linear phenomenon, characterized by friction material 
and contact non linearities. The modal approach allows to predict the rise of squeal when it is still in linear 
conditions. The paper uses a simplified set-up that is particularly appropriate to identify and eventually modify 
its dynamic behaviour. 
 
A description of a modal analysis of the set-up is first presented. The dynamics of the system is studied by 
considering separately three main sub-structures of the brake(calliper, disc and pad). Different ways to shift 
the mode frequencies of the system are used to find different instability conditions. All squeal conditions are 
related to an appropriate dynamic configurations of the system with particular values of the parameters. Some 
comments and remarks are finally reported. 
 
Experimental rig 
 
Since a real brake apparatus is characterized by geometry and dynamics that can be hardly controlled and 
understood, an experimental and theoretical study of a simplified experimental set-up is preferred. The set-up 
consists in a rotating disc (the disc brake rotor) and a small friction pad pushed against the disc by weights 
positioned on a rigid support (figure 1). 



 
Figure 1- Experimental set-up. 

 
The disc is made of steel (internal diameter 100 mm, external diameter 240 mm, thickness 10 mm) and is 
assembled with the shaft by two hubs of large thickness that insure a rigid behaviour of the connection, in the 
frequency range of interest. The velocity of the DC motor can be adjusted to have a disc velocity between 5 
and 100 rpm. The transmission line consists of a pair of pulleys connected by a rubber toothed belt. The brake 
pads are made of commercial brake friction material, obtained by machining standard brake pads. Reduced 
pad dimensions are adopted to simplify and easily control the dynamics of the pad, by changing its 
dimensions. The support (the central cylindrical body in the figure) is also made of steel and its shape is 
chosen to simplify its dynamic behavior. The normal force between pad and disc (braking pressure) can be 
adjusted by adding weights on the top of the support, between 25 and 250 N. The support weighs 25 N. 
Adjusting the normal load with weighs placed on the pad support, that is not constrained in the vertical 
direction, allows the pad surface to follow the disc oscillations that are due to a not perfect planarity of the 
disc, and assures a constant value of the imposed normal force. Two thin-plates hold the pad support in the 
tangential direction. This solution permits to have a low stiffness (zero in non deformed vertical condition) in 
the normal direction and high stiffness in the tangential direction, necessary to oppose the friction force. A tri-
axial force transducer is placed between pad and support. The transducer allows to measure the time history 
of the normal and friction forces. It is important to note that these forces are not measured on the real contact 
surface, but above the brake pad. Thus, the pad dynamics influences the measured forces.  
The whole sep-up is designed to have a simple dynamics that can be analyzed and modified to obtain 
different squeal conditions. A simple dynamics of the set-up allows to follows its behavior when changing the 
driving parameters and to relate the dynamics to the rise of squeal.   
 
Set-up dynamics 
 
The main objective of this paper is to show how the dynamics of a brake system influences squeal occurrence 
and squeal frequencies. Therefore, the investigation of the set-up dynamics is the first step of the work. 
Particular attention is focused on the bending modes of the disc (in the normal direction) and the bending 
modes of the support and the pad (in the tangential direction). In fact we have seen in previous experiments 
[4] that these are the modes involved in squeal phenomena. Particularly, both FEM analysis and measured 
FRFs (Frequency Response Functions) in the in-plain direction show that in-plain modes of the disc are not 
involved in the squeal phenomenon.  
 
Three different substructures are considered in the analysis: the disc, the support and the pad. The dynamics 
of the assembled system can be analyzed by the combination of the dynamics of the disc and the support, 
because of the reduced contact surface between the two substructures and the consequent low coupling 
between them. Therefore, we will refer to the modes involving bending vibration of the disc as “disc modes”, 
being the larger part of the energy concentrated on the disc. As well, we will refer to the modes involving 
bending vibration of the support as “support modes”. A further analysis allows to recognize the influence of the 
pad dynamics on the dynamics of the assembled system. 
 
The disc modes are characterized by nodal diameters and nodal circumferences: the (n,m) mode of the disc is 
characterized by n nodal circumferences and m nodal diameters. The disc is characterized by an axial 
symmetry: therefore the modes of the disc are generally double modes. Due to the contact with the pads, the 
disc loses its axial symmetry. Therefore, when the structure is assembled together (contact force from 25 to 
225 N), the modes of the disc are no longer double modes and they split at two different frequencies (figure 
2). 



 
 
We use the following notation to name coupled system modes: 

- mode (n,m) a nodal diameter is coincident with the contact point; 
- mode (n,m+) an antinode is coincident with the contact point. 

 

Figure 2 - FRF of the set-up measured on the disc periphery, when a normal of 225 N is applied, and 
samples of the disc deformed shapes (0,3) and (0,3+). The big node is the contact surface with the pad.  

 
The support modes are analyzed by a Single-Input-Multi-Output analysis, exciting the support in the tangential 
direction, close to the contact surface, when no weights are placed on the top of the support. This analysis is 
performed without rotating the disc. However, the three peaks in frequency are found during brake 
simulations. The effect of the disc rotation results in a decrease of the mode frequencies. Lower frequencies 
can be explained considering that the thin-plates holding the support have a side compressed during brake 
simulation. This effect introduces a lower stiffness in the support substructure that brings to lower frequencies. 
Figure 3 shows the deformed shapes of the support in the tangential direction. 
 

I support mode at 489 Hz II support mode at 2091 Hz III support mode at 2912 Hz 
 

IV support mode at 5146 Hz V support mode at 7717 Hz  
Figure 3 – Deformed shapes of the support obtained experimentally. 
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Table 1 lists the natural frequencies of the system obtained by EMA (Experimental Modal Analysis), when no 
weights are added on the top of the support, and a friction pad with 10X10 mm contact surface is mounted. 
The normal load is equal to 25 N. 

MODE FREQUENCY 
[Hz] 

HYSTERTICAL 
DAMPING % MODE FREQUENCY 

[Hz] 
 HYSTERTICAL 

DAMPING % 

I support 489 7,27 (0,5+) 5589 0,32 
(0,1+) 925 5,36 (1,0) 7217 2,35 
(0,2) 1425 1,67 V support 7717 0,75 

(0,2+) 1625 3,69 (0,6) 7725 0,26 
II support 2091 0,72 (1,2) 8025 3,06 

(0,3) 2317 1,18 (0,7+) 10088 0,37 
(0,3+) 2458 2,02 (0,7) 10141 0,38 

III support 2912 3,99 (1,4) 12367 1,07 
(1,0) 3058 2,11 (0,8+) 12725 0,27 
(0,4) 3750 1,31 (0,8) 12825 0,17 

(0,4+) 3808 0,67 (1,5) 15283 0,58 
IV support 5146 2,09 (0,9+) 15517 0,54 

(0,5) 5575 0,49 (0,9) 15708 0,13  
Table 1 – System natural frequencies and modal damping. 

 
The third substructure to investigate is the friction pad. Its dynamic is easily recognizable in the assembled 
dynamics. Figure 4 shows the PSD of the pad acceleration in the tangential direction during brake simulation  
when a normal load of 225 N is applied (grey line). The first three peaks in frequency are three support 
modes. The others two peaks at 4.5 and 11.5 kHz correspond to modes of the pad. A second test was made 
by dragging the pad on a rigid surface, disassembled from the disc and the support. The black line in figure 4 
shows the acceleration PSD during this test. Only the two peaks related to the pad modes appear. A FE 
modal analysis allows to identify two pad modes characterized by the pad deformation in the tangential 
direction, at the same frequencies obtained experimentally. 

 
Figure 4 - PDS of the pad acceleration during brake simulation (grey), and in disassembled condition 

(black). 
 

Dynamics modulation 
 
In order to pilot the dynamics and, in particular, the modes frequencies, different driving parameters are 
chosen: the load applied on the top of the support, the friction pad dimensions, the stiffness of the thin-plates, 
insertion of damping material between the thin-plates and the support. 
 
Figure 5-a shows the split values of the disc modes when 20 Kg are placed on the top of the support (225 N of 
normal load). Figure 5-b shows the split increase with the increase of the contact force for the modes with 
respectively two and three nodal diameters: the red line (circles) is the FRF of the disc when there is no 
contact with the pad, and the blue one (asterisks) is the FRF with maximum load on the top of the support. By 
changing the load, the mode frequencies of the disc move. It is interesting to notice that the modal split is 



positive for low frequency modes, almost zero for the six nodal diameters mode, and negative for high 
frequency modes. We define the split positive when the (n,m+) mode has a higher frequency than the (n,m) 
mode. This behavior is due to the mass and stiffness effects introduced by the contact with the pad. The (n,m) 
mode has the contact point belonging to the nodal diameter so that it is not influenced by the contact and its 
frequency remains almost the same. The (n,m+) mode has the contact point in the antinode of the disc. For 
low frequency modes the add of stiffness due to the contact stiffness with the pad and support has more 
influence than the add of modal mass, and the natural frequency increases. The influence of the mass effect 
increases by increasing the frequency, and for higher frequency modes the natural frequency decreases with 
the increase of the load. In another experimental analysis [4] only a positive split was obtained, because the 
contact load was introduced with a mechanism involving mainly an add of stiffness. In the experimental set-
up, object of this study, the contact pressure is obtained by gravity due to a huge mass placed on the top of 
the support. In this case, not only an add of contact stiffness but also an add of mass must be considered. 

Mode Split
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Figure 5 - a) Split of the disc modes with 225 N of normal load; b) Split of two and three nodal diameters 
modes in function of load: the red line (circles) is the FRF with no contact with the pad, the blue line 

(asterisks) is with maximum load. 
 

Obviously, adding weighs on the top of the support changes the support natural frequencies. Moreover, 
because of the strong dependence of the properties of the friction material on the stressed state of the 
material itself, and because of the increase of the contact stiffness with the load, the mode frequencies of the 
support increase with the applied load. Table 2 shows the frequencies ranges where the modes of the support 
and pad fall, being the normal load varied from 25 N to 225 N. The contact surface of the pad is equal to 
10X10 mm, and thin-plates thickness is equal to 0.5 mm. 

MODE FREQUENCY RANGE [Hz]
II support mode 1500 - 2100 
III support mode 2400 - 3150 

I pad mode 3750 - 4500 
II pad mode 10100 - 12000  

Table 2 – Support and pad frequency range for different load conditions 
 

Table 2 shows only the second and third support modes, because only these two modes of the support are 
involved in the squeal phenomena. This can be explained looking at the deformed shapes of the support 
modes in figure 3. The second and third modes are the modes involving largest vibrations of the support at 
the bottom end, where it is in contact with the disc. The dynamic instability is due to the coupling between one 
normal mode of the disc and one support or pad mode. The coupling happens in the contact surface, because 
of the relationship between normal and friction forces. Therefore, the larger the modal deformation at the 
contact point, the easier is the rising of instability.  
 
Increasing the thin-plates thickness from 0.5 to 1 mm increases the stiffness of the support mode and the 
natural frequency of the second and third mode increases by about 200 Hz. The thickness of the thin-plates 
does not affect the frequencies of the disc and pad modes. By adopting different contact surface dimensions 
(8X8 10X10, 10X15, 10X20), the frequencies of the pad modes can vary between 3700 and 5000 Hz for the 
first mode and between 10000 and 14000 for the second one. 
 
 



Squeal phenomena 
 
The previous section describes the detailed dynamic analysis performed in function of the main driving 
parameters. An extensive experimental campaign was then performed to find as many possible squeal 
frequencies by modulating the parameters values. During this campaign the dynamics of the system was 
followed to relate its variation to the rising of instabilities. 
 
Five different squeal frequencies are found: 1566 Hz, 2467 Hz, 3767 Hz, 7850 Hz and 10150 Hz. These 
squeal conditions are obtained for well defined values of the driving parameters, and all of them are easily 
reproducible. Figure 6 shows the system behaviour during the squeal event at 3767 Hz, obtained with 45 N of 
normal load, contact surface equal to 8X8 mm and thickness of the thin-plates equal to 0.5 mm. The disc 
velocity was maintained at 10 rpm and the support was leaned on the disc to start the brake simulation. 
Consequently the normal and friction forces show a starting ramp due to the initial contact between pad and 
disc. In figure 6 a slow non-physical decrease of their mean values is observed due to the discharging of the 
capacitive transducer. The global friction coefficient is equal to 2.8. After the first contact, the system 
vibrations start to increase as shown by the time history of the in-plain acceleration of the pad and by the 
increase of sound pressure vibration. The PSD of the pad acceleration and the sound pressure level reveal 
the harmonic nature of the system vibrations at 3767 Hz. The parameter values are adjusted to have squeal 
instability. As soon as the contact happens the instability rises and the vibrations grow up to a maximum 
value. The small variations of the vibration amplitude, after its stabilization, are due to the non uniformity of the 
disc roughness.  
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Figure 6 – System vibration during squeal phenomenon at 3767 Hz. 
 

Figure 7 shows the PSDs of the pad acceleration in the tangential force direction for different values of the 
normal load from 250 N to 30 N. The grey line is the FRF measured on the disc periphery with normal load 
equal to 30 N. The amplitude of the peak related to the pad mode decreases with the decrease of normal 
load, because also the pad excitation in the tangential direction, due to the friction force, decreases 
proportionally to the normal load. By lowering the normal load the first mode of the pad moves to lower 
frequencies and it gets close to the (0,4+) mode of the disc. This can be explained by the lower Young 
modulus value of the pad material and by the lower contact stiffness with the disc. It is important to notice that 



only when the pad mode is enough close to the disc mode squeal happens. In figure 7 only the red line (PSD 
for 30 N of normal load) presents a peak in frequency, characteristic of the squeal phenomenon. The same 
behaviour is noticed for the other four squeal frequencies obtained during this experimental campaign. Similar 
plots can be obtained varying other parameters. This means that we can have squeal instability only when a 
coincidence of two system modes is obtained, as predicted by the complex modal analysis and by the lock-in 
theory. Moreover we obtain squeal only when a disc mode, characterized by bending vibrations, couples with 
a mode of the pad or the support, characterized by vibration in the tangential direction. Precisely, we have 
squeal at 1566 Hz when the II support mode frequency coincides with (0,2+) disc mode frequency, squeal at 
2467 Hz when the III support mode frequency coincides with (0,3+) disc mode frequency, squeal at 7850 Hz 
when the II pad mode frequency coincides with (0,6+) disc mode frequency, squeal at 7850 Hz when the I pad 
mode frequency coincides with (0,4+) disc mode frequency, squeal at 10150 Hz when the II pad mode 
frequency coincides with (0,7+) disc mode frequency. 
 

 
Figure 7 – PSD of pad acceleration in function of normal load, and FRF in squeal condition.  

 
It is worth to underline the clear distinction obtained between the two substructures that present modes 
characterized by tangential vibrations along the contact surface: pad and support (calliper). This study shows 
that the disc dynamics can couple indifferently with the dynamics of the pad or with the dynamics of the 
support, bringing in both cases to squeal instabilities. This means that an effective “squeal free” design should 
take into account both the pad and calliper dynamic interaction with the disc. 
 
Figure 8 shows all the disc modes involved in squeal events (on the FRF of the disc), and the frequency 
ranges covered by the support and pad modes at variation of the driving parameters. As expected, all the 
normal loads of the disc in the range of frequencies covered by the support and pad modes are involved in 
instability and they become unstable when their frequencies coincide with the respective support or pad mode 
frequencies. The (0,5+) mode frequency of the disc doesn’t fall in any range covered by the pad and support 
tangential modes and, consequently, squeal does not occur. 



 
Figure 8 – Disc, pad and support modes involved in squeal instability. 

 
 
Squeal triggering 
 
During brake simulation several squeal frequencies are found, for defined parameters values. All the squeal 
events are obtained for modal coincidence of a normal mode of the disc and a tangential mode of the pad or 
support. This agrees with the lock-in theory that attributes the phenomenon to a dynamic instability, due to the 
coalescence of two system modes, one of which becomes unstable. 
 
This section brings a further proof that squeal phenomena are dynamic instabilities related to the dynamics of 
the mechanism. During brake simulation in “silent” conditions (without squeal noise), but with the parameters 
values set to have instability, an impulse was given at the disc surface in the normal direction, with a hammer. 
The impulse was given in the opposite side of the contact with the pad, in order to excite all the modes with an 
antinode at the contact point. Figure 9 shows that, as soon as the impact happens, squeal starts and goes on 
until the disc is stopped. Following the FFT of the pad acceleration during the test, three different key-steps 
are identified:  

• Phase 1: before the impulse, an almost white noise with only two low peaks due to the pad modes is 
acquired;  

• Phase 2: during the impulse, the FFT shows all the peaks due to the bending modes of the disc with 
an antinode at the contact surface;  

• Phase 3: after the impact, only the frequency peak (squeal) coincident both with a bending mode of 
the disc and with a mode of the pad is observed, and doesn’t decrease.  

 
It is needless to specify that, when the driving parameters are set to values that do not allow squeal, an 
impulse on the disc has not any effect. 
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Figure 9 – Squeal vibration starts after an impulse normal to the disc surface at t ≈ 3s. The system 

parameters are set to have squeal instability. 
 

Excitation of squeal instability can be also obtained by exciting the pad in the tangential direction by touching 
the disc surface in a point of the contact circumference with a humid wad. By this expedient it is possible to 
obtain an impulse in the friction force (figure 10) when the humid point passes under the pad. Using this kind 
of excitation, phases 1 and 3, described above remain the same, while in phase 2 only the frequency peak 
related to the disc mode, that is close to the pad mode, increases. Afterwards, the squeal peak goes on like in 
the previous case (phase 3). 
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Figure 10 – Squeal vibration starts after an impulse (t ≈ 7s) in the friction force. 



 
Conclusions 
 
The behaviour of the proposed experimental set-up and the measurements presented in this paper agree with 
the mode lock-in theory and the complex eigenvalues analysis for squeal prediction. This means that we can 
predict the rise of a non-linear phenomenon, characterized by material and contact non-linearities, by a linear 
numerical tool. In fact squeal starts in linear behaviour, and only during its rise it becomes strongly non-linear. 
The dynamic analysis, parallel to the squeal campaign, clearly relates the squeal phenomenon with a system 
mode instability. In particular, squeal happens when a mode, characterized by large tangential vibrations of 
the pad surface couples with a mode characterized by large bending vibration of the disc in the contact point.  
 
An important distinction between pad and support (calliper) dynamics must be underlined. Experiments show 
that squeal can be obtained both from modes coupling between disc and pad and modes coupling between 
disc and calliper. This suggests that an effective “squeal-free” brake design should take into account both 
these phenomena.  
 
A further analysis shows that the squeal instability can be easily triggered when the system dynamics is 
favourable. It is important to note that a brake apparatus  in real operating conditions is subjected to several 
circumstances that can trigger the instability. Therefore, during brake events, in order to have the squeal 
instability it is sufficient to reach the presented dynamic condition, i.e. coupling between support or pad mode 
with a bending disc mode. 
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